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Abstract
Litter size reduction can induce early overnourishment, being an attractive experimental model to study short- and long-term consequences of childhood
obesity. Epidemiological data indicate sex differences regarding cardiometabolic disorders and hypertrophic cardiomyopathy. The present study aimed to
describe biometric, nutritional and cardiovascular changes related to neonatal overweight promoted by litter size reduction in young and adult Wistar rats of
both sexes. Litter adjustment to eight or four pups/mother (1:1 male-to-female ratio) gave, respectively, control and overweight groups. Body mass, food
intake, haemodynamic and echocardiographic parameters and cardiorespiratory capacity were evaluated at postnatal days 30 and 150. Diminished litters
were correlated with higher body mass and weight gain (12 %) during lactation, validating the experimental model of neonatal overweight. Soon after wean-
ing male (16 %) and female (25 %) offspring of these litters presented a lower food intake than their respective control, without differences in body mass.
Adult males from reduced litters presented higher abdominal circumference (7 %), systolic blood pressure (10 %), interventricular septum thickness (15 %)
and relative wall thickness (15 %) compared with their respective control. Rats’ performance on the maximal effort ergometer test was not affected by
neonatal overweight. Data suggest the occurrence of catch-down growth and hypophagia in male and female rats submitted to neonatal overweight.
However, only male rats presented haemodynamic and cardiac structural changes. These findings are crucial to personalised/gender medicine.
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Obesity/overweight is a major global health problem that
leads to increased mortality. This condition in early life may
be related to postnatal nutrition and can evoke metabolic dis-
orders and several co-morbidities, increasing cardiovascular
risk and favouring CVD in adulthood. Estimates of deaths
related to CVD increased about 14 % between 2006 and
2016(1–4).
Studies investigating the relationship between events in early

life, as nutritional insults, and functional status in the future
belong to a new research field named ‘developmental origin
of health and disease’ (DOHaD). The history of DOHaD as

a research field reached a milestone with David Barker’s theory
encompassing the programming of diseases with fetal ori-
gins(5). The understanding that the environment and individual
lifestyle directly interact with the genome to influence epigen-
etic changes is growing fast(6). These changes alter homeostasis
through the remodelling of organs and tissues(7). As the heart
is not entirely developed soon after birth, nutritional insults in
early life may contribute to the occurrence of cardiac diseases
in adulthood also through direct effects(8).
Animal models comprise an interesting strategy to evaluate

future outcomes related to nutritional insults in early life and

Abbreviations: AC, abdominal circumference; IVS, interventricular septum thickness; IVSd, interventricular septum thickness diastole; IVSs, interventricular septum thickness
systole; LVID, left ventricle internal diameter; LVIDd, left ventricle internal diameter diastole; LVPW, left ventricle posterior wall thickness; LVPWd, left ventricle posterior wall
thickness diastole; LVPWs, left ventricle posterior wall thickness systole; NAL, nose-to-anus length; TC, thoracic circumference.
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developmental plasticity. Studies with male animals (mice and
rats) report that overnourishment during lactation induces
metabolic and haemodynamic heart impairment during adult-
hood. In general, experimental models of neonatal overfeeding
encompass litter size reduction that allows milk supply
increase to the offspring. This experimental model is cheap
and effective to investigate short- and long-term consequences
of neonatal overweight(9–12). However, such evidence is not
available for female animals.
Despite the accumulating evidence that sex leads to differ-

ences in biology, for several reasons, the variable sex has
been largely ignored in biomedical research(13). In humans,
there are sex differences regarding CVD. The literature points
out sex differences in cardiometabolic disorders and differ-
ences between men and women with hypertrophic cardiomy-
opathy(14,15). Individualised medicine must consider sex and
gender to initiate personalising care, allowing the improvement
of the outcomes. For this, evidence supporting sex-specific
decisions also needs to be provided by basic scientists(16).
Thus, the present study aimed to evaluate biometric, nutri-
tional and cardiovascular outcomes related to neonatal over-
weight/overnourishment in young and adult Wistar rats of
both sexes.

Materials and methods

Animals and experimental model

The Ethics Committee of Fluminense Federal University
(Niteroi, Brazil) approved the use of animals (Comissão De
Ética No Uso De Animais (CEUA) UFF812/2016) following
the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health (NIH) publication no. 8023,
revised 1978). All rats received standard chow (Nuvilab®)
and water ad libitum at controlled conditions (22°C, 55–65 %
humidity, 12 h light–12 h dark cycle). The breeding laboratory
of the University provided Wistar rats used for mating (F0
generation). Male (n 10) and female rats (n 20) about 3 months
of age and no kinship were mated (two females for one male)
for 5 d. Pregnant rats placed in individual cages gave birth to
ten to twelve pups after 21 d of gestation. The offspring (F1
generation) were divided into two groups at postnatal day 1
to minimise stress by simple randomisation(17):
Control – eight pups per mother (four males and four

females);
Overweight – four pups per mother (two males and four

females).
There was a total of seventy-two rats from the F1

generation:
Control – thirty-two animals (sixteen males and sixteen

females) – four litters;
Overweight – forty animals (twenty males and twenty

females) – ten litters.
Offspring analysis occurred at postnatal days 30 and 150,

being considered young and adult animals(18). Whenever pos-
sible, data were collected precisely from the same rats at both
ages. Euthanasia happened at the end of the experimental per-
iod after administrating a lethal dose of thiopental
intraperitoneally.

Biometric and nutritional analyses

Body mass was monitored from birth to postnatal day 150,
while food intake monitoring began upon weaning at postnatal
day 21, allowing biometric and nutritional analysis(19,20).
Feed efficiency was estimated between postnatal days 21–30,

30–150 and 21–150, using the formula: (final body mass – ini-
tial body mass)/Σfood intake.
It was possible to record other biometric parameters of

anaesthetised rats using a tape measure: nose-to-anus length
(NAL), abdominal circumference (AC) and thoracic circumfer-
ence (TC) (cm).
BMI was calculated through the formula: body mass/NAL2.
It was possible to achieve complete biometric and nutri-

tional data from eight animals/group at both ages.

Echocardiography studies

The analyses of cardiac structure and function were performed
through transthoracic echocardiography using a portable ultra-
sound system equipped with a 10MHz transducer (Siemens
Accusion Cypress). Previously the animals were anaesthetised
with ketamine plus xylazine (50 mg+ 5mg/kg intraperitone-
ally). The assays were performed according to the American
Society of Echocardiography(21) and all parameters were mea-
sured at least three times per animal. The parameters recorded
to address cardiac structure were left ventricular internal diam-
eter (LVID), interventricular septum thickness (IVS) and left
ventricular posterior wall thickness (LVPW), measured in sys-
tole and diastole, as well as relative wall thickness, left ventricle
mass, and left atrium:aorta ratio. Systolic volume, ejection frac-
tion and fractional shortening, related to functional parameters,
were calculated through algorithms of the equipment software.
The parameter recorded to evaluate diastolic function was mitral
deceleration time. It was possible to achieve complete echocar-
diographic data from at least ten animals per group at both ages.

Haemodynamic evaluation

Haemodynamic evaluation was performed by indirect meas-
urement of systolic blood pressure and heart rate through
the tail-cuff method(22,23). The assays occurred in the morning
after 3 d of acclimatisation using the ADInstruments ML125
NIBP (Non-Invasive Blood Pressure) system connected to
the ADInstruments PowerLab/400 digital–analogue con-
verter. The signal was analysed using LabChart 6 Pro software
(ADInstruments). Final systolic blood pressure and heart rate
values of each animal were calculated by taking the average of
six successful separate measurements obtained in the absence
of spontaneous tail movement in awake rats.
Thus, because of the assay’s stress bias, it was not possible to

record haemodynamic parameters of all animals submitted to
echocardiography. It was possible to achieve complete haemo-
dynamic data from eight animals/group, preferably at both ages.

Maximal effort ergometer test

After 3 d of acclimatisation, responsive animals (non-
sedentary) were also submitted to a maximum effort
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ergometer test (day 4). Non-responsive animals (sedentary)
were discarded from this test. Thus, it was not possible to
evaluate all rats submitted to previous assays. Data were
achievable from at least five animals per group, preferably at
both ages.
The protocol comprised a treadmill (Imbrasport®), without

inclination and initial speed of 0⋅9 km/h, followed by progres-
sive increments of 0⋅3 km/h every 3 min until animals were
considered to be exhausted. The end of the test was deter-
mined when the animals remained still for at least 10 s. The
parameters recorded were distance travelled, time spent and
maximum speed developed in the test(24,25).

Statistical analysis

The Kolmogorov−Smirnov test was applied to verify normal-
ity and data were expressed as mean vales and standard devia-
tions. Body mass recorded throughout lactation was analysed
using a two-way ANOVA. The tested factors were litter size
v. time. As the interaction was significant, the simple effects
were analysed by Bonferroni’s post hoc test for multiple com-
parisons between control and overweight groups within the
same sex. The unpaired t test was used to compare data
obtained from these groups after weaning at the same age as
well as weight gain during lactation. Statistical analyses were
performed using Prism Software (Graph Pad Prism 7.0). A
value of P < 0⋅05 was considered statistically significant.

Results

Body and nutritional analysis

Figs 1(a) and 1(b) show the body mass of male and female off-
spring throughout lactation. Reduced litters presented higher

body mass during lactation and increased weight gain (Fig. 1
(c) and 1(d)). Similar values of body mass, NAL, TC and
BMI were seen between groups within the same sex at post-
natal days 30 and 150. Nevertheless, adult males from reduced
litters presented higher AC and AC:TC ratio than those from
normal ones (Tables 1 and 2).
Despite no differences in feed efficiency, food intake was

found lower in rats from reduced litters compared with
those from regular litters soon after weaning. In the same per-
iod, females from reduced litters presented lower weight gain
than their respective controls (Tables 3 and 4).

Haemodynamic and echocardiographic parameters

Tables 5 and 6 show haemodynamic and echocardiographic
parameters from male and female animals, respectively. Male
rats from reduced litters presented higher systolic blood pres-
sure and structural changes in youth (as higher IVSd, IVSs,
LVPWd, LVPWs and LMV) and adulthood (higher IVSd
and relative wall thickness, lower LVIDd) than from regular
ones (Table 5). Curiously, adult female rats from reduced lit-
ters presented lower systolic blood pressure compared with
their respective controls. They also presented structural
changes characterised by an increased IVSd, LVPWd and rela-
tive wall thickness in youth without functional alterations
(Table 6). All animals presented ejection fraction superior to
80 % and similar values of mitral deceleration time.

Performance on maximal effort ergometer test

Overweight and control groups of male and female offspring
presented similar performance on the maximal effort ergom-
eter test (Fig. 2).

Fig. 1. Body mass (a, b) and weight gain (c, d) in grams throughout lactation. (a, c) Male offspring. (b, d) Female offspring. -○-, □, Control group (n 16); -▪-, ▪, over-
weight group (n 20). Values are means, with standard deviations represented by vertical bars. Body mass data were analysed using two-way ANOVA followed by

Bonferroni’s post hoc test. Weight gain was analysed using the unpaired t test. * P < 0⋅05 v. respective control group.
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Discussion

Litter size reduction soon after birth and throughout lactation
has led to overweight in the neonatal period but not in youth
or adulthood. Despite this, the early nutritional insult has
favoured differences in haemodynamic and echocardiographic
parameters later in life. The literature has previously reported
related findings in adult male rats submitted to neonatal over-
feeding. However, none of the studies investigated the outcomes
of the same insult in female rats. According to the results here
achieved, distinct outcomes may be seen in male and female rats.
As expected, the reduction of litter size leads to neonatal

overweight, according to the literature, and could be addressed

by the higher weight gain. Thus, this useful experimental
model was validated in the present study, allowing the investi-
gation of short- and long-term consequences of overfeed-
ing(26–28). Studies have reported that litter size reduction may
increase maternal milk availability to the offspring, leading to
higher body weight(12,29–34). As the hypothalamic area related
to food intake and satiety is not entirely structured at the
beginning of the lactation period, milk intake seems to be lim-
ited only by gastrointestinal tract capacity(35,36).
Litter size may modulate milk content. The literature has

reported that the TAG content of the milk from dams submit-
ted to litter reduction increases between the 10th and 21st days

Table 1. Biometric parameters of male offspring

(Mean values and standard deviations)

Postnatal day 30 Postnatal day 150

Control Overweight Control Overweight

Mean SD Mean SD Mean SD Mean SD

n 8 8 8 8

BM (g) 165⋅0 10⋅4 158⋅9 16⋅5 448⋅4 21⋅1 458⋅9 66⋅4
NAL (cm) 17⋅3 0⋅8 16⋅9 0⋅6 25⋅8 1⋅1 25⋅5 1⋅1
BMI (g/cm2) 0⋅55 0⋅05 0⋅56 0⋅03 0⋅67 0⋅03 0⋅70 0⋅07
AC (cm) 15⋅8 1⋅1 15⋅3 0⋅9 20⋅5 1⋅4 22⋅1* 1⋅3
TC (cm) 13⋅8 0⋅8 13⋅7 0⋅5 17⋅8 1⋅3 18⋅2 0⋅6
AC:TC 1⋅15 0⋅05 1⋅12 0⋅02 1⋅15 0⋅04 1⋅21* 0⋅06

BM, body mass; NAL, nose-to-anus length; AC, abdominal circumference; TC, thoracic circumference.

* P < 0⋅05 v. respective control group. Data were analysed using the unpaired t test.

Table 2. Biometric parameters of female offspring

(Mean values and standard deviations)

Postnatal day 30 Postnatal day 150

Control Overweight Control Overweight

Mean SD Mean SD Mean SD Mean SD

n 8 8 8 8

BM (g) 129⋅4 14⋅8 138⋅2 13⋅0 248⋅8 19⋅2 260⋅7 31⋅7
NAL (cm) 16⋅5 0⋅6 16⋅6 0⋅4 21⋅7 0⋅9 22⋅3 0⋅7
BMI (g/cm2) 0⋅48 0⋅04 0⋅50 0⋅04 0⋅53 0⋅03 0⋅53 0⋅06
AC (cm) 14⋅0 0⋅8 14⋅8 0⋅8 18⋅0 0⋅6 18⋅6 0⋅9
TC (cm) 12⋅8 0⋅9 13⋅1 0⋅6 15⋅3 0⋅8 15⋅4 0⋅8
AC:TC 1⋅09 0⋅04 1⋅13 0⋅05 1⋅18 0⋅04 1⋅21 0⋅05

BM, body mass; NAL, nose-to-anus length; AC, abdominal circumference; TC, thoracic circumference.

Table 3. Nutritional parameters of male offspring

(Mean values and standard deviations)

Postanatal days 21–30 Postanatal days 30–150 Postnatal days 21–150

Control Overweight Control Overweight Control Overweight

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

n 8 8 8 8 8 8

Weight variation (g) 46⋅9 14⋅8 40⋅7 9⋅1 335⋅9 20⋅7 345⋅0 64⋅6 382⋅8 24⋅0 385⋅7 57⋅3
Food intake (g) 131⋅3 16⋅4 110⋅3* 20⋅4 2540 232⋅5 2663 168⋅2 2672 216⋅5 2773 148⋅7
Feed efficiency 0⋅350 0⋅066 0⋅369 0⋅043 0⋅133 0⋅014 0⋅129 0⋅019 0⋅145 0⋅018 0⋅139 0⋅015

* P < 0⋅05 v. respective control group. Data were analysed using the unpaired t test.
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of lactation. Thus, neonatal overweight may also be induced by
the higher energy content of maternal milk(29,37).
Differences regarding food intake are also in agreement with

the literature that describes hypophagia in young animals sub-
mitted to overfeeding during lactation(38). Although the conse-
quence over body mass is controversial, the similarity about
feed efficiency and body weight here observed suggests the
occurrence of catch-down growth, a phenomenon also
reported by other studies encompassing similar animal mod-
els(39–43).
The literature has correlated anthropometric markers of adi-

posity, systolic blood pressure and cardiovascular risk, not only
in humans but also in rats(20,44,45). According to the relation-
ship ascribed, data indicate that adult male rats from reduced
litters presented increased cardiovascular risk compared with
regular ones. Abdominal fat deposition is related to patho-
logical conditions and may favour atherosclerosis and acute
myocardial infarction(46). Although the literature has already

reported the increase of blood pressure in adult male rats
due to neonatal overfeeding(26,47–50), the same analysis has
not included female rats. Thus, data from the present study
suggest that the reduction in litter size does not affect the car-
diovascular risk of female animals as described for males.
Higher levels of systolic blood pressure, as seen in young

and adult male rats submitted to litter size reduction, predis-
pose to diastolic dysfunction and structural remodelling of
the left ventricle, a central change in the pathogenesis of car-
diac dysfunction. Indeed, echocardiographic data of the pre-
sent study suggest the occurrence of myocardial hypertrophy
and concentric remodelling of the left ventricle in these ani-
mals. These structural alterations may eventually lead to ven-
tricular dilation and systolic dysfunction in heart failure
progression(51–58). Although changes regarding echocardio-
graphic parameters in this animal model have not been
described previously, the literature reports that overnourish-
ment during lactation may increase cardiac sensitivity to insulin

Table 4. Nutritional parameters of female offspring

(Mean values and standard deviations)

Postnatal days 21–30 Postnatal days 30–150 Postnatal days 21–150

Control Overweight Control Overweight Control Overweight

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

n 8 8 8 8 8 8

Weight variation (g) 42⋅0 6⋅5 33⋅9 7⋅1 161⋅7 7⋅6 172⋅0 14⋅4 203⋅8 12⋅8 205⋅9 9⋅9
Food intake (g) 137⋅9 8⋅5 102⋅8 23⋅1 1916 357⋅2 1895 99⋅8 2054 348⋅7 1998 103⋅2
Feed efficiency 0⋅304 0⋅037 0⋅331 0⋅020 0⋅087 0⋅017 0⋅091 0⋅006 0⋅102 0⋅020 0⋅103 0⋅004

Table 5. Haemodynamic and echocardiographic data of male offspring

(Mean values and standard deviations)

Postnatal day 30 Postnatal day 150

Control Overweight Control Overweight

Mean SD Mean SD Mean SD Mean SD

Haemodynamic data

n 8 11 10 10

Systolic blood pressure (mmHg) 100⋅6 5⋅2 111⋅6** 6⋅5 126⋅3 15⋅9 142⋅6* 15⋅2
Heart rate (bpm) 364⋅2 61⋅0 363⋅4 58⋅1 332⋅0 60⋅2 341⋅6 48⋅4

Echocardiographic data

n 12 11 10 10

IVSd (cm) 0⋅112 0⋅009 0⋅127* 0⋅004 0⋅195 0⋅025 0⋅227* 0⋅028
IVSs (cm) 0⋅190 0⋅031 0⋅227* 0⋅018 0⋅338 0⋅040 0⋅354 0⋅052
LVIDd (cm) 0⋅335 0⋅037 0⋅379 0⋅056 0⋅553 0⋅103 0⋅525 0⋅054
LVIDs (cm) 0⋅122 0⋅017 0⋅145 0⋅043 0⋅238 0⋅085 0⋅191 0⋅064
LVPWd (cm) 0⋅112 0⋅010 0⋅127* 0⋅004 0⋅199 0⋅016 0⋅230 0⋅029
LVPWs (cm) 0⋅191 0⋅029 0⋅237* 0⋅020 0⋅332 0⋅029 0⋅359 0⋅045
RWT (cm) 0⋅675 0⋅074 0⋅679 0⋅091 0⋅740 0⋅139 0⋅880* 0⋅115
LVM (g) 0⋅709 0⋅029 0⋅768* 0⋅058 1⋅170 0⋅166 1⋅271 0⋅200
LA:Ao 1⋅050 0⋅106 1⋅118 0⋅143 0⋅943 0⋅140 1⋅025 0⋅062
LVEF (%) 94⋅61 2⋅43 93⋅54 3⋅27 88⋅09 8⋅57 95⋅48* 3⋅85
FS (%) 64⋅04 6⋅02 63⋅08 6⋅19 58⋅29 9⋅28 69⋅58* 9⋅47
Mitral DT (ms) 62⋅75 6⋅84 67⋅67 8⋅99 89⋅63 12⋅18 88⋅13 6⋅64

IVSd, interventricular septum thickness diastole; IVSs, interventricular septum thickness systole; LVIDd, left ventricle internal diameter diastole; LVIDs, left ventricle internal diam-

eter systole; LVPWd, left ventricle posterior wall thickness diastole; LVPWs, left ventricle posterior wall thickness systole; RWT, relative wall thickness; LVM, left ventricle mass;

LA:Ao, left atrium:aorta ratio; LVEF, left ventricle ejection fraction; FS, fractional shortening; mitral DT, mitral deceleration time.

* P < 0⋅05 v. respective control group. Data were analysed using the unpaired t test.
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and leptin. The consequent improvement of glucose uptake
and energy supply would favour cardiac hypertrophy in male
rats(59).
Despite no preliminary signs of cardiovascular risk increase

in female rats from reduced litters, there were differences
regarding echocardiographic parameters. Data suggest the

occurrence of cardiac structural changes in young females.
The lack of cardiac hypertrophy inferences in adulthood may
be discussed, taking sexual maturation into account. Female
rats reach puberty around postnatal day 30(60) and reproduct-
ive senescence occurs between 15 and 20 months of age(61).
An oestrogen-cardioprotective effect throughout the

Table 6. Haemodynamic and echocardiographic data of female offspring

(Mean values and standard deviations)

Postnatal day 30 Postnatal day 150

Control Overweight Control Overweight

Mean SD Mean SD Mean SD Mean SD

Haemodynamic data

n 8 11 10 10

Systolic blood pressure (mmHg) 101⋅5 7⋅3 106⋅6 3⋅9 140⋅5 19⋅6 124⋅8* 15⋅3
Heart rate (bpm) 406⋅2 36⋅5 362⋅8 62⋅6 350⋅6 41⋅3 353⋅9 49⋅4

Echocardiographic data

n 12 11 10 10

IVSd (cm) 0⋅116 0⋅006 0⋅128* 0⋅005 0⋅158 0⋅019 0⋅177 0⋅032
IVSs (cm) 0⋅217 0⋅037 0⋅212 0⋅014 0⋅302 0⋅020 0⋅315 0⋅037
LVIDd (cm) 0⋅358 0⋅059 0⋅350 0⋅024 0⋅535 0⋅059 0⋅504 0⋅062
LVIDs (cm) 0⋅149 0⋅076 0⋅127 0⋅024 0⋅191 0⋅063 0⋅160 0⋅039
LVPWd (cm) 0⋅115 0⋅006 0⋅128* 0⋅005 0⋅165 0⋅022 0⋅179 0⋅030
LVPWs (cm) 0⋅212 0⋅029 0⋅214 0⋅013 0⋅300 0⋅024 0⋅315 0⋅032
RWT (cm) 0⋅654 0⋅088 0⋅733* 0⋅038 0⋅629 0⋅135 0⋅721 0⋅155
LVM (g) 0⋅725 0⋅039 0⋅750 0⋅041 1⋅000 0⋅074 1⋅050 0⋅144
LA:Ao 1⋅075 0⋅108 1⋅074 0⋅129 0⋅960 0⋅112 1⋅049 0⋅154
LVEF (%) 95⋅18 1⋅85 93⋅96 3⋅87 93⋅81 4⋅46 94⋅91 3⋅52
S (%) 65⋅88 4⋅13 64⋅04 6⋅19 65⋅12 7⋅19 66⋅12 9⋅23
Mitral DT (ms) 62⋅50 7⋅15 67⋅75 8⋅07 87⋅92 8⋅31 90⋅00 4⋅63

IVSd, interventricular septum thickness diastole; IVSs, interventricular septum thickness systole; LVIDd, left ventricle internal diameter diastole; LVIDs, left ventricle internal diam-

eter systole; LVPWd, left ventricle posterior wall thickness diastole; LVPWs, left ventricle posterior wall thickness systole; RWT, relative wall thickness; LVM, left ventricle mass;

LA:Ao, left atrium:aorta ratio; LVEF, left ventricle ejection fraction; FS, fractional shortening; mitral DT, mitral deceleration time.

* P < 0⋅05 v. respective control group. Data were analysed using the unpaired t test.

Fig. 2. Data from the maximal effort ergometer test (a−f) at postnatal days (PND) 30 and 150. (a–c) Male offspring: control (□; n 5); overweight (▪; n 8). (d–f) Female

offspring: control (□; n 8); overweight (▪; n 7). (a, d) Time spent (h). (b, e) Distance travelled (km). (c, f) Maximum speed developed (km/h). Values are means, with

standard deviations represented by vertical bars. Data from the maximal effort ergometer tests were analysed using the unpaired t test. * P < 0⋅05 v. respective control

group.
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reproductive phase is widely ascribed in many studies. This
hormone can act directly on cardiac myocytes. Its negative
modulatory effect on gene expression of plasma membrane
Ca2+ channels reduces the risk of arrhythmias and other car-
diovascular events. Oestrogen may also mitigate cardiac hyper-
trophy by increasing the expression of atrial natriuretic peptide
and decreasing apoptosis/necrosis of cardiac/endothelial
cells(62–66).
Echocardiography data suggest that the reported structural

changes are without functional impairment(21). These data
may explain the similar performance noticed for the animals
on the maximum effort ergometer test. Exercise intolerance,
the main symptom of diastolic heart failure, can be assessed
by cardiopulmonary exercise tests that constitute an accurate,
reliable and reproducible method that yields important out-
comes(67). Maximal effort ergometer tests have already been
applied to assess cardiorespiratory capacity in rats(68). The lit-
erature provides a linear relationship between maximum speed
and O2 consumption(69).
The present study presents a few limitations that do not

allow mechanicist discussion but do not compromise data
interpretation and the main findings. There was no monitoring
of milk consumption, secretion and content during lactation.
Thus, it is not possible to precisely explain why the reduction
in litter size generated neonatal overweight. Besides, the lack of
hormonal dosage makes a more detailed discussion about the
cardioprotective effects of oestrogen in this experimental
model somewhat speculative.
In conclusion, the present study corroborates the literature

that reports an increase in cardiovascular risk in male rats due
to neonatal overfeeding. It also shows that the rise of anthropo-
metric markers of adiposity and blood pressure programme car-
diac hypertrophy and concentric remodelling without functional
impairment. Likewise, contributing to personalised/gender
medicine, this study has shown for the first time that similar
early insult in female rats promotes cardiac hypertrophy in
youth without changes in biometric and haemodynamic para-
meters. More studies are warranted to investigate sex differences
better and the underlying mechanism involved in cardiac struc-
ture preservation in adult female rats submitted to neonatal
overnourishment, as well as reproductive senescence impact.
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