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Abstract

The aggregation-decomposition method is used to derive sufficient conditions
for the uniform stability, uniform asymptotic stability and exponential stability
of the null solution of large-scale systems described by functional differential
equations with lags appearing only in the interconnections. The free subsystems
are described by ordinary differential equations for which converse theorems
involving Lyapunov functions exist and thus enable the sufficient conditions
to be expressed in terms of Lyapunov functions rather than the more com-
plicated Lyapunov functionals.

1. Introduction

The aggregation-decomposition method is an effective way of determining stability
properties of certain classes of dynamical systems with non-linearities and high
dimensions (see, for example, [1, 3, 5]). Basically, it involves the decomposition of
a complicated system into several simpler subsystems, each a function of different
components of the state vector, with interconnections between them. These sub-
systems may have some physical meaning or may be just mathematical artifices.
Moreover, they need not all be stable for the overall system to be stable. The sum
of their more easily found Lyapunov functions is tried as a Lyapunov function for
some desired stability property of the overall system. Its suitability is, however,
not tested directly, but rather is determined by the negative definiteness or negative
semi-definiteness of an aggregation matrix, the elements of which are determined
by the interconnections and the Lyapunov functions of the subsystems. This
method has been applied to systems described by equations of diverse forms,
including ordinary differential equations, difference equations, sampled data
ordinary differential equations and functional differential equations. With systems
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[2] Stability of large-scale systems 497

described by functional differential equations it is usual to consider a function
space as the state space of the system and to derive Lyapunov stability conditions
in terms of Lyapunov functionals rather than simpler Lyapunov functions (see,
for example, [3, 5]). The reason for this is that converse stability theorems involving
Lyapunov functions do not exist for such systems.

In this paper, the systems considered are described by functional differential
equations which have the time lags occurring only in the interconnections and, for
these systems, the free subsystems are thus described by ordinary differential
equations. Converse stability theorems guarantee the existence of Lyapunov
functions for such free subsystems, and the sum of these Lyapunov functions
provides a Lyapunov function, rather than a Lyapunov functional, for the overall
system even though the overall system is described by a functional differential
equation. In Section 2 a detailed description is given of these systems and in
Section 3 sufficient conditions involving Lyapunov functions are given for the
uniform stability, uniform asymptotic stability and exponential stability of the
null solution of a system described by a functional differential equation. The
conditions for the first two of these are due to Razumikhin [6, 7] and those for
exponential stability, which do not seem to have appeared elsewhere, are derived
here. In Section 4 the main results involving the aggregation-decomposition method
and Lyapunov functions are derived. These give sufficient conditions for the
uniform stability, uniform asymptotic stability and exponential stability of the
null solution of the overall system. These conditions complement those given in
[3, 5], and may in some instances be simpler to use. Their application is illustrated
with two simple examples in Section 5.

2. System description

A system S to be considered is described by an n-dimensional functional dif-
ferential equation (see, for example, Hale [2])

7 = / ( « . x , ) , (1)
at

where xteC = C([ — /z,0],R"), and can be decomposed into s interconnected
systems S, described by «,-dimensional (£?_ lnl = n) functional differential
equations

T git,xd+h£t,xt\ j = l,2,...,a. (2)
at

The «rdimensional functionals h,: Rx C->R"1 in (2) are called interconnections
and the vectors x.-eR"1 of the s subsystems St partition the vector xsR", that is,
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x = (xl,x2,.-,xs). It is assumed that / :RxC-*R" and the j,:RxR"-*R"',
i = 1,2, ...,s, are sufficiently smooth to ensure global existence and future con-
tinuation of all solutions xt{t0, </>0) e C of system S and all solutions xt(t!

 to. 4>o) e R"'
of the free subsystem Sf described by the n,-dimensional ordinary differential
equation

~i = giit,x^ (3)
at

for i = l,2,...,s. Further, it is assumed that £?,(£, x , )=0 for all t if x, = 0 for
/ = 1,2,...,s, and that f(j,xt) = 0 and ht(t,x,) = 0, / = 1,2, ...,s, for all r if x, = 0.

For i = l,2,...,s an arbitrary norm ||x,||f will be used on R"', but for con-
venience the max norm,

|| x\\ =max{||X(||f; i = 1,2, ...,s}, (4)

will be used on R". Similarly, the max norm,

|| <j> || 0 = max {|| <p(u) ||; — h < u < 0}, (5)

will be used on the function space C.
In the sequel it is supposed that associated with each free subsystem Sf,

i = 1,2, ...,s, is a differentiable Lyapunov function V^t,xt) which is defined for
all (/, x,) eR x R"' and satisfies

^idl Xi III) ^ V&t, Xt) < bi(\\ X; ||,) (6)

for all (t,x)eRxR"', where a^r) and b{{r) are continuous, strictly increasing,
positive functions of reR+ with a,(0) = Z>,-(0) = 0 and a.C)"-*00 as r->co; the
Lyapunov function also satisfies

= -VA.t,x,)[gradVJLt,xd'~
3 St

ih) (7)

for all (r, X;) e R x R"', where ^, = 1,0 or —1 and c,(r) is a continuous, strictly
increasing, positive function of reR+ with c,(0) = 0. For /*,- = — 1 such a Lyapunov
function exists when the null solution of the free subsystem Sf given by (3) is
uniformly asymptotically stable; for ^ , = 0 when it is uniformly stable, and for
^; = +1 when it is unstable in a certain way. See Yoshizawa [8, Sections 18 and 19].
In addition it is assumed that the s interconnection functionals

hi{t,xt), i = l,2,...,s,

satisfy

S 5
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for all (t,(f>)eRxC, where the a y are real numbers with oe,J=aJI- and the s
functions d,(r) are continuous, strictly increasing, positive functions of r e R +

with di(O) = 0 for / = 1,2, ...,s.
Alternatively, in the sequel it is supposed that associated with each free sub-

system Sf, i = l,2,...,s, is a differentiable Lyapunov function V^t,x;) which is
denned for all (t, x,) G R X R"' and satisfies

n II -v- II <: V(t v "\ <? h II v II (Q\

"ill xi II i ^ ' fv'» xi) ^5 "i II xi II i \")

and

A

ill,- (10)
for all (t, x,) e R x R"', where ait bt and cf are positive constants and \ix = — 1, 0
or + 1 . For \ix — — 1 such Lyapunov functions exist when the null solution of the
free subsystem Sf given by (3) is exponentially stable; for nt=0 when it is
uniformly stable, and for /<, = + 1 when it is unstable in a certain way. Finally, in
this alternative case, it is also assumed that the s interconnection functionals
hi(t,xt), i = l,2,...,s, satisfy

£ [gradFi(f,</>i(O))]T/if(f,(£) s$ £ a-ijy/Wt, $j(0)) Vj{t, </>/0))) (11)

for all (/,</>)eRx C, where the a y are real numbers with a y =a^f.

3. Lyapunov functions for functional differential equations

For a dynamical system S described by a functional differential equation (1), it
is now common practice to consider the function space C as the state space of the
system rather than the euclidean space R" (see, for example, [2, 4, 8]). The reason
for this is that much of the well-developed theory of dynamical systems described
by ordinary differential equations, in particular the semigroup evolution property
and Lyapunov stability theory, then translates almost directly into this function
space setting. For instance, definitions of stability, asymptotic stability and
exponential stability of the null solution x, — 0 of a system S given by (1) become:

DEFINITION. The null solution xt = 0 of a system S given by (1) is stable if, for
every / o e R and e>0, there exists a 8 = S(t0, e)>0 such that

for all t^-t0 and all (J>OBC with \\ <f>0 || 0 < 8. It is asymptotically stable if, in addition,
there exists a 80 =50(t0)>0 such that
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as f->oo for all <j>oeC with \\ <j)0 ||0<^o- These stabilities are uniform if 5 and 80

are independent of t0.
The null solution x, = 0 of a system S given by (1) is exponentially stable if there

exist positive constants K and c such that

for all t > t0 and all <j>0 e C.

With a function state space, Lyapunov stability conditions are expressed in
terms of Lyapunov functionals V(t, x,) denned on R x C. Both necessary and
sufficient conditions involving Lyapunov functionals have been derived for the
above stabilities (see, for example, [2, 4, 8]).

The main advantage of considering the euclidean space R" as the state space of
a system S described by a functional differential equation (1) is that euclidean
state vectors are in practice easier to work with than are state functions. In
particular, Lyapunov stability conditions can then be expressed in terms of
Lyapunov functions V(t, x) rather than the more complicated Lyapunov func-
tionals. Unfortunately, in contrast with Lyapunov functionals, the existence of
Lyapunov functions is in general not guaranteed for the above stabilities, that is,
necessary conditions involving Lyapunov functions cannot, in general, be derived
(see Hale [2, page 221]). Sufficient conditions can, however, be derived. The
following sufficient conditions for uniform stability and uniform asymptotic
stability of the null solution of a system S given by (1) are due originally to
Razumikhin [6, 7]. See also Lakshmikantham and Leela [4, chapter 8].

THEOREM 1. Suppose there exists a differentiable function V: RxR"->R such that

a( | |* | |K V{t,x)^b(\\x\\) (12)

for all (t,x)eRxR", where a(r) and b(r) are continuous, strictly increasing, positive
functions ofreR+ with a(0) = 6(0) = 0 and a(r)-»oo as r ->oo; suppose further that
V is such that

dV = f F0,<K0)H[gradK(f,
dt dt

Mil #0) II) (13)

for all (t, 4>) e R x C, where [i is a constant and c(r) is a continuous, strictly increasing,
positive function ofreR+ with c(0) = 0.

Then, if fi = 0, the null solution x,=0 of a system S given by (1) is uniformly
stable and, if fi<0, it is uniformly asymptotically stable.
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The following sufficient conditions involving a Lyapunov function hold for the
exponential stability of the null solution of a system S given by (1). A proof is
included here as none seems to have appeared elsewhere.

THEOREM 2. Suppose there exists a differentiable function V: RxR"-+R such that

a\\x\\^V(t,x)^b\\x\\ (14)

for all (t, x)eR x R", where a and b are positive constants; suppose further that V is
such that

dV
dt

ncV{t,<K0)) (15)

for all ((,^)eRx C, where c is a positive constant and \i is a constant.
Then, if /x = 0, the null solution x, = 0 of a system S given by (1) is uniformly

stable and, ifn<0, it is exponentially stable.

PROOF. The case /z = 0 follows from the previous theorem. For the case n<0
it can be assumed without loss of generality that n = — 1. Then, by Theorem 8.1.4
of Lakshmikantham and Leela [4] with g(t,r,r,) = —cr, by the right-hand
inequality of (14), and by (15), it follows that

V(t,x(t; to,4>o)) < V(t0><

for all t ^ t0 and all <j>oeC. Hence, by the left-hand inequality of (14),

a\\x(t; t0, <p0) \\ ^ b\\ ct>0 \\0e-^'-">\

that is,

ll*(t;to,*o)ll<6a"1ll*olloe"c(r~'o),

for all t a? t0 and all <£oeC. Since ba~l ^ 1, it thus follows that

W^U^U^ba-'WtoWoe-*-'*
for all t ^ /0 and all <j>0 e C, which proves the theorem.

4. Main results

In view of there being no necessary conditions to guarantee their existence,
Lyapunov functions are, in general, not as useful a means as Lyapunov functional
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of investigating the stability of a system described by a functional differential
equation (1). This situation is, however, reversed when the functional differential
equation can be decomposed into the form (2), because then the required Lyapunov
functions are provided by the free subsystems Sf, which are described by ordinary
differential equations (3), for which necessary conditions do exist.

When the free subsystems Sf have Lyapunov functions V^t,x,), / = 1,2, ...,s,
satisfying conditions (6) and (7) and when the interconnections satisfy (8), a real,
symmetric, sxs matrix A = (ay), called an aggregation matrix and denned by

aij=lti$ij+<Xij, i,j = 1,2, ...,s, (16)

where 6U is the Kronecker delta symbol, is formed and the function

V(t,x)=tvl(t,xi) (17)

is tried as a Lyapunov function for the uniform stability or the uniform asymptotic
stability of the null solution of the system S given by (1). The suitability of this
function need not, however, be tested directly. Instead, it is determined by whether
A is a negative semi-definite or a negative definite matrix.

THEOREM 3. Suppose that
(a) the Lyapunov function Vj(t,Xi) of the free subsystem Sf given by (3) satisfies (6)

and (7) for i = 1,2,..., s;
(b) the interconnection functional hi(t,xt), i — 1,2, ...,s, satisfy (8);
(c) the aggregation matrix A = («,;) defined by (16) is negative definite.

Then the null solution x,=0 of the system S given by{\) is uniformly asymptotically
stable. If the aggregation matrix A is only negative semi-definite, then the null
solution is uniformly stable.

PROOF. The theorem will be proved by showing that the function V(t, x) defined
by (17) satisfies conditions (12) and (13) of Theorem 1.

The function V(t, x) is defined and differentiate for all (t, x) e R x R" on account
of (17) and the global definition and differentiability of the s functions Vt(t, xt),
i = \,2,...,s.

From the properties of the s functions at(r), i = 1,2, ...,s, the function

a{r) =raih{al{r); i =1,2, ...,s}

is a continuous, strictly increasing, positive function of r eR + with a(0) = 0 and
«(/•)-> oo as r-*co. From definition (4) of the max norm and from the left-hand
inequality in (6), for each (*,x)eRxRn there is ay = 1,2, ...,s, which depends on
x, such that \\x\\ = || x} \}. Consequently,

a(ll x ||) < fl/|| Xj II,.) < V/t, Xj) < V(t, x),
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[8] Stability of large-scale systems 503

that is, for all (t, x) e R x R",

a{\\x\\)^V(t,x).

Similarly, from the properties of the s functions 6,(r), the function

b(r) = max {sbt(r); i = 1,2,..., 5}

is a continuous, strictly increasing, positive function of reR+ with 6(0) =0 .
From (4) and the right-hand inequality in (6),

< t bt{\\ x ||) < 6(|| x ||)

for all(f,x)eRxRn.
Along the solutions of the system S given by (1) the derivative of V(t, x) is, for

any (t,(j>)eRxC,

dV
dt -IYQ, V(t,

= i ^ Vi(t, <k(0))+[grad V&t, U
1=1 ot

3 i = l

1=1 i, j = 1

where Amax(yl)<0 is the largest eigenvalue of the negative definite aggregation
matrix A, the s functions e;(r) are defined by

for i = 1,2, ...,5, and the function c(r) is defined by

c(r) •= max {^e^r); / = 1,2,..., s}.
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From the properties of the 2s functions C;(r) and d((r), i = 1,2, ...,s, it is clear
that the function c(r) is a continuous, strictly increasing, positive function of
r e R + withc(0)=0.

Hence the Lyapunov function V(t,x) satisfies the sufficient conditions (12) and
(13) of Theorem 1 with n = — 1 and thus the null solution x, = 0 of the system 5
given by (1) is uniformly asymptotically stable.

If the aggregation matrix A is negative semi-definite, then its largest eigenvalue
Xmax(A) < 0. Hence the Lyapunov function V(t,x) satisfies the sufficient conditions
(12) and (13) of Theorem 1 with n = 0 and thus the null solution x, = 0 of the
system S given by (1) is uniformly stable.

This completes the proof of the theorem.

When the free subsystems S? have Lyapunov functions V^t,xt), i = 1,2, ...,s,
satisfying conditions (9) and (10) with the interconnections satisfying condition
(11), the aggregation matrix A = (%) is defined by

atj^n^iSi+aij, i,j = 1,2, ...,s. (18)

The function V(t, x) defined by (17) is then tried as a Lyapunov function to test
for the exponential stability or the uniform stability of the null solution of the
system S given by (1). As previously, the former holds if the aggregation matrix A
defined by (18) is negative definite and the latter if it is negative semi-definite.

THEOREM 4. Suppose that
(a) the Lyapunov function F;(f, *,) of the free subsystem Sf given by (3) satisfies (9)

and (10) for i = l,2, ...,s;
(b) the interconnection functional h{{t,xt), i = 1,2, ...,s, satisfy (11);
(c) the aggregation matrix A = (a{j-) defined by (18) is negative definite.

Then the null solution x, —0 of the system S given by (1) is exponentially stable.
If the aggregation matrix A is only negative semi-definite, then the null solution is
uniformly stable.

PROOF. The theorem will be proved by showing that the function V(t, x) defined
by (17) satisfies conditions (14) and (15) of Theorem 2.

As in the previous theorem, V(t,x) is defined and differentiable for all
(t, x) e R x R". It also satisfies

for all (t,x)eRx R", where

(; i = l,2,...,s) and b =ma\{sbl; i = 1,2, ...,
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Along the solutions of the system S given by (1) the derivative of V(t, x) is, for

tiV s riV "

"f i ;=i dt 3 i = 1

<(u, ,t)2 , . . . , t ) s )^(t)1 > i;2 ) . . . ,y s)
T

where AmaxG4)<0 is the largest eigenvalue of the negative definite aggregation A
and o, = j(y{t, <t>i(0))) for i = 1,2, ...,*.

Hence the Lyapunov function V(t, x) satisfies the sufficient conditions (14) and
(15) of Theorem 2 with n — - 1 and c — \ lmax(^) |, and thus the null solution x, = 0
of the system S given by (1) is exponentially stable.

When the aggregation matrix A is negative semi-definite, then its largest eigen-
value AmaiC4) < 0. Hence the Lyapunov function V(t, x) satisfies the sufficient
conditions (14) and (15) of Theorem 2 with ^ = 0 , and thus the null solution
x, = 0 of the system S given by (1) is uniformly stable.

This completes the proof of the theorem.

5. Examples

The following two simple examples illustrate the application of Theorems 3 and
4 above. In each example there are two one-dimensional free subsystems, described
by ordinary differential equations, for which the null solutions are either
exponentially stable or unstable.

EXAMPLE 1. The system S is composed of two interconnected one-dimensional
subsystems described by the functional differential equations

7i

dt
where

(19)

h1(t,x,)=x1(t)\x2(t)\
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and

h2(t, xt) = -x 2 ( r )

P. E. Kloeden

r°
{xl(t+u

[11]

)+2xt(t+u) + 2}du.
J -h

The null solution x ( = 0 of the free subsystem S* described by the ordinary
differential equation

^ ! = - x 1 (20)

is exponentially stable. A suitable Lyapunov function is

I/i(x1)=xf)

for which

= -2x\
dt 20

for all x ^ R . Conditions (6) and (7) are thus satisfied with al(r)=b1{r)=r,
ct(r) —2r2 and fi1 = —I.

The null solutions J C 2 = 0 of the free subsystem S* described by the ordinary
differential equation

is unstable. A suitable Lyapunov function is

for which

dV2

dt
= 2x1

21

for all x2eK, and so conditions (6) and (7) are satisfied with a2(r) =b2{r) =r2,
c2(r)=2/-2and/z2 = + l .

The bounds (8) for these Lyapunov functions and the interconnection functionals
are determined as follows:

[grad ^(0,(0))] ht(t, <t>) =

and

[grad K2(02(O))] h2(t, <f>) = - 0) f ° {<j>\{u)+2(j>l
J -h

f ° (-l)dM
J -h

-2*01(0)
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t(t,

for all <j> e C, and so condition (8) is satisfied with

« i i=0 , a 1 2 = a 2 1 = l , cc22=-2h, dt

But

/*! = — 1 and n2 = + 1 >

and so the aggregation matrix defined by (16) is

= r* and d2(r)=r=r2

L 1 1-2/iJ

This is negative definite for h > 1 and negative semi-definite for h — 1. Hence, by
Theorem 3, the null solution xt = 0 of the system S given by (19) is uniformly
asymptotically stable if the delay h>\, and uniformly stable if the delay ft = 1.

EXAMPLE 2. The system S is composed of two interconnected one-dimensional
subsystems described by the functional differential equations

at
(22)

where

and

f x2{t+u)du\

t, xt) = xx(0 sgn (xx(0 x2(0).

The null solution x t = 0 of the free subsystem S* described by the ordinary
differential equation

2x
dt

is unstable. A suitable Lyapunov function is

(23)

for which

dV,

dt
= 4xf=4F1(x1)

23
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for all xt ER , and so conditions (9) and (10) are satisfied with a1(t) = bl(r) = r2,
cx = 4 and nx = + 1 .

The null solution x2 = 0 of the free subsystem S* described by the ordinary
differential equation

is exponentially stable. A suitable Lyapunov function is

for which

dV,
dt

= -4x2
2=-4V2(x2)

24

for all jc2eRj and so conditions (9) and (10) are satisfied with a2{r) =b2(r) = r2,
c2 = 4 and \i2 = — 4.

The bounds (11) and these Lyapunov functions and the interconnection func-
tionals are determined as follows:

[grad ^ (

| <f>2(M)du\

for all <f>eC. Hence condition (11) is satisfied with a l t = — 6, a12 =a 2 1 = 1 and
a22 = 0 . But ct = c 2 = 4 , iil = +1 and \i2 = — 1, and so the aggregation matrix
defined by (18) is

A =

This is negative definite with eigenvalues (—3 + ̂ /5) <0. Hence the null solution
x, = 0 of the system 5 given by (22) is exponentially stable.
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