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On Non-Strongly Free Automorphisms
of Subfactors of Type III0

Toshihiko Masuda

Abstract. We determine when an automorphism of a subfactor of type III0 with finite index is non-

strongly free in the sense of C. Winsløw in terms of the modular endomorphisms introduced by

M. Izumi.

1 Introduction

In subfactor theory, initiated by V. F. R. Jones in [13], the study of automorphisms of

subfactors plays an important role. One of the important properties of an automor-

phism is strong outerness for automorphisms introduced by Choda-Kosaki in [1].

(Popa also introduced the same property in [27] independently, and called it proper

outerness.)

In [29], C. Winsløw introduced the notion of strong freeness for automorphisms

of subfactors of type III as a natural generalization of strong outerness and non-

pointwise innerness in the sense of [5]. This notion plays an important role in his

theory of automorphisms for subfactors of type III.

In [19], H. Kosaki investigated the structure of automorphisms of type III subfac-

tors by using sectors, and characterized non-strongly free automorphisms for sub-

factors of type IIIλ, λ 6= 0. Namely an automorphism is non-strongly free if and only

if it is the composition of a non-strongly-outer automorphism and a modular auto-

morphism. (See Theorem 3.1 below.) However the type III0 case was left unsolved.

Note that the composition of a non-strongly-outer automorphism and an extended

modular automorphism is always non-strongly free as shown by Kosaki.

The purpose of this paper is to give a full answer to this problem. Though one may

conjecture that modular automorphisms should be replaced with extended modular

automorphisms in Kosaki’s theorem, we must use modular endomorphisms as de-

fined by M. Izumi in [10] to obtain the correct characterization. (See [11] for de-

tails of modular endomorphisms.) In general, there exist subfactors and their non-

strongly free automorphisms which are not the composition of non-strongly-outer

automorphisms and extended modular automorphisms.
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2 Preliminaries

For the basic facts of index theory and sector theory for subfactors, we refer to [13],

[16], [7], [26], [20], [25], [23], [24], [9], [3].

Let E be the minimal conditional expectation from M onto N , ϕ a faithful normal

semifinite weight of N , Ñ ⊂ M̃ := N oσϕ R ⊂ M oσϕ◦E R the continuous decompo-

sition of N ⊂ M. Throughout this paper, we always assume that type III subfactors

have the common flow of weights, that is, Z(Ñ) = Z(M̃).

First we recall the notion of strong outerness for automorphisms of subfactors.

Definition 2.1 ([1, Definition 1], [27, Definition 1.3.1]) An automorphism α ∈
Aut(M, N) is said to be strongly outer if there exist no non-zero a ∈

⋃
k Mk such

that α(x)a = ax holds for every x ∈ M.

Let α be an automorphism of N ⊂ M. Then we can define the canonical extension

α̃ ∈ Aut(M̃, Ñ) of α as follows:

α̃(x) = α(x), x ∈ M,

α̃
(
λ(t)

)
= (Dϕ ◦ α−1 : Dϕ)tλ(t),

where λ(t) is the implementing unitary of σϕ
t (see [5]).

Definition 2.2 ([29, Definition 3.2]) In the above notations, α is said to be strongly

free if there exist no non-zero a ∈
⋃

k M̃k satisfying α̃(x)a = ax for every x ∈ M̃.

By the above definition, α is non-strongly free if and only if there exist k > 0 and

non-zero element a ∈ M̃k which satisfies α̃(x)a = ax for every x ∈ M̃.

When N = M, α is non-strongly free if and only if α̃ is inner. In this case, by

[6, Proposition 5.4], α is of the form Ad uσϕ
c for some u ∈ U (M) and an extended

modular automorphism σϕ
c . (For extended modular automorphisms, see [2].)

Next we explain the canonical extension of endomorphisms introduced by Izumi

in [10], [11].

Let ρ ∈ End(M) be an endomorphism of M with dρ < ∞. We denote by φρ the

standard left inverse of ρ. Then the canonical extension ρ̃ ∈ End(M̃) of ρ is defined

as follows:

ρ̃(x) = ρ(x), x ∈ M,

ρ̃
(
λ(t)

)
= dρit(Dϕ ◦ φρ : Dϕ)tλ(t).

It is shown in [11] that the canonical extension is compatible with sector opera-

tions.

Definition 2.3 ([11, Definition 3.1]) An endomorphism ρ is called a modular en-

domorphism if ρ̃ is an inner endomorphism, that is, there exist isometries {vi}
n
i=1

satisfying ρ̃(x) =
∑

i vixv∗i . We denote by End(M)m and Sect(M)m the set of all

modular endomorphisms and the image of End(M)m in Sect(M) by the quotient

map respectively.
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In the above definition, the number n of isometries {vi} is dρ. Hence the dimen-

sion of a modular endomorphism is always an integer.

Take ρ ∈ End(M)m. Then we can find isometries {vi}
n
i=1 ⊂ M̃ with ρ̃(x) =

∑
i vixv∗i . Define ci j,t := v∗i θt (v j). Then c = (ci j,t ) ∈ Z1

θ

(
R,U

(
n, Z(M̃)

))
. If

ρ1 and ρ2 are equivalent modular endomorphisms, then the associated cocycles are

equivalent. Hence the map δ[ρ] := [c] ∈ H1
θ

(
R,U

(
dρ, Z(M̃)

))
is well defined.

Theorem 2.4 ([11, Theorem 3.3]) The map δ gives the bijective correspondence be-

tween Sect(M)m and
⊔

n H1
θ

(
R,U

(
n, Z(M̃)

))
.

We denote by ρc a modular endomorphism corresponding to a cocycle c.

3 Non-Strongly Free Automorphisms

In [19], Kosaki obtained the following theorem, which can be considered as a subfac-

tor analogue of [6, Proposition 5.4].

Theorem 3.1 ([19, Theorem 19]) Let N ⊂ M be a subfactor of type IIIλ, λ 6= 0.

Then every non-strongly free automorphism is of the form ασϕ
t , where α is a non-

strongly-outer automorphism.

Let γ be Longo’s canonical endomorphism of N ⊂ M. Since α ∈ Aut(M, N) is

non-strongly-outer if and only if α appears in the irreducible decomposition of γn,

n ≥ 1 (see [1], [17] and [19]), we can list all non-strongly free automorphisms of

subfactors of type IIIλ, 0 < λ ≤ 1, as long as we know the irreducible decomposition

of γn. For example see [19, Section 6].

In the case of type III0 factors, as an analogue of the above theorem, one may con-

sider that every non-strongly free automorphism is of the form ασϕ
c , where α is a

non-strongly-outer automorphism and σϕ
c is an extended modular automorphism.

However this is not true in general, and we will characterize non-strongly free auto-

morphisms by using modular endomorphisms.

Theorem 3.2 An automorphism α is non-strongly free if and only if there exists a

modular endomorphism ρc such that αρc appears as an irreducible component of γn for

some n.

Proof Let (X, ν, F) be the flow of weights of M. Hence we have Z(M̃) = L∞(X, ν)

and θt ( f )(w) = f (F−t w). Then we have the common central decomposition Ñ ⊂

M̃ =
∫ ⊕

X

(
Ñ(w) ⊂ M̃(w)

)
dν(w).

Let α be a non-strongly free automorphism. Then there exists 0 6= a ∈ M̃k such

that α̃(x)a = ax holds for every x ∈ M̃. The argument in [19, p. 436] shows that the

Connes-Takesaki module of α is trivial. Hence the above equality can be decomposed

as
∫ ⊕

X
αw

(
x(w)

)
a(w) dν(w) =

∫ ⊕

X
a(w)x(w) dν(w) with αw ∈ Aut

(
M(w)

)
. By this

decomposition, αw

(
x(w)

)
a(w) = a(w)x(w) holds for a.e. w ∈ X. Since Hw :=

{a ∈ M̃k(w) | αw(x)a = ax for every x ∈ M̃(w)} is a finite dimensional Hilbert space,
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we can take orthonormal basis {a j(w)} for this Hilbert space. Note that n := dim Hw

is constant for a.e. w ∈ X because of the ergodicity of θt .

Since θt commutes with α̃, we have αFt wθ(t,w) = θ(t,w)αw. Hence θ(t,x) is a unitary

operator from Hw to HFt w. Then we get θ(t,w)

(
a j(w)

)
=

∑
i ci j(t, w)ai(Ft w) for

some unitary matrix
(

ci j(t, w)
)

i, j
. This

(
ci j(t, w)

)
i j

satisfies the following cocycle

equations:

ci j(t + s, w) =

∑

k

cik(t, Fsw)ck j (s, w).

Define ct = (ci j,t ) ∈ M
(

n; Z(M̃)
)

by ci j,t (w) := ci j(t, F−t w). Then ctθt (cs) = ct+s

holds. Indeed we have the following:

∑

k

cik,t (Ft+sw)θt (ck j,s)(Ft+sw) =

∑

k

cik,t (Ft+sw)ck j,s(Fsw)

=

∑

k

cik(t, Fsw)ck j(s, w)

= ci j(t + s, w)

= ci j,t+s(Ft+sw).

Thus we have c ∈ Z1
θ

(
R,U

(
n, Z(Ñ)

))
. By [10, Theorem 3.3], we have the

modular endomorphism ρc̄ ∈ End(M) associate with c̄t , where c̄i j,t := c∗i j,t . Let

{wi}
n
i=1 ⊂ Ñ be an implementing system of ρc̄. Then we have ρ̃c̄(x) =

∑
i wixw∗

i

and w∗
i θt (w j) = c∗i j,t . Set a j :=

∫ ⊕

X
a j(w) dν(w). Then θt (a j) =

∑
i ci j,t ai holds. It is

easy to show that θt (
∑

j w ja j) =
∑

i wiai , and this means
∑

i wiai ∈ (M̃k)θ
= Mk.

Also we have ρc̄α(x)
∑

i wiai =
∑

i wiaix for every x ∈ M. In a similar way as in the

proof of [1], [17] or [19], we can prove that ρc̄α appears in the irreducible decompo-

sition of γk.

When N ⊂ M is of type IIIλ, λ 6= 0, every irreducible modular endomorphism is

an automorphism. Hence Theorem 3.2 covers Kosaki’s theorem.

Corollary 3.3 If either we have [M : N] < 4 or the type II graph and type III graph

of N ⊂ M coincide, then every non-strongly free automorphism is the composition of a

non-strongly-outer automorphism and an extended modular automorphism.

Proof Let α be a non-strongly free automorphism, ∆ the set of irreducible sectors

appearing in the irreducible decomposition of γn, n > 0, and ∆m := ∆∩ Sect(M)m.

First assume that N ⊂ M has the same type II graph and type III graph. In this case,

∆m is [idM] by [11, Theorem 3.5]. By Theorem 3.2, [αρc] is in ∆ for some modular

endomorphism ρc. Since ∆ is closed under sector operations, [ρcρc̄] = [αρc][αρc]

can be decomposed in ∆. If dρc ≥ 2, then nontrivial modular endomorphisms

appear in ∆, and this is the contradiction. Hence ρc must be an extended modular

automorphism, and α can be expressed in the form βσϕ
c for some non-strongly-outer

automorphism β.
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Next we assume [M : N] < 4. We only have to verify the case that the type III

graph of N ⊂ M is A4n−3 and type II graph is D2n. (See [18] or [21].) In this case,

we have ∆m = {[idM], [σ]}, where σ is an extended modular automorphism with

period two. Even in this case, it is impossible that [αρc] with dρc ≥ 2 appears in ∆.

By using Theorem 3.2, we can construct an example of a subfactor and a non-

strongly free automorphism which does not have the form ασϕ
c with a non-strongly-

outer automorphism α. Let M be a type III0 factor, (X, Ft ) the flow of weights of

M, c a minimal cocycle from (X, Ft ) to a noncommutative group G of order 8 in

the sense of [31]. Let π be a 2-dimensional irreducible representation of G. Let

ρ be a modular endomorphism with dρ corresponding to a cocycle π ◦ c. (See

[11, Section 5].) The fusion rules of sectors generated by [ρ] is the same as that

of Ĝ. Hence we have [ρ2] = [id] ⊕ [σ1] ⊕ [σ2] ⊕ [σ1σ2], [σ1ρ] = [σ2ρ] =

[ρ], [σ2
1] = [σ2

2] = [id] and [σ1σ2] = [σ2σ1], where σi are extended modu-

lar automorphisms. Take α ∈ Ker mod which is not an extended modular au-

tomorphism, and define ρ1 ∈ End(M) as [ρ1] = [αρ] ⊕ [id]. Then ρ1(M) ⊂
M is a subfactor of type III0 with the common flow of weights. In this case, α
is indeed an automorphism of ρ1(M) ⊂ M up to inner perturbation because of

[αρ1] = [ρ1α]. Easy computation shows that the set of irreducible sectors appear-

ing in (ρ1ρ̄1)n is {[id], [αρ], [σ1], [σ2], [σ1σ2]}. By Theorem 3.2, α is non-strongly

free, but never has the form βσc for some non-strongly-outer automorphism β and

extended modular automorphism σc because the only non-strongly-outer automor-

phisms of ρ1(M) ⊂ M are {Ad u, Ad uσ1, Ad uσ2, Ad uσ1σ2 | u ∈ U (M)} by the

characterization of [1] and [17].

4 The Case of Subfactors with the Principal Graph D(1)
2n

In the end of the previous section, we construct an example of a subfactor and its

non-strongly free automorphism which does not have the form ασϕ
c with a non-

strongly-outer automorphism α. However this subfactor is reducible. Hence it is

natural to ask if there exist examples of irreducible subfactors. In this section, we

construct subfactors with the principal graph D(1)
2n which have the above property.

First we construct subfactors. In [4, Section 4.7], subfactors with the principal

graph D(1)
n has been obtained as ADn−2 ⊂ (A ⊗ M2)Dn−2 , where A is a factor with an

outer action of a dihedral group Dn−2. (Also see [12].)

Let a, b be generators of D2n with the relations a2n
= b2

= e and bab = a−1.

Fix a type III0 factor A, and let σ(0) be an outer action of D2n on A with the trivial

modular invariant.

Let Rep(D2n) be the category of finite dimensional representations of D2n. Since

σ(0) is a dual action for some Roberts action of Rep(D2n) on Aσ(0)

, we can take a sys-

tem of isometries {vπ
i }

dπ
i=1 ⊂ A with vπ

i
∗vπ

j = δi, j and
∑

i vπ
i vπ

i
∗

= 1, and restriction

of σ(0) on
∑

i Cvπ
i is equivalent to π for each π ∈ Rep(D2n). Then the dual action of

Rep(D2n) on M is given as follows:
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ρπ(x) =

∑

i

vπ
i xvπ

i
∗, x ∈ A ⊗ M2(C),

ρπ(λg) = λg .

Let χ be a one-dimensional representation of D2n given by χ(a) = 1 and χ(b) =

−1 and χ1 a one dimensional representation given by χ1(a) = −1, χ1(b) = 1, and

set χ2 = χχ1. Let πω be a two-dimensional representation of D2n given as follows.

πωm (a) =

(
ωm 0

0 ω̄m

)
, πωm (b) =

(
0 1

1 0

)
,

where ω is a 2n-th primitive root of 1. If m 6= 0, n, then ωm 6= ±1 and πωm is irre-

ducible, and we have π1
∼= id ⊕χ and π−1

∼= χ1⊕χ2. Then {πm
ω }

n−1
m=1∪{id, χ, χ1, χ2}

is the set of representatives of D̂2n.

Let ϕ0 be a dominant weight of Aσ0

, and set ϕ := ϕ0 ◦ E, where E is the natural

conditional expectation from A onto Aσ0

. We may assume that (ϕ, ρπ) is an invariant

pair in the sense of [11, Definition 2.2] for every π ∈ D̂2n. Then it follows that ϕ is

invariant under σ0, and vπ
i is in Aϕ. The former is trivial, and the latter follows from

[8, Theorem 4.19].

Define an action σ of D2n on A⊗M2(C) as in [12, Theorem 5.5]. Then a subfactor

N ⊂ M := A oσ D2n ⊂
(

A ⊗ M2(C)
)

oσ D2n has the principal graph D(1)
2n+2.

Moreover this subfactor has the common flow of weights and its flow is given by(
Z(Ã)σ, θt |Z(Ã)σ

)
. See [15], [28]. The continuous decomposition Ñ ⊂ M̃ can be

identified with Ã oσ̃ D2n ⊂
(

Ã ⊗ M2(C)
)

oσ̃ D2n. Here the action σ̃ of D2n on

Ã ⊗ M2 is given by the canonical extension of σ. Set H := Ker mod σ(0), and assume

that H = {e, an}. Hence D2n/H acts on Z(Ã) faithfully. The flow {Z(Ã), θt |Z(Ã)} can

be expressed as the skew product of Z(Ñ) and its minimal cocycle to D2n/H. (See

[31], or [11, Appendix A].) Hence we may assume Z(Ã) = Z(Ñ) ⊗ l∞(D2n/H). We

denote by ẋ an equivalence class of x ∈ D2n in D2n/H, and by δẋ the characteristic

function of {ẋ} in l∞(D2n/H).

Now we will prove ρ̃πω
(x) = w1α̃(x)w∗

1 + w2α̃(x)w∗
2 for some α̃ ∈ Aut(M̃, Ñ)

commuting with θt . If we can find such α̃, define α as the restriction of α̃ on M =

M̃θ. Since we have τM̃ ρ̃πω
= 2τM̃ by [11, Proposition 2.5], it is easy to see τ α̃ = τ .

By [14, Lemma 1.1], α̃ is the canonical extension of α. We will show that α is a non-

strongly free automorphism. In what follows, we denote ρπω
by ρ, and vπω

i by vi for

simplicity. We have σa(v0) = ωv0, σa(v1) = ω̄v1, σb(v0) = v1 and σb(v1) = v0. The

canonical extension ρ̃ of ρ is given as follows:

ρ̃(x) = v0xv∗0 + v1xv∗1 , x ∈ Ã,

ρ̃(λg) = λg .

Lemma 4.1 Define w1 and w2 as follows.
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w0 := v0

n−1∑

i=0

ωiδȧi + v1

n−1∑

i=0

ω̄iδȧi ḃ,

w1 := v1

n−1∑

i=0

ω̄iδȧi + v0

n−1∑

i=0

ωiδȧi ḃ.

Then w0 and w1 are mutually orthogonal isometries with support 1.

Proof First we compute w∗
0 w0. Then

w∗
0 w0 =

( n−1∑

i=0

v∗0 ω̄iδȧi + v∗1 ωiδȧi ḃ

)( n−1∑

j=0

v0ω
jδȧ j + v1ω̄

jδȧ j ḃ

)

=

n−1∑

i=0

δȧi + δȧi ḃ

= 1.

In a similar way, we can show w∗
1 w1 = 1 and w∗

0 w1 = 0.

Next we compute w0w∗
0 :

w0w∗
0 =

( n−1∑

j=0

v0ω
jδȧ j + v1ω̄

jδȧ j ḃ

)( n−1∑

i=0

v∗0 ω̄iδȧi + v∗1 ωiδȧi ḃ

)

= v0v∗0

n−1∑

i=0

δȧi + v1v∗1

n−1∑

i=0

δȧi ḃ.

In a similar way, we get w1w∗
1 = v1v∗1

∑n−1
i=0 δȧi + v0v∗0

∑n−1
i=0 δȧi ḃ. Now w0w∗

0 +

w1w∗
1 = 1 is clear.

Lemma 4.2 wiw
∗
j ⊂ (ρ̃, ρ̃) and w∗

1 ρ̃(·)w1 = w∗
2 ρ̃(·)w2 =: β is an automorphism.

Proof In the proof of the above lemma, we already know w0w∗
0 = v0v∗0 e0 + v1v∗1 e1,

where e0 =
∑n−1

i=0 δȧi and e1 =
∑n−1

i=0 δȧi ḃ. Since e0 and e1 are in Z(Ã) and ρ̃(x) =

v0xv∗0 + v1xv∗1 for x ∈ Ã, it is shown that w0w∗
0 ρ̃(x) = ρ̃(x)w0w∗

0 holds for x ∈ Ã. We

have Ad λaviv
∗
i = viv

∗
i and Ad λaei = ei . Hence we get w0w∗

0 ρ̃(λa) = ρ̃(λa)w0w∗
0 .

Similarly w0w∗
0 ρ̃(λb) = ρ̃(λb)w0w∗

0 holds. Hence w∗
0 ρ̃(·)w0 is an endomorphism of

M̃. If x ∈ Ã, then

w∗
0 ρ̃(x)w0 =

( n−1∑

i=0

v∗0 ω̄iδȧi + v∗1 ωiδȧi ḃ

)
(v0xv∗0 + v1xv∗1 )

( n−1∑

j=0

v0ω
jδȧ j + v1ω̄

jδȧ j ḃ

)

= e0x + e1x

= x
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holds.

On the other hand, we have

w∗
0 ρ̃(λa)w0 =

( n−1∑

i=0

v∗0 ω̄iδȧi + v∗1 ωiδȧi ḃ

)
λa

( n−1∑

j=0

v0ω
jδȧ j + v1ω̄

jδȧ j ḃ

)

=

( n−1∑

i=0

v∗0 ω̄iδȧi + v∗1 ωiδȧi ḃ

)( n−1∑

j=0

v0ω
j+1δȧ j+1 + v1ω̄

j+1δȧ j+1 ḃ

)
λa

=

(( n−1∑

i=0

ω̄iδȧi

)( n−1∑

j=0

ω j+1δȧ j+1

)
+

( n−1∑

i=0

ωiδȧi ḃ

)( n−1∑

j=0

ω j+1δȧ j+1 ḃ

))
λa

=

(
−δė − δḃ +

n−1∑

i=1

δȧi + δȧi ḃ

)
λa.

Put u = (−δė − δḃ +
∑n−1

i=1 δȧi + δȧi ḃ). By similar computation, we can verify

w∗
0 ρ̃(λb)w0 = −uλb. Due to u2

= 1, β := w∗
0 ρ̃(·)w0 is an automorphism with

period 2.

In the same way as above, w∗
1 ρ̃(x)w1 = β(x) can be shown.

By the above lemma, {wiw
∗
j }0≤i, j≤1 is a matrix unit in (ρ̃, ρ̃).

Lemma 4.3 We have θtβθ−t = Ad u∗
t β for some θt -cocycle ut .

Proof Since θt commutes with ρ̃, we have ρ̃(x)θt (w0) = θt (w0)θtβθ−t (x). Since

θt (w0w∗
0 ) is equivalent to w0w∗

0 in (ρ̃, ρ̃), β and θtβθ−t are unitary equivalent. Hence

there exists a unitary ut with Ad u∗
t β = θtβθ−t . Since θt+sβθ−(t+s) = θtθsβθ−sθ−t ,

ut+s and utθt (us) differ by a center valued 2-cocycle. However it is always a cobound-

ary (for example see [2, Appendix]), and hence we can choose ut as a θ-cocycle.

By stability of θt , there exists a unitary u with u∗θt (u) = ut . Then Ad uβ com-

mutes with θt . Let α be the restriction of Ad uβ on M. As remarked in the beginning

of this section, Ad uβ is the canonical extension of α.

Proposition 4.4 An automorphism α is a non-strongly free automorphism.

Proof Since ρ is an irreducible component of γ, and ρα is a modular endomorphism,

the conclusion follows by Theorem 3.2.

Theorem 4.5 Let N ⊂ M be A oσ D4n ⊂
(

A ⊗ M2(C)
)

oσ D4n and α an auto-

morphism constructed above. Then α is not the composition of a non-strongly-outer

automorphism and an extended modular automorphism.
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Proof By examining the fusion rule of ∆, we can show

∆m = {[id], [ρχ], [ρχ1
], [ρχ2

]} ∪ {[ρπω2m ]}n−1
m=1.

For example, we have [ρπω
ρπω

] ∼= [id] ⊕ [ρχ] ⊕ [ρπω2 ]. Since an outer period of α̃ is

two, ρπω
ρπω

is a modular endomorphism. Hence its irreducible components are also

modular endomorphisms. Non-strongly-outer automorphisms of N ⊂ M are inner

perturbation of id, ρχ, ρχ1
and ρχ2

, and all of them are extended modular automor-

phisms. On the other hand, α is not an extended modular automorphism. Hence

α is not the composition of a non-strongly-outer automorphism and an extended

modular automorphism.

Remark 1. If N ⊂ M is a subfactor constructed in this section by using D4n−2, then

∆m associated with this subfactor is {[id], [σχ]} ∪ {ρπω2m}
n−1
m=1. Hence ρχ1

and ρχ2

are non-strongly-outer automorphism and neither of them is an extended modular

automorphism. In this case, all non-strongly free automorphism are the composi-

tion of ρχ1
and modular extended modular automorphisms. In fact, it is easy to see

[ρ̃χ1
] = [ρ̃χ2

] = [α̃].

2. We have a cocycle θ from (X, F) to the Loi part of Ñ(w) ⊂ M̃(w). In a similar

way as in [19], we can prove that ρc appears in γn if and only if there exist {vi} ∈
M̃ ′ ∩ M̃k satisfying θt (v j) =

∑
i ci j,t vi , and this is a representation of a cocycle θ.

There exists a 1 to 1 correspondence between the representation of a cocycle and the

representation of the minimal group associated with a cocycle θ. (See [31].) Then

the minimal group associated with this cocycle is D2n/{e, an}. (Note that the Loi part

of subfactors with index 4 is completely determined by Loi in [22].) Moreover this

minimal cocycle determines the relative flow of weights for N ⊂ M, which plays an

essential role in the classification of type III0 subfactors in [30].
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