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Abstract 

This paper investigates the use of ANNs to model human behaviour in design by comparing the predictive 

capability of ANNs and engineering students. Function structure models of 15 products are used as input for 

prediction. The type of information provided varied between topology and vocabulary. Analysis of 

prediction accuracy showed that ANNs perform comparably to students. However, students are more precise 

with their predictions. Finally, limitations and future work are discussed, with research questions presented 

for subsequent research. 
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1. Motivation: Predicting Future Performance in Early Design 
The engineering design process provides designers with a systematic framework to solve problems 

from an engineering perspective (Dieter and Schmidt, 2013; Dym and Little, 2000; Pahl et al., 2013; 

Ullman, 1992). Throughout the process, designers must make a series of decisions that ultimately 

translate to the success, quality, and efficiency of the solution. Many of these decisions are made using 

empirical evidence; however, some require designers to make a judgment based on their subject matter 

expertise, experience, and historical knowledge. While experts in their respective fields can make such 

decisions, novice designers may not possess the tools needed to confidently make such decisions. 

Alternatively, in situations where decisions are to be based on empirical evidence, time and resource 

limitations may restrict a comprehensive study or inquiry that will allow the designers to confidently 

make decisions. For instance, a design team may want to consult stakeholders about selecting between 

solution candidates or query end-users regarding preferences on non-functional requirements. In such 

cases, a simulation tool that can provide an estimate of stakeholder preferences and market prices 

based on historical data provides designers with an additional layer of confidence. While such a tool 

does not explicitly exist, modelling human behaviour in design and modelling consumer preferences 

are areas of ongoing research.  

1.1. Modelling consumer preferences and design behaviour 

Several research areas have investigated topics within the realm of modelling human behaviour, 

preferences, and values to support design decisions and design activities. Work has been done to 

understand the role of heterogeneity within the stakeholders on product preferences, where an ordered 

logit model was used to model consumer perception and evaluation of the product as a whole, as well 

as constitutive sub-systems (Hoyle et al., 2011). Preference modelling has also been approached from 

an optimization perspective, where local utility functions are embedded into a multi-objective 
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optimization problem which then identifies efficient solutions and flags inconsistencies in the model 

(Yang and Sen, 1996). Alternatively, utility functions have been augmented with a preference learning 

method to aid engineers in decision making (Wan and Krishnamurty, 2001). Other work on preference 

modelling uses fuzzy sets to model the subjectivity within design; an outranking preference model is 

used to provide support in concept selection (Wang, 2001). Similarly, an approach based on vector 

fields has been used to model the subjective preferences of customers such as the aesthetics of cars 

(Petiot and Grognet, 2006). A nested ANN-based approach has been used to model sound quality 

preferences, where the ANN tool was specifically developed to substitute data from a jury comprised 

of stakeholders (Pietila and Lim, 2015). A data-driven approach has also been investigated using 

product attribute data and online customer reviews to model customer choice (Suryadi and Kim, 

2019). 

Human behaviour in design, in terms of problem solving, has been studied using Markov chains and 

agent-based modelling (McComb et al., 2017). Markov chains are used in this case to determine the 

complexity needed to accurately represent the sequencing behaviour exhibited by participants in solving 

a given problem. The patterns and probabilities captured in the Markov model are then used to deploy an 

agent-based model. Simulated teams are tasked with a truss design problem, and results show that the 

use of sequencing resulted in a significantly higher quality of designs. Human behaviour in truss design 

tasks has also been used to train a deep learning agent which performed comparably to humans (Raina et 

al., 2019) In addition to modelling human behaviour and preferences, tools developed to support 

decision making for designers and engineers include the use of design heuristics (Lee et al., 2017), and 

utility theory (Fernández et al., 2001). While researchers have begun exploring the use of artificial 

intelligence and neural networks in modelling human behaviour in design activities, it is still growing 

field. The work presented in this paper compares human predictions with ANN predictions to investigate 

the feasibility of modelling human behaviour with ANNs in specific design tasks. 

1.2. Prediction using artificial neural networks 

Prediction using artificial neural networks (ANN) has been used in prior work to estimate the 

assembly time and market value of electro-mechanical products using assembly models and function 

structure models (Mathieson et al., 2011; Sri Ram Mohinder et al., 2017; Sridhar et al., 2016a). 

Additionally, neural networks have also been used to estimate assembly defects using an assembly 

model (Patel et al., 2017), and to estimate life cycle assessment using project requirements (Visotsky 

et al., 2017). The neural networks used in all of these cases are backpropagation networks designed 

with a cascade forward architecture, meaning each subsequent layer receives not only the outputs of 

the previous layer, but also the initial inputs given to the network. A high-level overview of the 

prediction procedure is shown in Figure 1. 

 
Figure 1. Overview of the ANN-based prediction procedure 

The number of neurons in the hidden layers ranged from one to fifteen and up to three hidden layers 

were allowed, resulting in a total of 189 possible architectures. For example, the neural network may 

consist of only one neuron in a single hidden layer or be made up of three hidden layers with fifteen 

neurons distributed in a 7-5-3 sequence. These 189 architectures were then repeated 100 times each 
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with randomly assigned initial weights, ultimately returning 18,900 market value predictions for a 

single product (Mathieson et al., 2011). It should be noted that out of the 189 structures, 15 networks 

will only have one hidden layer. As a result, the neural network-based prediction presented here is a 

mix of shallow and deep networks. Deep learning networks generally use raw unstructured data as 

input, while shallow networks need the data to be pre-processed to be effective (Lecun et al., 2015). 

Work presented in this study uses pre-processed data even in cases where multiple hidden layers are 

present in the network architecture. Although the effects of network depth on prediction are out of 

scope for this paper, it is an interesting question for future research. 

1.3. Research questions 

As a preliminary step in creating a simulation tool to help designers estimate customer preferences, it 

is important to understand how humans compare to artificial neural networks. Prior work has been 

done comparing humans with neural networks in the area of image recognition (Geirhos et al., 2017) 

and sound quality preference (Pietila and Lim, 2015). More recently, researchers have compare 

humans with deep learning agents in truss design (Raina et al., 2019). However, comparison of human 

and neural network performance in predicting late-stage design information is relatively unexplored. 

This work attempts to address that gap by investigating the following research questions.  

RQ1: How do ANNs compare to students for predicting the market value of 

electromechanical products using function structure models?  

RQ2: How does the type of information used for prediction affect prediction accuracy and 

precision? 

The research questions are specific and targeted to allow for a preliminary comparison of student and 

machine predictions in a setting where both systems are similarly uninformed about the underlying 

physics. This allows for a comparison of the prediction systems without bias emerging from 

knowledge and experience.  

An experiment was designed to address the research questions, where students were provided one of 

two versions of function structure models (type of information – RQ2) with associated market values. 

Following a review of the given information, student participants were asked to estimate the market 

value of new function structure models. Similarly, an experiment was conducted where a set of ANNs 

were trained, and market value predictions were generated from function structure models. These 

predictions were subsequently compared to student estimates (prediction capability – RQ1). A detailed 

description of the experiment design is provided in the following section. 

2. Experiment Design 
The primary goal of this experiment is to compare the predictive capability of ANNs to that of fourth-

year mechanical engineering undergraduate students. In this case, function structure models are to be 

used to predict market values of household products (Gill et al., 2017; Mathieson et al., 2011; Sridhar 

et al., 2016b). Function structure models for fifteen household products were collected from the design 

repository (https://design.engr.oregonstate.edu/repo) and associated costs for these products were 

calculated as an average of five different quotes (Mathieson et al., 2011; Sri Ram Mohinder et al., 

2017). The number of functions and flows present in the function structure models are shown in Table 

1. Additionally, the average market values are also presented in the “Average MV” column. 

As shown in Table 1, a majority of the function structure models have 15-30 functions and 20-40 

flows, with some notable exceptions. For example, the Solar Yard Light only has six functions and 

nine flows, whereas the Sewing Machine has 44 functions and 63 flows. Similarly, the average market 

value of the products ranged from $2.89 to $214.95, however, most of the products were valued 

between $20 and $120. The products were then randomly divided into five groups for k-fold cross 

validation (Bengio and Grandvalet, 2004). These groups are denoted in Table 1 in the “G#” column. In 

each test case, four of the five groups were used for training, and the remaining group was used for 

testing. Therefore, each training set included twelve products, and the trained neural network (or 

students) were tested using the remaining three product function structures. This was done using both 

ANNs and fourth-year mechanical engineering undergraduate students. 
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Table 1. Product information 

Products G

# 

Functions, 

Flows 

Average 

MV ($) 

Products G

# 

Functions, 

Flows 

Average 

MV ($) 

Hair Dryer 1 18, 22 22.28 Mixer 4 20, 29 13.41 

Lawn Mower 1 30, 51 126.59 Juice Extractor 4 24, 30 31.98 

Solar Yard Light 1 6, 9 2.89 Electric 

Toothbrush 

4 16, 23 104.37 

Bench Vise 2 13, 22 40.47 Garage Door 

Opener 

5 34, 50 127.77 

Electric Drill 2 35, 59 54.02 Jig Saw 5 17, 39 105.29 

Flashlight 2 9, 21 20.32 Sander 5 27, 44 214.95 

Nail Gun 3 17, 25 79.72     

Sewing Machine 3 44, 63 114.8     

Stapler 3 31, 39 18.04     

 

In addition to comparing the predictive capability of ANNs to that of student participants, the value of 

information within the function structure model representation was also investigated. This was done 

by separating the two main types of information within the function structure model: the topological 

information content, and the verbal information content (or the vocabulary) (Sen et al., 2010). 

Therefore, two versions of each function structure model were created; a function structure model with 

no function or flow labels (Topo-only) and a version with functions and flows labelled (Topo-Vocab). 

The Topo-only version is a representation with only topological information, whereas Topo-Vocab is 

a complete model with both topological information and vocabulary. The experiment was structured to 

test the predictive capability of participants using either just the topological information or the 

complete function model. Prediction using only the vocabulary was not tested as part of this 

experiment. In summary, two independent variables were tested in this experiment: the prediction 

method (ANN vs students) and the information type (Topo-only vs Topo-Vocab). 

2.1. Machine Prediction using ANNs 

The general process for converting a function structure model to a bi-partite graph is outlined in 

Figure 2. Product function structure models are converted into bipartite graphs, which are 

subsequently used to generate graph complexity metrics (Mathieson et al., 2011; Patel et al., 2016).  

 
Figure 2. Converting function structure models into bipartite graphs 

The topological information content in a function structure model includes the number, arrangement, 

and interconnections of its constitutive elements (functions and flows). A graph complexity approach 
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was used for feeding the topological information into the neural networks. The bipartite graphs are 

then processed in MATLAB to generate a complexity vector containing 29 complexity metrics. These 

are composed of four classes of metrics: size, interconnection, centrality, and decomposition 

(Mathieson et al., 2013; Namouz and Summers, 2013; Patel et al., 2017; Sri Ram Mohinder et al., 

2017; Sridhar et al., 2016a). This complexity vector is used as a representation of the topological 

information in the function structure model and fed into the neural network. 

In addition to the topological content, the vocabulary present in the function structure models also 

needs to be represented in a format suitable for input to the prediction tool. In this case, the Functional 

Basis was used to transform the vocabulary present in the function structure models into a frequency 

vector (Table 2), which was then fed to the neural network for prediction. Note that the data presented 

in Table 2 is separated by functions and flows and represents only part of the frequency vector. 

Table 2. Frequency vector for vocabulary 

Class Basic Lawn 

Mower 

Electric 

Drill 

Class Basic Lawn 

Mower 

Electric 

Drill 

Functions Flows 

Branch Separate 0 1 Material HumanM 5 6 

Remove 1 0 Gas 3 0 

Refine 0 0 Liquid 4 0 

Distribute 0 1 Solid 6 8 

Channel Import 8 9 Mixture 3 0 

Export 8 9 Signal Status 8 0 

Transfer 4 1 Control 8 8 

Transport 0 0 Energy Mech. 3 20 

Transmit 0 2 Electrical 0 7 

 … … … … … … … 

 

The Functional Basis provides a finite set of verbs and nouns to describe the functional transformation 

and flows respectively. Four levels of specificity are described in the Functional Basis: class, basic, 

sub-basic, and complements (Hirtz et al., 2002; Stone and Wood, 2000). For the purpose of this 

research, the second level of specificity, basic, was used to characterize the vocabulary in the function 

models. In cases where the vocabulary within the product function structures did not match any of the 

Functional Basis vocabulary, appropriate modifications were made in order to comply with the 

Functional Basis. A frequency vector was then created which represented the number of times each 

term was found in the function structure model. This was done for both functions and flows. Portions 

of the frequency vector for two of the products are shown in Table 2. A total of 32 functions and 19 

flows are identified in the basic level of the Functional Basis; a combined vector with 51 elements was 

used as a representation of the vocabulary in the function structure models. When predicting using 

topology and vocabulary, the complexity vector of 29 elements was extended to include the 51 

elements of the vocabulary frequency vector, resulting in a vector with 80 elements. 

2.2. Student Estimation 

In addition to ANN, student participants were queried to estimate the market value of products 

represented by function structure models. Similar to the ANN-based prediction method, student 

participants were provided one of the two versions of the function structure model: a model without 

vocabulary information (Topo-only), or a model including vocabulary information (Topo-Vocab). A 

total of 140 senior-level mechanical engineering students participated in this experiment and were 

randomly assigned a model version; 73 participants were given Topo-only version of the function 

structure model and 67 participants were given Topo-Vocab version of the function structure model. 

Each of these two groups was further divided into five smaller groups; each receiving one set of 

function structure models based on the k-fold cross validation sets. A breakdown of test assignments is 
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shown in Table 3. As previously mentioned, the group number refers to the set of training and test 

function structure models. 

Table 3. Test group assignments 

Groups Group 1 Group 2 Group 3 Group 4 Group 5 

Number of 

Students 

Topo-only 13 15 16 16 12 

Topo-Vocab 14 13 14 13 13 

 

An online, survey-based experiment was designed with two independent variables of interest: 

representation of the function structures (Topo-only or Topo-Vocab) and composition of the training 

group (five different compositions). The student participants were asked to review the function 

structure models and associated market values provided in the training group, then estimate market 

values for new function structure models. While the neural networks were given a numerical vector as 

an in-put for training, the student participants were given an image of the function structure model, 

either with vocabulary information as text (Figure 3, right) or without text (Figure 3, left). 

 
Figure 3. Function model without labels (left) and with labels (right) 

Each student participant was provided twelve function structure models with associated market values. 

Participants were not given any time limit for this activity, and they were allowed to refer to the 

function structure models and costs at any point during the activity. This was done to allow them 

sufficient time for reviewing the given materials and forming a process for estimating the market 

values. The survey was created using Google Forms, and the students were permitted to complete the 

activity in a location of their choice. An extra credit participation grade was offered to all participants 

upon successful completion of the activity. As previously mentioned, the function structure models for 

this experiment were adapted from those available on the design repository. It should be noted that no 

topological or vocabulary information was changed in the process, they were merely recreated to 

better serve the purpose of this experiment. As a result, some of the models may appear to be visually 

different, however, the number of functions and flows, their connectivity, and associated labels were 

not changed. 

3. Results 
Student estimates of market values collected from the survey were compared to results from the ANN-

based prediction tool. Accuracy and precision of the predictions were compared.  

3.1. Prediction Accuracy 

As previously mentioned, the ANN-based prediction tool generated 18,900 predictions; an average of 

these predictions was used as the final prediction. Similarly, multiple student participants predicted the 
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market value of each product (see Table 3); an average was used as the final prediction. The average 

market value predictions for each product are shown in Table 4.  

Table 4. Average market value predictions 

Product Name Target 
Topology Only Topo + Vocab 

ANN Man ANN Man 

1. Bench Vise 40.47 85.33 66.50 64.20 57.31 

2. Electric Drill 54.02 141.44 113.29 135.31 230.35 

3. Elec. Toothbrush 104.37 66.05 44.55 65.54 141.75 

4. Flashlight 20.32 137.96 37.83 88.82 72.00 

5. Garage Opener 127.77 119.38 86.10 120.22 92.21 

6. Hair Dryer 22.28 65.80 46.30 88.96 56.07 

7. Jig Saw 105.29 124.95 54.71 124.98 47.67 

8. Juice Extractor 31.98 54.22 62.20 53.99 81.33 

9. Lawn Mower 126.59 122.97 88.81 91.26 153.89 

10. Mixer 13.41 89.50 76.58 88.36 90.12 

11. Nail Gun 79.72 27.16 70.89 69.19 72.20 

12. Sander 214.95 97.50 81.48 97.62 61.07 

13. Sewing Machine 114.80 163.80 147.50 110.37 168.52 

14. Solar Yard Light 2.89 52.49 22.85 40.95 1205.75 

15. Stapler 18.04 61.54 162.19 121.84 70.82 

Predictions closer to the target value, between student estimates and ANN-based predictions, are 

highlighted. For predictions based on topology only, student predictions were more accurate for eight out 

of fifteen products compared to machine predictions, which were more accurate for seven out of fifteen 

products. Alternatively, when using both topology and vocabulary, machine predictions were more 

accurate eight times, and student predictions were more accurate seven times. Moreover, machine 

predictions were more accurate in both cases for four products (garage door opener, jig saw, juice 

extractor, and sander), whereas student predictions were more accurate for four other products (bench 

vise, flashlight, hair dryer, and nail gun) in both cases. Overall, the results suggest that there is not a 

significant difference in the accuracy of prediction between students estimates and ANN predictions. 

In addition to comparing predictions from ANNs to student estimates, the effects of the type of 

information provided were also analysed. Figure 4 shows a summary of the prediction error for both 

machine prediction and student prediction. It should be noted results shown in Figure 4 do not include 

the data for product 14 (solar yard light), since it was determined to be an outlier in the case of 

machine predictions as well as student estimates. 

 
Figure 4. Effects of information type on predictions 
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In each case, the addition of vocabulary produced a small increase in the prediction error. For machine 

prediction, the variance of error was larger when using vocabulary, whereas for student prediction, a 

smaller variance was observed when using vocabulary. This suggests that the type of information used 

did not have a significant effect on the prediction error for machine predictions. In the case of 

students, the introduction of vocabulary resulted in smaller differences in prediction error between 

products. Overall, from the perspective of accuracy, no significant differences were found between 

machine predictions and student estimates, or between Topo-only and Topo-Vocab. However, it 

should be noted that this comparison is for a specific product type and included only fifteen products. 

Future research should include products from a variety of markets and include a larger number of 

products to support more robust statistical analysis. Additionally, further analysis may include a 

comparison of function structure attributes (i.e., elements of the complexity vector and the vocabulary 

vector) with prediction accuracy. This may reveal similarities and differences between student 

prediction and ANN predictions based on the size and complexity of the function structure models. 

This may be useful in categorizing which type of function structure models can be reliably used for 

prediction using ANNs, and which are better estimated by human beings. Following the analysis of 

prediction accuracy, the precision in prediction was analysed to determine the spread away from the 

mean predictions. 

3.2. Prediction precision 

While the accuracy of the prediction is critical to the usability of a prediction system, the precision of 

the predictions also plays a role in the level of confidence associated with those predictions. As such, 

the precision of predictions was analysed by comparing the variance of machine predictions with 

student participants. Product-by-product results are omitted for brevity. Contrary to the accuracy 

analysis, the student predictions were found to have smaller variances for all products when using 

topology only for prediction, and for thirteen out of fifteen products when using topology and 

vocabulary for prediction. This is an expected result because the machine predictions are an average of 

18,900 individual predictions, some of which are generated from a single hidden layer with a single 

neuron. Comparatively, only twelve to sixteen predictions were obtained for each product in the case 

of student estimates. Additionally, students are unlikely to estimate a negative value as their prediction 

for a given product, further improving the expected variance in prediction. Analysing the effect of 

information type on the prediction precision reveals that the addition of vocabulary information has a 

non-positive effect on the variance. 

For machine prediction, eleven out of fifteen products saw an increase in the variance, with an average 

increase of 89k. In the case of student estimates, an average increase of 19k was observed, with all 

products exhibiting a wider spread about the mean prediction. It should be noted that in the analysis of 

prediction precision, solar yard light was an outlier and removed from the analysis. In summary, 

student estimates were more precise compared to machine predictions, for Topo-only as well as Topo-

Vocab. Alternatively, Topo-only predictions were generally more precise for both students and 

machine predictions compared to Topo-Vocab. 

4. Conclusions 
This work presents an experiment conducted to compare the prediction capabilities of artificial neural 

networks to that of senior-level mechanical engineering students. The predictions were compared 

based on accuracy and precision. Results show negligible differences between machine predictions 

and student estimates. This suggests that the ANN-based prediction method was able to perform 

comparably to students in terms of prediction accuracy. However, when comparing the precision of 

predictions, student predictions were found to be more precise, resulting in a tighter spread around the 

mean. Overall, this indicates any single student estimate is more reliable compared to a single 

prediction from ANNs. 

In addition to comparing student estimates to machine predictions, the effects of the type of 

information used for prediction was also analysed. In both cases, machine prediction and student 

estimates, the addition of vocabulary resulted in a 4% increase in prediction error, however this was 

not found to be statistically significant. Alternatively, the addition of vocabulary reduced the 
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difference in prediction error between products in the case of student estimates. Moreover, the 

addition of vocabulary resulted in a lower precision of predictions, meaning the predictions were less 

reliable when using vocabulary, for both student and machine predictions.  

5. Limitations and future work 
This experiment was conducted using only fifteen products, resulting in a data set that is much smaller 

than what is desired for artificial neural networks. Moreover, the neural networks were comprised of 

no more than three hidden layers, and no more than 15 neurons in those layers. A deeper network with 

more training data may provide better predictions compared to what has been presented in this paper. 

Similarly, the students participating in this experiment were introduced to function structure models 

the same week of the experiment and may not be adequately familiar with the representation to 

identify key elements of the models, limiting their ability to draw patterns between the given models 

and costs. Participants with more experience within the domain of function modelling, and with more 

knowledge of product functions may provide better estimates.  

In addition to addressing these limitations, future work may also investigate the relationship between 

student confidence in market value prediction and the accuracy and precision of those predictions. The 

following future research questions can be formulated. 

RQ: How does prediction accuracy relate to student confidence in prediction? 

RQ: How does prediction precision relate to student confidence in prediction? 

The size of function structure models (number of functions and flows) may also be another variable of 

interest, resulting in the following research questions.  

RQ: How does the number of functions in a function structure model affect prediction 

accuracy and precision? 

RQ: How does the number of flows in a function structure model affect prediction accuracy 

and precision? 

These questions should be investigated for both machine prediction and student estimates. Ultimately, 

future research may be directed towards identifying areas where machine prediction is the better 

option, and areas where estimates by humans may be sufficient or preferred. Moreover, future work 

can investigate the prediction accuracy and prediction confidence of experts and novices and compare 

them with the ANN results. For instance, the effects of training on the final cost estimations can be 

further investigated. 
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