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TOUCHING CONVEX SETS IN THE PLANE 

MEIR KATCHALSKI AND JÂNOS PACH 

ABSTRACT. TWO subsets of the Euclidean plane touch each other if they have a point 
in common and there is a straight line separating one from the other. 

It is shown that there exists a positive constant c such that if A and $ are families 
of plane convex sets with \!A\ > c • k and \B\ > c • k for some k > 1 and if every 
A E ft touches every B 6 % then either ft or (B contains k members having nonempty 
intersection. 

1. Introduction and main results. Two subsets of the Euclidean plane touch each 
other if they have a point in common and there is a straight line separating one from the 
other. A family A of sets is said to k-thin (or to form a £-fold packing) if no point of 
the plane is contained in more than k members of A. Two families A and (8 are called 
touching if every member of A touches every member of (B. 

It is easy to find two 1-thin families (i.e., packings) of convex sets A = {Ai,A2}, 
$ = {Bi : i = 1,2,...} that are touching (see Figure 1). 

FIGURE 1 

On the other hand, there is no touching pair of 3-member 1-thin families of sets since this 
would contradict the nonplanarity of K33, a complete bipartite graph with 3 elements in 
each of its classes. 
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There exist two touching 2-thin families of convex sets A = {A\,..., A$}, $ = {Bt : 
/ = 1,2,...}, as depicted in Figure 2. (The sets Aj and A^+j are only slightly different in 
the neighborhoods of their points of incidences with the £,'s.) At first glance one might 
think that there is a similar construction, when A consists of 4 pairs of sets and any two 
sets belonging to distinct pairs are disjoint. However, this possibility can be ruled out by 
the following result. 

LEMMA 1. Let A = {Ai,A2,A3,A4}, *B = {B\,... ,Bk} be touching families of 
plane convex sets, where the A/ 's are pairwise disjoint. If every member of *B touches the 
Ai's in the same counterclockwise cyclic order (Aj,A2,A3,A4), then all members of *B 
have a point in common. 

FIGURE 2 

This suggests that the following assertion is true: 

CONJECTURE. If A and 15 are touching 2-thin families of plane convex sets, then one 
of them has at most 6 members. 

We can establish a more general (but less exact) statement by showing that if A and 
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$ are touching &-thin families of convex sets, then either 2L or 2? has relatively few 
members. 

THEOREM 1. There exists a positive constant c such that if A and *B are touching 
families of plane convex sets with \!A\, |2?| > c • kfor some k > 1, then either SI or <B 
contains k members having nonempty intersection. 

The proof is based on Lemma 1 and on the following result: 

LEMMA 2. Let A be any family ofn plane convex sets with n > 3 • (J) • kfor some 
positive integers k and L Then either J3. has k members with nonempty intersection, or 
there is an £-member subfamily !A! Ç. A which is 2-thin. 

Assume for a moment that the Conjecture is true. Then Lemma 2 immediately implies 
that Theorem 1 holds with c = 3 • Q) = 105. Indeed, let A and ®be touching families 
of plane convex sets with |jl|, | $ | > 105/: and suppose, for the sake of contradiction, 
that neither !A nor $ contains k members having nonempty intersection. 

By Lemma 2 there exist two 2-thin 7-member subfamilies SV C A, If Ç B. But A! 

and 2? must be touching, contradicting our Conjecture. Of course, the same argument 
can be applied if the Conjecture is true with any other value larger than 6, but it yields a 
worse constant c in Theorem 1. 

In Sections 2 and 3 we prove the lemmata and Theorem 1, respectively. Section 4 
contains an application of our results to intersection patterns of convex sets. In the final 
section we discuss some related results and open problems. 

2. Proofs of the lemmata. It is easy to see, replacing each set by a suitable subset, 
that there is no loss of generality if Lemma 1 is proved with the additional assumption 
that the families consist of compact sets. 

PROOF OF LEMMA 1. First assume, without loss of generality, that every Bi is a 
quadrilateral which touches the Ay's at its vertices and put on each vertex of the quadri­
lateral the indexy* of the set Ay that contains it. Any two Z?;'s intersect since otherwise it is 
easy to verify that two Ay's intersect, a contradiction. Helly's theorem [2] implies that, if 
*B does not have any 3-member subfamily which is 2-thin, then f] *B ^ 0. It is therefore 
sufficient to prove that no 3-member subfamily of *B is 2-thin. 

OBSERVATION. If we go along the boundary of the union of two or more l?/'s, we 
obtain a sequence of numbers which does not contain a subsequence of type (ij, ij) 
with / ^ j . (The reason for this is that otherwise two A's intersect.) Call such a sequence 
forbidden. 

https://doi.org/10.4153/CMB-1994-072-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-072-1


498 M. KATCHALSKI AND J. PACH 

This implies that two Bj's cannot intersect as in Figures 3(a) or 3(b) or 3(c). 

(a) (b) 

FIGURE 3 

(c) 

Thus, two Bi's can intersect in one of the following ways (see Figure 4): 

Type I Type II 

Type III 

FIGURE 4 

Type IV 

The sequence of numbers in types II and IV are determined uniquely up to a cyclic 
permutation. 

Suppose that Bi Pi B} Pi Bj = 0. Then the intersection of two sets cannot be of types I 
or III of Figure 4, since this would imply that the intersection of another pair of sets is 
as in Figure 3(a), a contradiction. 

Suppose that the intersection of two sets (say, Bj and Bi) is of type II. Then the es­
sentially different possibilities for Bk are as in Figure 5. But (1) implies a forbidden 
(1,2,1,2); (2) implies a forbidden (2,3,2,3); (3) implies a forbidden (1,2,1,2); (4) im­
plies a forbidden (4,1,4,1). If the intersection of every pair of #/, Bj, Bk is of type IV, 
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then the intersections are essentially as in Figure 6, implying a forbidden (2,3,2,3), a 
contradiction. Hence, Bj D Bj n 2?* ̂  0. • 

2 . * * * ' 

(2) 

(3) (4) 

FIGURE 5 

PROOF OF LEMMA 2. We may suppose that k > 3. Assume, for the sake of con­
tradiction, that A has no k members with nonempty intersection, but every t-member 
subfamily # Ç A contains a triple T with f| T ^ 0. 

Let x denote the number of 2-thin triples T7 Ç J3L, i.e., those for which f| I 7 = 0. 
By counting the number of pairs (T7, $), where T7 is a 2-thin triple of an £-tuple % we 
obtain 

E-3 <U$ 
On the other hand, by a result of Kalai [3], any (k — l)-thin family of plane convex 
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sets has at least (n~kf3) 2-thin triples. Thus, 

so that 

However, if n = ck with c > 3 Q , then 

n-k-3\ (n-k- 5)3 __r?_f _ 1_ __ _5_\3 
3 / > 3Î ~ 3!V ~c~~ck) 

a contradiction. • 

FIGURE 6 

3. Proof of Theorem 1. As we have pointed out in the Introduction, it is sufficient 
to show that there is an integer t such that there exist no two touching £-member 2-thin 
families of planar convex sets. 

Assume, in order to get a contradiction, that there are two such families A and (B 
with \!A\ = \(B\ = I > 105. There is no loss of generality in assuming that the sets are 
compact. By Ramsey's theorem, 

(i) either A contains 4 pairwise disjoint members, 
(ii) or there is a subfamily Al Ç !A, \A!\ = 7, whose members are pairwise inter­

secting. 
If (i) holds, then choose \i/6\ members of S that touch the 4 disjoint elements of A 

in the same cyclic order. By Lemma 1, all of these sets must have a point in common, 
contradicting our assumption that $ is 2-thin. Similarly, we can assume that there are 
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no 4 pairwise disjoint members in (B. Therefore, if (ii) holds, then one of the connected 
components of the complement of |J -#' contains at least 1/3 members of S. 

Let C denote the closure of such a connected component. The boundary of C is com­
posed of arcs, where each arc belongs to one or two members of ft! = {A\,..., A-]}. A 
maximal contiguous piece 7 Ç Bd C is called an {ij}-arc if 

(a) every point of 7 belongs to A/ or Ay, and 
(b) 7 has at least one point belonging to A; n Ay. 
It is easy to see that for / ^ j there is only at most one {/j}-arc. Indeed, if there were 

two such arcs 7 and 7', then they would be separated from each other on Bd C by two 
points p E Ag and pr € Ah {g, h £ {ij}). Let q € 7, qr € Y be points belonging to 
Ai fï Ay. Since any two members of ft! intersect each other, p and// can be joined by a 
path in AgUAh. This path must meet the segment qq' Ç A/ D Ay at some point r. But 
then r belongs to at least 3 members of fA!, contradicting our assumption that A D ft! is 
2-thin (Figure 7). 

FIGURE 7 

Let <B' denote the family of all members of « which belong to C (|®'| > 1/3). All 
of them touch A\f at some point, and for at least 1/6 of them this point belongs to the 
same {1, /i}-arc for some 2 < i\ < 7. Assume without loss of generality that i\ ^ 2, 
and find a {2, /2}-arc on the boundary of C which meets the largest number of these sets. 
Proceeding like this and changing the indices if necessary, we end up with an at least 
|®'|/64-member subfamily $" Ç $', all of whose members meet Ay along the same 
{/', z/l-arc 7y (1 < j < 4), where h £ {2,3,4}, i2 £ {3,4} and h ^ 4. 

Let 7J denote the smallest subarc of 7y containing all points of 7y H Ay (1 < j < 4). 
Note that the arcs 7{,. •., % have pairwise disjoint interiors. Indeed, if e.g., 7[ and 72 had 
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an interior point in common, then 7i would be a {1,2}-arc, contradicting the assumption 
h ï 2. 

Since (B" Ç 2? is a 2-thin family, any endpoint of an arc 7J is contained in at most two 
members of rBn. Thus, by removing two sufficiently small pieces from both ends of each 
7J, all of the resulting arcs 7j' (1 < j < 4) will meet all but at most 8 members of <B" (in 
the same cyclic order). Moreover, the convex hulls of these arcs conv7j' Ç Ay will be 
pairwise disjoint. Hence, by Lemma 1 we can conclude that at least 

1 1 ~ 64 ~ 3 • 64 ~ 

members of (B have a point in common, which is impossible, because *B is 2-thin. This 
completes the proof of Theorem 1. • 

4. Intersection patterns of families of convex sets. Given a family Aofn convex 
sets, and a set of points T, we construct a family A* as follows: For any A £ A let A* 
be the convex hull of A Pi 7\ and let A* = {A* : A 6 A}. T is said to be a vertex 
representation of A if A and A* have the same intersection pattern, or equivalently, if 
for any subset 7 of A, fl 7 ^ 0 implies f | J * ^ 0. 

Let v(rt) be the minimum value such that every 2-thin family of n closed convex sets 
in the plane has a vertex representation T with |7T| < v(n). In [5] it has been established 

Q 2 

that v{n) < ^j- and that v(n) > en for every c > 0 provided that n is sufficiently large. 
This can be improved by 

THEOREM 2. There are positive constants c\ and ci and a positive integer m such 
that for all n 

4 9—1 

c\ri^ < v{n) < cin m. 

PROOF The existence of n points and n lines in the plane such that the number of 
4 

incidences between them is at least cm (with c > 0 independent of n) has been estab­
lished by Erdôs (see the construction described in the proof of Theorem 6.18 in [1]). 
Replace every point by a closed disc of small positive radius e, and move every line by 
e parallel to itself. We obtain a 2-thin family C of n discs and n lines such that a disc 
touches a line if and only if the corresponding point and line were incident in the original 
construction. Hence there are at least en4/3 points at which some disc and some line in 
C touch each other, and each of them must be contained in every vertex representation 

4 

of C. This implies that v(2n) > cm. 
To prove the upper bound, notice that the members of any 2-thin family A = {A/ : 

1 < / < n} can be replaced by smaller closed convex polygons (possibly segments or 
points) A[ Ç At so that A and A! = {A\ : 1 <i <n} have the same intersection pattern 
and every vertex of A- is the only intersection point of A- with some Aj. (For the details, 
see the proof of Theorem 7 in [5].) Clearly, the set of vertices of the members of A' is a 
vertex representation of A. 
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Construct a graph G on the vertex set SA! by connecting A\ and Aj with an edge if 
and only if they have exactly one point in common. By Theorem 1, G cannot contain a 
complete bipartite graph Km,m with m > 3c vertices in its classes. Otherwise JV would 
not be 2-thin. Hence, using a well-known result [4] in extremal graph theory, G has at 
most C2n2~m edges. This implies that total number of vertices of all members of SI' is at 
most C2n2~ m, completing the proof. • 

5. Related problems and results. Our proof of Theorem 1 yields a very poor upper 
bound for the smallest value of c for which the assertion is true. Much better bounds can 
be established, if we restrict our attention to some special families of plane convex sets. 
For instance, it is not hard to prove the following. 

PROPOSITION. If SA. and *B are touching families of rectangles whose sides are par­
allel to the axes and \Sl\, \(B\ > 2k, then either !A or <B contains k members having 
nonempty intersection. 

PROOF. Assume that k>2, since otherwise there is nothing to prove. 
If any two rectangles of A intersect or if any two rectangles of CB intersect then by 

a well-known property of rectangles with sides parallel to the axis either f] A ^ 0 or 

If 3 A's are pairwise disjoint and 3 B's are pairwise disjoint then a planar K^ can be 
formed which is impossible. 

Assume therefore, without loss of generality that A \ and A 2 are disjoint rectangles of 
Si separated by the vertical line L and that no three rectangles of 2? are pairwise disjoint. 

Let C = {LHBi : B{ € (E). Since every rectangle B of (Bmeets A\ andA2, it follows 
that C is a family of 2k closed segments on the line L and that no 3 segments of C are 
pairwise disjoint. This implies that there are 2 points a and b of L such that every segment 
of C meets the set {a, b}. 

Consequently, one of the two points is in at least k of the segments and therefore in at 
least k rectangles of <B. m 

It would be interesting to obtain a similar improvement of Theorem 1, when A and 
$ are families of translates of a fixed plane convex set C. 

We can also prove the following statement, somewhat related to Theorem 1. 

THEOREM 3. For any natural number k there exists g(k) such that, if SI and *B are 
touching families of compact convex sets in the plane with nonempty interiors, with their 
boundary curves in general position (i.e., no 3 of them pass through the same point), and 
\A\> I ®l — 8(k)> tnen either SI or 1$ has two members whose boundaries meet in at least 
k points. 

At the moment we do not even see whether g(k) = 0(k). 
It seems that all of the above results can be generalized to families of simply connected 

sets such that the intersection of any two of them is connected. 
It follows immediately from Lemma 2 that any family of n plane convex sets has an 

at least n1/4-member subfamily that is either 2-thin or all of its members have a point 
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in common. Does there always exist a much bigger subfamily with this property? For a 
similar result see [6]. 

The analogue of Theorem 1 is clearly false in higher dimensions, because already in 
3-space there are arbitrary large families of pairwise touching convex bodies such that 
no two of them share an interior point, see [7], 
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