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Compressive sensing approaches are beginning to take hold in (scanning) transmission electron 
microscopy (S/TEM) [1,2,3]. Compressive sensing is a mathematical theory about acquiring signals in a 
compressed form (measurements) and the probability of recovering the original signal by solving an 
inverse problem [4]. The inverse problem is underdetermined (more unknowns than measurements), so 
it is not obvious that recovery is possible. Compression is achieved by taking inner products of the 
signal with measurement weight vectors. Both Gaussian random weights and Bernoulli (0,1) random 
weights form a large class of measurement vectors for which recovery is possible. The measurements 
can also be designed through an optimization process. The key insight for electron microscopists is that 
compressive sensing can be used to increase acquisition speed and reduce dose. 
 
Building on work initially developed for optical cameras, this new paradigm will allow electron 
microscopists to solve more problems in the engineering and life sciences. We will be collecting orders 
of magnitude more data than previously possible. The reason that we will have more data is because we 
will have increased temporal/spatial/spectral sampling rates, and we will be able to interrogate larger 
classes of samples that were previously too beam sensitive to survive the experiment. For example 
consider an in-situ experiment that takes 1 minute. With traditional sensing, we might collect 5 images 
per second for a total of 300 images. With compressive sensing, each of those 300 images can be 
expanded into 10 more images, making the collection rate 50 images per second, and the decompressed 
data a total of 3000 images [3]. 
 
But, what are the implications, in terms of data, for this new methodology? Acquisition of compressed 
data will require downstream reconstruction to be useful. The reconstructed data will be much larger 
than traditional data, we will need space to store the reconstructions during analysis, and the 
computational demands for analysis will be higher. Moreover, there will be time costs associated with 
reconstruction. 
 
Deep learning [5] is an approach to address these problems. Deep learning is a hierarchical approach to 
find useful (for a particular task) representations of data. Each layer of the hierarchy is intended to 
represent higher levels of abstraction. For example, a deep model of faces might have sinusoids, edges 
and gradients in the first layer; eyes, noses, and mouths in the second layer, and faces in the third layer. 
There has been significant effort recently in deep learning algorithms for tasks beyond image 
classification such as compressive reconstruction [6] and image segmentation [7]. A drawback of deep 
learning, however, is that training the model requires large datasets and dedicated computational 
resources (to reduce training time to a few days). A second issue is that deep learning is not user-
friendly and the meaning behind the results is usually not interpretable. We have shown it is possible to 
reduce the data set size while maintaining model quality [8] and developed interpretable models for 
image classification [9], but the demands are still significant. 
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The key to addressing these problems is to NOT reconstruct the data. Instead, we should design 
computational sensors that give answers to specific problems. A simple version of this idea is 
compressive classification [10], where the goal is to classify signal type from a small number of 
compressed measurements. Classification is a much simpler problem than reconstruction, so 1) much 
fewer measurements will be necessary, and 2) these measurements will probably not be useful for 
reconstruction. Other simple examples of computational sensing include determining object volume or 
the number of objects present in the field of view [11]. 
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