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COMPACT SUBSEMIGROUPS OF {pH, +) CONTAINING THE
IDEMPOTENTS
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The space /?N is the Stone-Cech compactification of the discrete space of positive integers. The set of elements
of /}N which are in the kernel of every continuous homomorphism from /?N to a topological group is a
compact semigroup containing the idempotents. At first glance it would seem a good candidate for the
smallest such semigroup. We produce an infinite nested sequence of smaller such semigroups all defined
naturally in terms of addition on N.

1991 Mathematics subject classification: 22A15.

1. Introduction

Given a discrete semigroup (S, •) the operation can be extended to the Stone-Cech
compactification PS of S so that (PS, •) is a compact right topological semigroup. (See
[12] for an elementary construction of this extension, with the caution that there PS is
left rather than right topological.) As a compact right topological semigroup PS has
idempotents [6, Corollary 2.10]. The existence of these idempotents, especially idem-
potents in the smallest ideal of PS, has important combinatorial consequences (See [11]
and [15], for example).

Of special interest are the semigroups (N, +) and (M, •), where N is the set of positive
integers. Let E = {pePN:p + p = p} and let T = clE. It turns out that T is a right ideal of
(/?W, •). This fact provided the first (and for a long time only) proof of the following
result: If N is partitioned into finitely many cells, then there exist sequences <*„>"=, and
<y«>"=i s u c h t h a t ^SKxn>™=1)uFPK.yn>"=1)

 i s contained in one cell of the partition [9,
Theorem 2.6]. (Here FS«xn>"=1) = {^neFxn:F is a finite nonempty subset of ftJ} and
^ ( O O ^ t M F L f . ^ i s a finite nonempty subset of IM}).

It is an intriguing fact that F is defined additively, is a right ideal, in particular a
subsemigroup, of (/IN, •), and yet is not a subsemigroup of (fiN, +). In fact there exist
idempotents p and q in {/}N, +) such that p+q$F. (See Section 3 for the easy proof of
this latter assertion.) An intriguing and potentially useful problem then arises: Charac-
terize the smallest compact subsemigroup of (pN, +) which contains the set E of
idempotents.

We take the points of fiN to be the ultrafilters on N. The reader is referred to [12]
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for background material. We will often use the fact that Aep + q if and only if
A — xeq}ep, where A—x = {yeN: y + xeA}. (And similarly Aepq if and only if
{xeN:A/xeq}ep, where A/x = {yeN: yxeA}.)

Homomorphisms to other algebraic structures are a useful tool for investigating the
algebraic structure of fiN. For example, such homomorphisms were used in [13] to
show that the maximal groups in the smallest ideal of (/?N, +) contain copies of the free
group on 2C generators. Now given any continuous homomorphism from (fiN, +) to a
compact topological group the kernel necessarily contains E. (It also must contain any
element of finite order [1, Corollary 2.3]. Whether any such exist besides the
idempotents is a difficult open problem.)

Let C be the intersection of the kernels of all continuous homomorphisms from
(flN, +) to arbitrary compact topological groups. (We use "C" for kernel because K
standardly represents the smallest ideal.) Then C is a compact semigroup containing E
and at first glance seems like a good candidate for the smallest such. This turns out to
fail badly, as we shall see.

The set T = clE can be characterized as follows [11, Lemma 2.3(a)]: Let pe/iN. Then
p e F if and only if for every Aep there is a sequence <xn>"=1 with FS((xn)™= t) £ A. In
a similar fashion we define sets Sn£/W for each neW\{l} as follows: Let pefiN. Then
peSn if and only if for each Aep, there is a sequence <x«)"=i with FS«x(>"= ,)£/!.
(Given an index set J, FS«x,>,eJ) = {^I£fx1: F is a finite nonempty subset of J}.) In a
similar vein define T and M by agreeing that, given peflN, peT if and only if whenever
Aep, there exist some a and some (y,y?=l with a + FS((y,y?=1)^A and that peM if
and only if whenever Aep ana neN, there exist <x(>"=1 and (y,}?Li such that
FS((x,y^=1) + FS(<^yty^=i)^A. It will be shown in Theorem 2.4 that T is the smallest
closed left ideal of (PN, +) containing the idempotents.

Let / be the semigroup generated by the set E of idempotents and let S, be the
smallest compact subsemigroup of (/IN, + ) containing E. In Section 2 we investigate
each of the objects defined above, show that all (except F and ell) are semigroups and
show that the following pattern of inclusion holds:

n=2 n=2

In Section 3 we show that F \ / # 0 , / \ F # 0 , T\f)?=}Sn¥=0, f)?=lSn\T¥=0, and
that all but one of the inclusions displayed above (including "...") is proper. (We have
been unable to decide whether M = T'n(")™=2Sn.) In Section 4 we present relationships
between these sets and other structures.

We would like to thank the referee for a very helpful and detailed report.
We conclude this introduction by displaying some results which we will utilise later.

Lemma 1.1. (a) Let peE and let Aep. There exists <xn>"=1 such that
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(b) Let 0 0 " = 1 be a sequence in N. There exist peE such that for all meN,
FS«x B >» = Jep .

Proof, (a) This is what is shown in the Galvin-Glazer proof of the Finite Sum
Theorem. See [5, Theorem 10.3] or [12].

(b) [10, Lemma 2.4 and Theorem 2.5]. •

Lemma 1.2. Let n and r be in N. There is some meN such that whenever <.y»)r=i is a
sequence in N and DuD2,...,Dr are subsets of P4 with FS«y,>" = 1 )s (J i = 1 D j , there exist
ie{ l ,2 , . . . , r} and <xr>?=1 with FS«x,>r= , )£ / ) , .

Proof. By the finite version of the Finite Unions Theorem [8, p. 82] pick meN such
that whenever the finite nonempty subsets of {1,2, ... ,m} are covered by r cells, there
will exist pairwise disjont B1,B2,-.,Bn with all sets of the form \J,eFB, in the same cell
of the cover (for 0 ^ F s { l , 2 , . . . , « } ) .

Next let <^(>r=i and <D,>J=1 be given with FS«y,>,m
=i)cyj= 1f) , . For each

ie{ l ,2 , . . . , r} , let //, = {F£{ l ,2 , . . . ,m}: F * 0 and ^ 6 , j / , e D , } . Pick ie{ l ,2 , . . . , r} and
pairwise disjoint BuB2,Bn with \JjeFBj<=Hi whenever 0 ^ F { 1 , 2 n}. Let Xj = Y,,eBjy,
for je{\,2,...,n}. Then given 0 ^ F s { l , 2 , . . . , « } , X,efX; = L - 6 F L ^ ; - > ' < -

 S i n c e

[)JeFBje Hi one has that YjeFxt e Dt. Q

The following lemma is apparently originally due to Frolik.

Lemma 1.3. Let X and Y be a-compact subsets of ($N. If clXnclY¥:0, then
or

Proof. See [14, Lemma 1.1]. •

2. Inclusions among semigroups containing the idempotents

We begin by displaying the definitions of the objects we are studying. Recall that

Definition 2.1. (a) C = {pe/?N: for any compact topological group G and any
continuous homomorphism $ from (pN, +) to G, <p(p) is the identity of G}.

(b) For n e ^ \ { l } , Sn = {pe/?N: for all Aep there exists <x(>"=1 such that

(c) T = {pefiN: for all Aep there exist a e N and <y,>," i such that a + FS((y,>,",)£
A}.

(d) M = {pe/?N: for all Aep and all neW there exist <x,>f"=1 and <j,>,™ i such that

(e) S7 = P){S: S is a compact subsemigroup of (fiN, +) and EzS}.
(0 / = f]{S: S is a semigroup of (/?N, +) and £ s S } .
(g) r = {pep"N: for all Aep there exists <y,>," i such that FS(<y,y?LX)Q
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Lemma 2.2. Each of the objects defined in Definition 2.1 contains E and all except I
are compact.

Proof. The idempotents are contained in V by Lemma 1.1 (a). Clearly F is contained
in each of M,T, and Sn (for neW\{l}). The idempotents are contained in / and S, by
definition and are contained in C by elementary algebra.

That S, and C are compact follows from elementary topology. The others all have
definitions which begin "for all Aep" (and refer no more to p). If a point p is not in the
specified set is has a member A failing the definition. Then clA is a neighbourhood of p
missing the specified set. •

We will see in the next section that / is not closed when we show that the inclusion
/Sc/7 is proper.

Lemma 2.3. Each of the objects defined in Definition 2.1 except F is a semigroup.

Proof. That C, I, and 5, are semigroups follows by elementary algebra.
Let neN\{l} and let p,qeSn. To see that p + qeSm let Aep + q. Then {xeN:

A-xeq}ep so pick <x,>?=1 such that FS«x,X=1)s{xeM: A-xeq}. Now FS«x,>?=1)
is finite so if B = f]{A-a: aeFS«x,>?=1)} we have Beq. Pick {ytY,=l such that

cB. We claim FS{(x, + y,y, = l)cA. To see this let 0 # F g { l , 2 n}. Then
L e F t t Z ^ F , so XiefCKr + yJeA

That T is a semigroup follows from the fact that it is a left ideal which we will
present in Theorem 2.4. To see that M is a semigroup, let p, qeM and let Aep + q. Let
B = {xeN: A-xeq}. Then Bep so pick <x,>"=1 and (yS?=i such that FS«x(>"=1) +
FS(<yf>-!)<=& In particular FS«x, + y,yt= JsB. Let D = n{A-a: aeFS«x, + yt>Ui)}-
Then Deq so pick <z,X=1 and <w,>£, such that FS«z,X=i) + FS«w(>(

to=1)eZ). Then

•
We shall see in Theorem 2.11 that T is not a semigroup.

Theorem 2.4. T is the smallest closed left ideal of (f!N, +) which contains the
idempotents and T = cl{J{(iN+p: peE}=cl{J{N+p: peE}.

Proof. By Lemma 2.2 T is closed and contains the idempotents. To see that S is a
left ideal let pefiN and qeT. Let Aep + q. Then {xeN: A — xeq}ep so pick x such
that A-xeq. Pick a and <>',>,<*L1 such that a + FS«yr>," ^ S / l - x . Then x + a +

As a closed left ideal containing the idempotents, T^cl{J{/}N+p: peE}. To complete
the proof, we show T^cl\J{fiN+p: peE}. To this end let qeT and let Aeq. Pick a
and (y,y?=l such that a + FS«y,>,™ j s / 1 . Pick Lemma 1.1 peE with FS{(y,}^=1)ep.
Then A ea + p so (clA)n(N+p)J=0. •

Theorem 2.5. (a) Tsc/7.
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(b)clIzS,
(c) S ,£M

(e) For each n e N\{ 1}, Sn +, s Sn

(f)S2sC.

Proof. Statements (b), (d) and (e) are trivial and (c) follows immediately from the
fact that M is a compact subsemigroup of fiN containing the idempotents. By [11,
Lemma 2.3], F = clE so (a) holds.

To verify (f), let peS2 and let 0 be a continuous homomorphism from (/? Ĵ, +) to a
topological group (G,+) with identity 0. Suppose that $(p) = a#0 . Then a^a + a so
pick a neighbourhood V of a such that Vn(V+V) = 0. Pick Aep such that #[cL4]£K
and pick x1 and x2 with {x1,x2,xl + x2}^A. Then (j)(xi + x2)e Vn{V+ V), a contra-
diction. •

The following simple result allows us to tell when a set A has closure intersecting
various of our special semigroups. For example, it tells us that for AsM and ne^J\{l},
clAr>Sn^0 if and only if whenever F is a finite partition of A there exists BeF and
<xr>"=1 with FS«x,>"=,) £ B. (Let ^ = {FS«x(>?=1): <x,>"=1 is an n-term sequence in
N}. Then Sn = {pePN: for each Aep there exists Ge<$ with G^A}).

Theorem 2.6. Let X be a discrete space, let A^X, and let y^&X. The following
statements are equivalent.

(a) There exists p e clA such that for every Bep there exists Ge'S with C s B .
(b) Whenever !F is a finite partition of A there exist B e SF and Ge'S with G £ B.
(c) When & is finite and \J& = A, there exist BeS? andGe<& with GsB .

Proof. That (a) implies (b) and (b) implies (c) is trivial.
To see that (c) implies (a), it suffices to show that {4}U{N\JB: B^N and for all

G \ B # 0 } has the finite intersection property, since any ultrafilter p extending this
family is as required by (a). But a failure of the finite intersection property would make
A = \J5F where & is finite and for each Be^", one has no Ge'S with GsB,
contradicting (c). •

Theorem 2.7. Let A^N. Then (clA)nf)?=2Sn^0 if and only if for every neN there
exists <x(>"=1 with FS«x,>"=1)c/4.

Proof. The necessity is an immediate consequence of Theorem 2.6.
Sufficiency. We have by Lemma 2.2 and Theorem 2.5 that {(clA)r\Sn: neN\{l}} is a

nested collection of closed sets so it suffices to show that (clA)r\Sn^0 for each
weN\{l}. To this end let ne ^{1} and let & be a finite partition of A. Let r = \ &\ and
pick m as guaranteed by Lemma 1.2 for n and r. Pick <y,>r=i with FS«,yl>™=,)Ei4. By
Lemma 1.2 pick BeF and <x(>?=1 with FS«x,>?= J c fi. •

The following notion, used to characterize members of C, is of independent interest.

https://doi.org/10.1017/S0013091500023026 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023026


296 NEIL HINDMAN AND DONA STRAUSS

Definition 2.8. Let ^Sl^J. Then A is a rational approximation set if and only if
whenever F is a finite nonempty subset of U and e > 0, there exists some n e A such that
for each x e F there exists meZ with |x — m/n|<e/n.

Lemma 2.9. Let pefiN. The following statements are equivalent.
(a)peC;
(b) for each Aep, A is a rational approximation set;
(c) for each Aep, each xeR, and each e>0 there exist neA and meZ with \x —

m/n | < e/n.

Proof. To see that (a) implies (b), let Aep and let finite nonempty FsIR be given.
Write F = {xl,x2,...,xk}. We view the circle group T as R/Z, denoting by [x] the
equivalence class x + Z. Define h: M->XJ=1T by h(ri) = (\_nx1],[_nx2],...,[«**])• Then h is
a homomorphism so the continuous extension hf: /?N-»XJ=1T is a homomorphism, as
was observed by Milnes [17]. Since peC, h"(p) = [0],[0],...,[0]) so pick Bep such that
fc'[c/B]£{(!>!],rj>2],...,[>»]): for each ie{l,2,...,fc}, - e<y ,<e} . Pick neBnA. Since
neB, pick for each is{1,2,...,/c}, some yt with — e<y,<e such that [«*,] = [.)';]• Given
ie{l,2,...,k}, pick m(eZ such that nx^yi+mj then —e<nx,—»!,<£ so |x,— mjn\<
e/n.

That (b) implies (c) is trivial.
To see that (c) implies (a), observe that it suffices to show that given any continuous

homomorphism 4>: /?N->T one has <f>(p) = [G]. (See for example the introduction to [1].)
So let such <f> be given and pick xeIR with [x] = (/>(l). Suppose that </>(p)#[0] and pick
e>0 such that <Kp)i{[y\- — e ^ y i £ } - Pick Aep such that <j>[_clA~]r^{[y~\:
— e^y^e} = 0. Pick neA and meZ such that |x — m/n\<e/n and let y = nx — m. Then

= Lv] a n ( l —£<>'<£, a contradiction. •

Theorem 2.10. Let /l£W. Then clAnC^0 if and only if A is a rational approxi-
mation set.

Proof. Necessity. Pick peclAnC. By Lemma 2.9, A is a rational approximation set.
Sufficiency. Let @ = {B^N: B is a rational approximation set.} It is an easy

consequence of the definition of rational approximation sets that whenever 3F is a finite
partition of A, one has ^ " n ^ # 0 . Thus by Theorem 2.6 there is some peel A such that
for every Bep there is some G e ^ with G s B (and hence Be<§). Then by Lemma 2.9
peC. •

Theorem 2.11. F is not a semigroup. In fact (E + £ ) \ F V 0 .

Proof. Pick by Lemma 1.1 (b) idempotents p and q such that FS«22'>,°Lm)ep and
FS«22( + 1>,°iJeq for each meN. Let /4 = {XieF

22' + Z(eG22<+1: F and G are finite
nonempty subsets of N and max F<min G}. We claim that Aep + q. To see this it
suffices to show that FS«22'>(

c^1)£{x6^J: A-xeq) so let F be a finite nonempty
subset of IM and let m = maxF+ 1. Then FSK22'+1>;°=m)£,4-Z(ef2

2' so / t - X ^ ' e q .
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Now suppose p + qeT. Then pick a sequence <yf>,°Li with FS«yr>,ci1)S^. Pick Ft

and G, with maxF^minGj such that yt = X,eFl2
2' + X,e C l2

2 '+ I . Let m = maxG1 + l.
Pick nonempty / / s l^ \{ l} such that 22m divides ^ r e Hy r (Take any 2m elements with all
y, in the same congruence class mod 22m.) Pick F2 and G2 with maxF2<minG2 such
that £reH>'f = Z>eF22

2' + £(6G222' + 1. Since 22m divides £,eHy( we have minF2^m. Thus
yi + L^y, = L^22' + Z,ol2

2' + l+L,F22
2' + L,G22

2l + l where max F ^ m i n G ^
maxG! <minF2<maxF2<minG2 so by uniqueness of binary expansions, yi+YjeHyt$
A, a contradiction. •

Our proof that ell is not a semigroup is in some respects similar to the proof that F
is not a semigroup. However, instead of the binary expansion of integers we use the
factorial expansion, x = £ , e f a , d where each a,e{l,2,...,i}. In the proof we also utilize
in an incidental fashion the semigroup (PN, •).

Theorem 2.12. ell is not a semigroup. In fact

Proof. Since Fee// , the second statement implies the first. Let
£neOfc-n!: F and G are finite nonempty subsets of M and maxF<minG and keN and
/cgminG}. Define g: M->M by g(x) = a, where x = £(eFa,-«!, each afe{l,2,...,r}, and
/ = maxF. That is g(x) is the leftmost nonzero digit in the factorial expansion of x.
Denote also by g its continuous extension from /W to PN.

We claim that:

00

Ifge f] clNri), then g(p + q)=g{q) for all p e 0N. (1)

To see this, suppose instead there is some B^N with g[p + q)eclB and g(q)ecl(N\B).
Pick Cep + q and Deq with g[c/C]cc/B and g[c/D]cc/(N\B). Since Cep + q pick
xeN with C-xeq. Pick ye{C-x)r\DnMx\. Then y + xeC so g(y + x)£B. But
g(y + x)=g(y)eN\B, a contradiction.

Next we claim:

tf qeE and clAn(PM +q)it0, then g(q)eN. (2)

To see this suppose that g(q)$N, so that for each k, Dk = {meN: g(m)>k}eq. Pick
pePN with p + qeclA. Let B = {m + n: m,weM and g{n)>g(m)>l and nel^Jm!}. We
show that Bep + q which will be a contradiction since Bn/4 = 0 . We claim in fact that
for all xef^J, B — xeq. For this, since q = q + q, it suffices to show that (Nx!)nD,£
{meN: (B-x)-meq} so let me(Nx!)n£>,. Then Dg(m)nNm\Q(B-x)-m since
g(m + x)=g(m)) so (B-X)-OTG^I.

Next we claim:

If pec/(FS«n!>B°°=1))nn d(IMn) and r e/?IM, then g(r-p) = r. (3)
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To see this it suffices to show that for all neN, g(n-p) = n, so let neN be given. Let
B = {£(eFt!: F is a finite nonempty subset of W and minF^n}. Then Bep so n-Benp
and g[n-B] = {n}. Now by Lemma 1.1 pick pe£nc/FSKn!>n°°=1) and let refiN\N. Now
for each x e N , xpeE so r p e F . Let s = p + rp. We show that s$cll. Suppose instead
that secll. Observe that Aes. Indeed FS«n!>™=1)s{xeN: A-xer-p). (Given £ n e f n !
one sees that N\{l}s{/c: (,4 —£nefn!)//cep} by noting that {£,,eGn!: minG>maxF and

We claim that s e c / U ^ / n g " ^ ^ } ] ) . To see this, let Bes. Since secll, we have
cl(Ar\B)r\l ^ 0 so we may pick /ePM and qx,q2,---,q\eE with <?i+<?2+"'+

We may presume /^2 . Now by (2) we have g{ql)eH. Let k=giqt). By (1),
• +9d = k so c/Bn(/ng"1[{/c}])#0.

Now also secl(N + r-p) so c/(N + r-p)nc/(J?)
=1c/(/ng"1[{/c}])#0 so by Lemma 1.3

either one has some neN with n + r-pecl{J?=1cl(Ing~l[{k}D^f)%=1cl(Nm)) or one
has some qefiN and some keN with q + rpec^ /ng" 1 ^^} ] )^^ - 1 ^^} ] . The first
possibility would imply that ne p)^=1c/(Nm). The second would imply that g{q + r-p) = k
while by (1) and (3) g{q + r-p)=g(r-p) = r$N. •

3. The inclusions are proper

We show in this section that the objects mentioned in Theorem 2.5 are all distinct
(except that we have been unable to determine whether M = Tr\ Q °̂= 2Sn). We proceed
from the left in the inclusion diagram from the introduction.

Theorem 3.1. / \ r # 0 and T\I # 0 .

Proof. That / \ I " V 0 follows from Theorem 2.11. That T \ / # 0 follows from
Theorem 2.12 since £ + / £ / . •

In the following theorem (and the rest of this section) the inclusions hold by Theorem
2.5 (or are completely trivial). We concentrate on establishing the inequalities.

Theorem 3.2. T g ell, / £ c//, and ell £ S,.

Proof. That T/c/7 follows from the fact from Theorem 3.1 that / \ r # 0 . The
remaining two conclusions follow from the fact (Theorem 2.12) that ell is not a
semigroup. •

We produce in the following lemma another closed subsemigroup of fiN containing
the idempotents. It was not included in those discussed in Section 2 because its
definition is less natural than those defined there. When we write £,efa,'t!, we shall
assume F is finite and nonempty and each a,e{l,2,...,t}.

Lemma 3.3. Let B = {£(Efa,-r!: (1) F is a finite nonempty subset of N; (2) for each
teF, a t e{ l , 2 , . . . , t } ; (3) there exists teF such that a,>l; and (4) whenever n, teF with
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t<n either a, = an = l or a,>an}. Then (Q"=1c/Nn)\c/B is a closed subsemigroup of
'""!,+) containing the idempotents.

Proof. To see that it is a semigroup, let p,qe(f)™=lclNn)\clB. Then p + qe
C\™=iclf*in so we only need to show that N\Bep + q. To this end we let xeN\B and
show that (N\B)—xeq. Write x=£ , e F a , t ! and let m = maxF+l. We show that
Nm!c(N\B)-x, so let yeNm\ and write y = Ydtecbt'tl

 a°d note that minG^m.
Now x$B. Assume first that for all teF, at=\. If for all teG, bt=\, we have y + x$B

so assume for some neG, bn>\. Pick any teF. Then t<n and at=l<bn so again
y + x$B. Now assume we have t<n in F with a,^an and it is not the case that
a, = an= 1. Then directly we have y + x fails to satisfy (4) of the definition so y+x$B.

Now let peE. Then pef)™=lclNn so we show that N\Bep. Suppose instead that
Bep and let £> = {X,eft!: F is a finite nonempty subset of N}. Then D^N\B so if Dep
we are done. Assume D$p.

Assume that for some k^2, {£,eFa,-'!: m i n F^k and {a,: teF}^{l,2,...,k}}ep.
Since p = p + p + - - + p ( / c times) and pef)™=1clNn we have that {£,6fa(-t!:|F|^A:}ep.
Let E=Bn{£,6fa,-t!: minF^fc and \F\^k and {al:teF}c{l,2,...,fc}}. Then £ e p so
pick x e £ such that E — xep. Write x = £ r e f a , t ! and let m = maxF+l. Pick yeNmln
(E — x), and write y = Y,tecb,-tl Since xeB and |F|^/c and each a,^k, there is some
t e F with a,= l. Since yeE, yeB so y^D so there is some neG with bH>\. But then
t<n and a,<bnsoy + x$B so y + x$E a contradiction.

Thus it must be the case that for all fceN, Ek = (^,eFat-th {a,: teF}\{l,2,...,k}*0}
ep.Since Bep, pick x such that B — xep and write x=YjteFa,t\. Let k = ma.x{a,: teF}
and let m = maxF+l. Pick yeNm\nEkn(B—x) and write y = Y.teGb,'tl- Pick neG such
that bn>k and pick any teF. Then t<n and bn>a, so y + x$B, a. contradiction. •

Theorem 3.4. S, g M.

Proof. Let B be as in Lemma 3.3 and let // = {^(eFa, f!: whenever n, teF with t<n
one had at>an}. Observe that given any neN there exists <x,>"=1 with FS«xr>"=1)£//.
(For example let x( = (n+ 1 — t)-(n + t)l.) Thus by Theorem 2.7 we may pick peclHn
n»°°=2S,r By Lemma 1.1 pick g = q + ̂ ef)™=1c/(FS«t!>,co

=J). We claim that p + qeMn
clB (so that by Lemma 3.3, p + qeM\S,).

To see that p + qeM, let Aep + q and let /jeN be given. Since {xeN: A — xeq}ep
and peSn, pick <x,X=1 with FS«x(>?=1)s{xeN: /4 -xe^} . Let D = (){A-
z:zeFS«x,X=1)}. Since Deq + q pick <y,>» ! with F S « y , > - J s D . Then FS«x(>?=1) +

To see that Bep + q we show that / / s {xeN: B—xeq}. So let x e / / and write
x=£,efa,-t!. Let m = maxF+l. Then FS«f!>,cim)sB-x so B-xeq. D

As we have remarked, we do not know whether M = Tn(~)?=2Sn. It is trivial that
T\f)T=2Sn^0, indeed that T\S2^0. In fact by Theorem 2.5 S 2 eC and trivially
Csf)™=1c/(Mn) while, given any idempotent p, we have by Theorem 2.4 that 1 +
pec/(N2+l)nT. This suggests replacing T by Tnf)?=lcl(Nn).
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Theorem 3.5. ()?=2Sn\T*0, (Tn()?=1cl(Nn))\S2*0, and Tn()?=2Sn£ f)?=2Sn.

Proof. For the first statement, let A = {J?=iFS((22" + iyUiY By Theorem 2.7, (clA)r\
OnO=2^n7t0- It is easy to see however that one cannot get any teN and any sequence
<xn>"= j with t + FS(<xn>"=1)^/4 (since all elements of A have binary expansions with
support restricted to a small segment of N). Thus (clA)r\T = 0.

Now let B = U?L4(2(fc!) + FS«n!>™=4+1)), so that B consists of all numbers whose
rightmost nonzero factorial digit is a 2, occurring at position 4 or above and all other
nonzero digits are 1. Then there do not exist x,yeB with x + yeB. (Given x,yeB either
the rightmost digit of x + y is 4 or there are two digits in the expansion of x + y which
are greater than 1.) Thus (clB)nS2 = 0.

Now pick by Lemma 1.1 p = p + p with p6f)^=1c/(FS«n!>™=J) and pick qef}N\N
with {2-(k\): keM}eq. Then p,qef)™=lclhln) so q + pef)™ = l cl(Nri). By Theorem 2.4,
q + peT. Since {2-(/c!):/ceN and fc^4}c{xe(\l: B-xep}, one has q + peclB.

The last conclusion of the theorem follows from the first. •

The following result is a special case of Theorem 3.9, but its proof is much simpler so
we present it separately.

Theorem 3.6. S3 g S2.

Proof. Let A = {22m — 22n: m,neN and m>n}. It is easy to see that one cannot get
any xux2,x3eA with {xl+x2,xl+x3,x2 + x3}sA. Thus (clA)nS3 = 0. To see that
(clA)nS2*0 we use Theorem 2.6. So let J5" be a finite partition of A. For each FeJ5",
let B(F) = {{n,m}: n,meN and m>n and 22m-22neF}. By Ramsey's Theorem [8, p. 7]
pick FeJ^ and n<m <r in N with {{n,m}, {n,r}, m,r}}^B(F). Let x 1 =2 2 m -2 2 n and
x2 = 22r-22m. Thenx,+x2 = 22 r -22 nso{x1 ,x2 ,x1+x2}cF. •

For our proof of Theorem 3.9 we need the following result. Given a sequence <Fr>"= t

of sets we write FU«,F,y?=l) = {\J,eGF,:G is a (finite) nonempty subset of {l,2,...,n}}.

Theorem 3.7. (Nesetril and Rodl). Let r,neM. There is a finite set £f of finite
nonempty sets such that:

(a) whenever ^ = \J]=i3Si, there exist ie{l,2,...,r} and pairwise disjoint Fi,F2,...,Fn

in <f with Fl /KF,)^ ,)<=<#.- and
(b) there do not exist pairwise disjoint F1,F2, . . . ,Fn + 1 in if with

Proof. [18, Theorem 1.1]. (Or see [7].) (The fact that Sf and the members of Sf are
finite is not stated, but follows from the proof.) •

The following corollary is not stated in [7] or [18], and we feel it is interesting in its
own right.

Corollary 3.8. Let neN\{ 1}. There is a set A^N such that
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(a) whenever SF is a finite partition of A there exist Be IF and <x,>"=1 in N with
>Ui)^Band

{b) there does not exist ( x , ) ^ , 1 with

Proof. Pick by Theorem 3.7 a sequence <5̂ r>r
c"L t such that

(i) for each reM, ifT is a finite set of finite nonempty subsets of N and
J

(ii) for each reN, whenever yr=\Jri=i@i there exist ie{l,2,...,r} and pairwise
disjoint FuF2,...,Fn in if, with Fl/«F,>?= ,) = #,- and

(iii) for each r e N , there do not exist pairwise disjoint Fl,F2,...,Fn+l with

Let y=\}f.xyr Then
(iv) whenever J*" is a finite partition of if, there exist 3be!F and pairwise disjoint

FuF2,...,Fn in y with FC/«Fr>,n
=1)£^, and

(v) there do not exist pairwise disjoint Fl,F2,...,Fn + l in if with FU{(J ̂ )1±\)<=,if.
Indeed, (iv) is immediate since if r = | F | one has ifT £ y . To verify (v), suppose we

have pairwise disjoint Fl,F2,...,Fn+l in if with Fl/«F(>"=1
1)cy. Observe that, given

any reN and any Geif, GeifT if and only if min((Jyr)^minG and maxG^
max((Jyr). Pick reN with Fleifr. If any Ft$ifT we have by the above observation
that F j u F , ^ .

Thus each F,eifr so, again using the observation, F[/«F(>"=1
l)syr, contradicting

(iii).
Now let A = {s£j,sFy:Fe9'}. Given a finite partition J5" of A and BeJ5", let

{Fey: X i ^ ' e B } . Then {^(B): B e ^ } is a finite partition of ̂  so by (iv), pick
and pairwise disjoint Fl,F2,...,Fn in y with FC/«F,>^=1)£^(B). For

te{l,2,...,«}, let x, = Xief,3'. Then FS«x,>r=1)£B. so (a) holds.
To verify (b), suppose we have x1,x2,...,xn + 1 in N with FS(<x,>"=1

1)E/l. For each
te{l ,2, . . . ,n+l}, pick F, such that x, = £i e f ,3 ' . We claim that the sets FuF2,...,Fn+l

are pairwise disjoint (so that Fl/«F(>"=/)£y, contradicting (v)). Suppose instead we
have t ^ s with F,nFs*0. Then xl + xs=YtisFtlkPl3'+'^lePtnFm2-3'. But x, + x s e^ so for
some G, xI + xs = ^ i e G 3 ' , contradicting the uniqueness of ternary expansions. •

Theorem 3.9. Let neN\{l}. Then Sn+l^Sn.

Proof. Pick A as guaranteed by Corollary 3.8. By (b), (clA)nSn+i=0 while by (a)
and Theorem 2.7, (clA)nSn ^ 0 . •

Now we need to show that C^S2. We will utilize /?Z. We brush aside the distinction
between ultrafilters on Z with N as a member and ultrafilters on N, and thus pretend
that jJNg^Z. Given pefiN we let -p = {-A: Aep] and note that -pe/?Z. (But be
cautioned that unless peN, - p + p#0; in fact (1N\N is a left ideal of fiZ so if pefiN\N
then also -p+pefiN\N.)

Lemma 3.10. Let <j> be a homomorphism from /?Z to the circle group T and let
Then<t>(-p)=-<l>{p).
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Proof. Note that the function/: /?N-»j?Z defined by/(p) = — p is continuous. For all
neN, <p( — ri)=—<p{n) (since <f>\z is a group homomorphism). Thus 4>°f and — <p are
continuous functions agreeing on N, hence on 0N. •

Lemma 3.11. Let <xn>"=1 be any increasing sequence in N and let A and B be infinite
subsets of N. Let D = {xn + xm—xr — xs: n>m + 3>m>r + 3>r>s + 3 and n, seA and m,
reB} and let p, qefiN\N with {xn: neA}ep and {xn: neB}eq. Then De —p+ —q + q +
p and — p+—q + q + peC. In particular D is a rational approximation set.

Proof. To see that — p+ — q + q + peC it suffices (as is well known and explained in
the introduction to [1]) to let <f> be a homomorphism from fiN to T and show that
<K~P+ - 9 + <7+P) = [°]- T o this end let such <j> be given. Define v. Z-»T by T(0) = [0 ] ,
and r(n) = </>(«) and T( — ri) =—d>(ri) for neN. Then the continuous extension xfi of T to
/SZ is a homomorphism and xfi agrees with <j> on fiN. Thus, using Lemma 3.10, we have

+ T(p) = [0].
It is completely routine to verify that De—pH—q + q + P- The "in particular"

conclusion follows from Lemma 2.9. •

Lemma 3.12. Let <xn>"=1 be a sequence in N such that for each neN, xn + l^.2xn. Let
A and B be disjoint infinite subsets of N such that for some i, je{0,1,2}A^N3 + i and
B^M3+j. Let D = {xn + xm — xr — xs: n>m + 3>m>r + 3>r>s + 3 and n, seA and m,
reB}. There do not exist a, beD with a + beD.

Proof. Suppose we have a, beD with a + beD and pick n1>ml + 3>ml>ri

r1>s1+3, n2>m2 + 3>m2>r2 + 3>r2>S2 + 3, and n3>m3 + 3>m3>r3 + 3>r3>s 3 + 3
such that a = xni+xmi-xrt-xso b = xn2 + xm2-xr2-xS2, and a + b = xni + xm3-x,,-xS]

and {ni,n2)«3>Si,S2,s3}£/4 and {ml,m2,m3,r1,r2,r3}^B. Then we have

xni + xm + xn2 + xm2 + xr3 + xS3 = xn3 + xm3 + xri + xsi + xr2 + xS2. (*)

We may assume without loss of generality that ni~^.n2. We claim first that ni=n3.
Suppose nj<n3. Then since n{, n3eN3 + i, the left hand side of (*) is at most
Xn} - 3 + xn3 - 6 + *«3 - 3 + *n3 - 6 + Xn3 - 6 + Xn3 - 9 = Xm - 2 + Xn} - 5 + Xn3 -6+xni-9

< Xn3>
 a COn-

tradiction. (Observe that for each n, xn + 1>^"=1xr.) Similarly if we had n3<nt we would
have that the right hand side of (*) is at most xni_3 + xni_6 + xni_6 + x1I1_9 + xni_6 +
^ n i -9^^n 1 -3 + ^ 1 - 5 + ^ 1 - 8 + ^n 1 -6<^ 1 ThusM 1 =n 3 so we have

xml+
x
n2+

xm2+
xr3 + xsi =

 xrni+
Xrl+

x
Sl+

Xr2 + Xs2 (**)

Now n2eA and mleB so «2#m1. We claim that n2<ml so suppose instead that
n2>m1. If m3<n2 we have (since n 2

> m i > r i + 3) that the right hand side of (**) is at
most xn 2_i+xn 2_4 + xn2_7 + xn2_6 + xn2_9<xn2, a contradiction. If m3>«2(>m1) we
have that the left hand side of (**) is at most xm3_3 + xm3_1+xm3_4 + xm3_3 + xm 3_6^
xmi-i+

xmi-2+xm3-4 + xmi-6<xmi, * contradiction. Thus n2<mr as claimed.
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Now we claim m3 = m1. Suppose first that m3<ml. Then the right hand side of (**) is
at most xmi_3 + xmi_3 + xmi_6 + xmi_7 + xm i_1 0<xm i ) a contradiction. Similarly if m,<
m3 one has the left hand side of (**) is at most xm,_3 + xm3_4 + xm3_7 + xm3_3Xm3_6<
xm3, a contradiction. Thus m = mx so we have

^n2 + ^m2 + Xr3 + XS3 = Xr,+XSl+Xr2 + XS2. (***)

Now we claim that n2<rv Suppose not. Then since n2eA and r ^ B w e have « 2
> r i s o

the right hand side of (***) is at most xn 2_1+xn 2_4 + xn2_6 + xn2_9<xn2, a contradic-
tion. Thus « 2

< r i a s claimed.
Next we claim r3 = rv If r3<rl we have the left hand side of (***) is at most

xr i_1+xr i_4 + xr i_3 + xI.1_6<xri, a contradiction. If r 3>r1(>n2) we have the right hand
side of (***) is at most xr3_3 + xr3_6 + xr3_1o + xr3_13<xr3. Thus r3 = rl so we have

*« + *.,+ *., = *.. + *« + *«• (****)

Continuing in this fashion we see that if n2 = s3 then also «2
 = s i s o t n a t xm2 + -xs3

 =

xr2 + xS2 and hence that m2 = r2 which is a contradiction.
Thus one must have « 2 / s 3 , and hence that | {n2)m2,s3} | = 3. Now if s, = s2 one has

Si=s2<r2<n2 so the right hand side of (****) is at most xB2_9 + xn2_6 + xn2_9<xn2, a
contradiction. Thus Si#s2 so | {si,r2,s2} | = 3. Since x n + 1 >£" = 1 x , for each n, expres-
sions in FS«x(>(

c^1) are unique. Thus from (****) we have {n2,m2,S3} = {s1,r2,s2} so
that {m2} = {n2,m2,s3}nB = {s1,r2,s2}nB = {r2} while r2<m2. This contradiction com-
pletes the proof. •

Theorem 3.13. Let <xn>"=1 be a sequence in N such that for each n, xn + 1^2xn. Let A
and B be disjoint infinite subsets ofN and let p, qefiN\N such that {xn: neA}ep and {xn:
neB}eq. Then —p-\—q + q + peC\S2.

Proof. Pick i, ;e{0,1,2} such that N3 + iep and N3+jeq. Let A' = An{N3 + i) and
B' = Bn{N3 +j). Let D = {xn + x m - x r - x s : n>m + 3>m>r + 3>r>s-l-3 and n, seA' and
m, reB'}. By Lemma 3.11, De —p-\—q + q + pep and —p+—q + q + peC. By Lemma
3.12 -p+-q + q + p$S2. •

It is natural to ask whether in lieu of — p-\—q + q + p above one might be able to get
by with — p + p for some suitable p. We conclude this section by showing that this is not
possible.

Theorem 3.14. Let pefiN\N. Then -p + peS2.

Proof. Let Ae— p + p. Then {xeZ: A — xep}e— p so B = {xeN: A + xep}ep. Pick
x,eB, pick x2eBn(/l + x1), pick x3e(/l + x,)n(/i-l-x2). Let y = x2—xi and let z =
x3 —x2. Then y, zeA and y + z = x3—xleA. •

4. Connections with other structures

The interaction of the operations + and • on fiN has been a very useful
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combinatorial tool. (See [3] for an example where this interaction is utilized several
times in succession.)

Recall that, given p and q in fiM and A^.H, Aepq if and only if {xeN: A/xeq}ep
where A/x = {yeN: yxeA).

It is not generally true that for neN and pe /W one has n-p = p + p+ ••• +p (n-times).
(For example one sees easily that if « # 1 then n-p^p while if p = p + p, then
p = p + p+ ••• +p (n-times).) On the other hand we do have the following lemma. Recall
that, given pe jW and a sequence <xn>"=i in a topological space X, one has p-limneN

xn = y if and only if for each neighbourhood U of y, {neN: xneU}ep.

Lemma 4.1. Let (G, +) be a compact topological group, let <f>: /}N->G be a continuous
homomorphism, let peflN, and let neN. Then <j>(n- p) = n- (j>(p), where
n• 4>{p) = 4>(p) +••• + 4>(p) (n-times).

Proof. Recall that the function Xn defined by ln(p) = n-p is continuous since neN.
Recall further that by the joint continuity of addition in G, we have wp-limmeN</>(m) =
p-\immeNn<t>(m). Thus we have 4>(n-p) = <j){n-p-\immeNm) = p-\\mmeN(f>(nm) =

i i •

Theorem 4.2. C is a two sided ideal of(f}N,-).

Proof. Let G be a compact topological group with identity 0 and let <j>: fiN -»G be a
homomorphism. Let peC and let qefiM. Pick nets (xn}neD and <^t>teE in N
converging to p and q respectively.

Then <£(<?• p) = tf>((limte£ y t ) p ) = limt6£ (/>(3'tp) = limre£(yt^(p)) = limteE(>'t0) = 0.
Now let z = (j>(q) and define v. N->G by t(n) = n-z. Then the continuous extension zf:

pN-*G is a homomorphism. Thus 4>(p q) = <j)((\imneD xn)q) = \imneD 4>{xn-q) =

Theorem 4.3. For each neN\{l}, Sn is a two sided ideal of(fiN,-).

Proof. Let n e N, let p e Sn and let qefiN.
To see that p-qeSn, let Aeq-p and pick yeN such that A/yep. Pick <x,>"=1 with

FS«xt>?=,)cA/y. Then FS((y• x,}UX)^A. .
To see that pqeSn, let Aepq and pick <x,>"=1 such that FS((x,)"=l)^{yeN:

A/zeq). Pick yef]{A/z: zeFS«x(>r=1)}. Then F S « r x . X ^ S A D

In the process of our study of the semigroup C, we were led to the following result
(and its fortuitous corollary). By a divisible sequence <xn>"=1 in N we simply mean an
increasing sequence with the property that each xn divides xn + l.

Recall that we are representing the circle group J as K/Z. By TT we mean the set of
all functions from T to T with the product toplogy ( = "topology of pointwise
convergence").

Theorem 4.4. Define h: N-*TJ by h(ri)(a) = n-(x and let hfi be the continuous extension
of h to flN. Let <xB>"=1 be any divisible sequence in M. Then hfi is one-to-one on cl{xn:
neN}.
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Proof. Let p and q be distinct elements of cl{x^. neN}. Pick disjoint A and B
contained in N such that {xB: neA}ep and {xB: neB}eq. Since {xn: «eM} = (J,?=0{xn:
n = i(mod3)} we may presume we have some ie {0,1,2} such that for all n, me A,
«sm(mod3). As a consequence, if n, me A and n<m then n + 3^m so xm^xn + 3 ^ 8 x n .
Now let t=Yjnl=A\-xn+i/(2xn)J/xn+i> where LJ denotes the greatest integer function.
(Since <xn>"=1 is a divisible sequence we have each xn^2""1so
Lxn+1/(2xn)J/xn+1 ^ l/(2xn)^l/2" so the series defining t converges (and 0 < t < 1). As
before write [t] = t + Z. We show that h^p){[t\)^h\q)({_t\).

Let /> = {(>]: l/3gs^4/7} and let £ = {[s]: 0gs^9/28}. Then D and £ are disjoint
closed subsets of T. We show that if neA then /i(x,,)([y))e£> and if neB then
/i(xn)([t])e£. As a consequence we will have that h\p){\t])eD and h\q)([t])eE.

To this end we first observe that given any neN, X{(Lx*+i/(2xk)J/xt + 1)xn: keA and
k^n + 3}^ 1/14. Indeed, given the first keA with k^n + 3 one has
(Ux:ik + i/(2X|1)J/xt+,)-xn^xn/(2X|k)^l/16. Given k, me A with m>k>n + 3, one has xm^
xk+3^xk. Consequently Z{(L*k + i/(2xt)J/x*+i)-xB: fce/1 and k^n + 3}^
(1/2)1?=, 1/8* =1/14.

Now let » 6 i Then /i(xn)([t]) = x n [ t ] = [x n t ] . Now xB-t = Z{(L^ + 1/(2x,)J/xt+1)-xn:
keA and /c<n}+(Lxn+1/(2xn)J/xn+1)-xn + X{(L^+i/(2x,)J/xk+1)-xn: fceX and k^n + 3}.
The first of these sums is some integer / and the last of these is at most 1/14. Now
consider the middle term. We have (Lxn+1/(2xn)J/xn+1)xn^l/2 and equality holds if
xn+i/xn is even. If xn+1/xn is odd we have xn + J^3xn so (LxB+i/(2xn)J/xn+1)-xn =
(xB+1/(2xn)-l/2)-xn/xn+1 = l/2-l/2-(xn/xn + 1 ) ^ l / 2 - l / 6 = l / 3 . Thus /+l/3 = x , - t ^ /+
1/2 + 1/14 so [xB • t] e D as required.

Finally let neB. Then xB-t = ̂ {(Lxt+1/(2xt)J/xk+1)xB:/c6/l and k<n} +
{ 2*»)J/xlk+1)-.x11: keA and n<*<n + 3}+£{(L**+i/(2x»)J/xlk + 1)-.x11: keA and

}. Again the first sum is some integer / and the last is at most 1/14. The middle
sum has at most one term which is at most 1/4. Thus /^x B t^ /+1/4+1/14 so
[xB • t] G £ as required. •

We obtain as a corollary the following result communicated to us by Kenneth Berg.
For extensions of this result see [2]. Recall that, given / : T-+T, the enveloping
semigroup of / is the closure in TT of {/": neN}.

Corollary 4.5. Define f: T - > T by / ( a ) = 2 a . Then the enveloping semigroup of f can
be identified with fiN.

Proof. Note that /"(a) = 2" • a so if h is defined as in Theorem 4.4, one has for each
neN, h(2") = f. Thus the enveloping semigroup of / is h[cl{2": neN}]. Since h is
one-to-one on this closure, it is a homeomorphism on c/{2": neN}. •

It was shown in [16] that if p is a right cancellable element of /?N, then every element
of cl{p,p+p,p+p + />,...} is right cancellable. As a consequence, any such semigroup
has a closure which misses the set of idempotents. We show next that one can get
semigroups in 0N whose closure is reasonably far removed from the idempotents. (In
particular the closure cannot be a semigroup.)
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Theorem 4.6. Let <xn>"=1 be any divisible sequence in N and let pe(cl{xn: ne
Thencl{p,p + p,p + p + p,...})r\T = 0.

Proof. We may presume X! = l. (If x ,> l , let yi = l and yn+i=xn for neN. Then
(cl{yn: neN})\N = (cl{xn: neN})\N.) For each neN let an = xn+l/xn. Then each meN
has a unique expression of the form X,e fVx, where for each teF, b,e{l,2,...,a,— l}.
Further xa divides m if and only if minF^H. Given meN, define c(w) = | F | where
m = ^,eFfe,x, as above. Let cp: PN-+/1N be the continuous extension of c. Since c is
constantly equal to 1 on {xn: neW} we have cp(p) = l.

Let Ar = (f)n
00

=1d(Mxn))n(f)*=1c/{m6l^: c(m)>n}). We observe that the idempotents
are all in X. We have C^P)"=1c/(^Jxn). To see that the idempotents are contained in
p]"=ic/{meN: c(m)>n}, let e = e + e and suppose that for some n, {meN: c(m)^n}ee.
Then, since e is an ultrafilter one has in fact that for some n, {meN: c(m) = n}ee. Let
y4 = {wief̂ J: c(m) = n} and pick me A such that A—mee. Pick t such that x,>m and pick
keNx,n(A — m). Then c(k + m) = c(k) + c(m)>n so k + m$A, a contradiction.

Now suppose (cl{p,p + p,p + p + p,...})nTJ=0. By Theorem 2.4, T = cl{J{N+e:
eefiN and e+e = e\, so T^.cl(\J?=ln+X). Thus cl{p,p + p,p + p + p,...}n
cK[j"=in + X)^0 so by Lemma 1.3 either cl{p,p + p,p + p + p,...}n({j™=ln + X)¥=0 or
{p,p + p,p + P + p,...}ncl(\J?=1n + X)*0. But c l { P > ? + p , p + ? + p , . . . } c ^ l C | ( N x J
and (~)T=icK^xn)n([J™=in + X) = 0- Thus we have some qe{p,p + p,p + p + p,...}n
c/(U"=,« + X). Now q = p + p-\ +p (m-times) so cp(q) = m. Let /l = {yeN: c(y) = m}.
Then Aeq so clAn(\J™=1n + X)J=0, so pick neN with clAr\(n + X)^0 and pick
reclAn(n + X). Pick fcel^J such that xk>n. Now r-neA"sc/(^Jxt)nc/{ye^: c(y)>m})
so Nxkn{_yeM: c(y)>m}n(A — « ) # 0 . Pick yeCyxunjye^J: c(y)>m}n(/l —«). Since
ye fyxk and xk>n we have c(y + n) = c(y) + c(n)>msoy + n^/4,a contradiction. D

On the other hand, we see that no semigroup can get too far removed from the
idempotents.

Theorem 4.7. Let S be any subsemigroup of 0N. Then (c/S)nf)n°°=2Sn#0.

Proof. Pick any peS. Define <p: N->fiN by <j>(n) = p + p+ •• +p(n times) and let tf be
the continuous extension to $N. Note that <pp: fiN-tfiN is a homomorphism. Pick any
qef]^2Sn. Then <p\q)eclS. We claim that ^ ( d e n . " ^ , , .

We show first that for any Ae(t>p(q) and any neN\{l}, there exist rl,r2,...,rn in clA
that commute with each other with FS«r(>"=1)£c//l. (The fact that rur2,...,rn

commute with each other is not really relevant except that we do not need to spell out
the order of the sums in FS«r,}"=l).) To see this let As4>\q) and pick Beq such that
$"[c/B]£c//4. Now let neM\{l} and (since qeSJ pick xux2,--,xn in B with
FS«x,y;=,) <= B. For each t e {1,2,..., n}, let r, = flx,).

To complete the proof we show by induction onneN that given /4c|^j) if there exist
commuting rx,r2,...,rn with FS(<r(>"=1)£cL4, then there exist xux2,...,xn with
FS(<x,>"=1)£/l. The case n = l is trivial, so let neN and assume the statement is true
for n and let r,,r2,...,rn + 1 be commuting elements of clA with FS«r,>"=1

1)cc//4. Let
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D = {xeN: A-xern+l}. Now given any nonempty F£{l,2,. . . ,n} we have / fe£ , e F r ,+
rn + 1 so De£refr,. That is FS(<r(>?=i)£c/D. Since also FS«r,>^=1)£c//4 we have
FS«r,>"=1)£c/(/4nD) so by the induction hypothesis choose <x,>"=1 with FS«x(>?=1)£
AnD. Now ^e r n + 1 and for each nonempty Fs{l ,2, . . . ,«}, /4 —£(eFx(ern+1 so pick
xm + leAn0{A-i,.Pxt: 0/F<={l,2,...,n}}. Then FS«xl>7+1

1)sA D
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