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ON NON-ELLIPTIC BOUNDARY PROBLEMS
YOSHIO KATO

Introduction

The purpose of this paper is to study the boundary value problems
for the second order elliptic differential equation

(1) AU= — 3] 9a,;0,U) + 2 03,U + cU=F
i, J=1 =1

in a bounded domain £ in R" (n = 3) with the boundary condition
(2) BU=3adU+pU=f
=1

on the boundary I' of 2, where we assume that
1) for every x € I', the inequality

Z a2y >0

holds,
2) let (n(x), - - -, n,(x)) be the exterior unit normal vector to I" at x,
then the subset of I,

r,— {x eI Z: a(R)n(x) = o}

is a C~-manifold of dimension n — 2,

3) at every point x e I';, the n-vector (a,(x), - - -, a,(x)) is not tangent
to [,

Here 0, denotes 9/dx,;, a,, is symmetric on 2, and I'" is assumed to be
infinitely smooth and of dimension n — 1. We further assume that the
coefficients of the equations (1) and (2) are real-valued and infinitely
differentiable on 2 = 2 U I" and I, respectively, and that there exists a
positive constant ¢, such that
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(3) 20 006, = colél

holds for all x € 2 and & € R

This problem was investigated by Maljutov [6] on probability con-
siderations, by Egorov-Kondrat’ev [1] while they are developing some
ideas of Hormander [2], by Soga [7] and others. In the present paper we
shall try to solve the problem (1)-(2) by using the similar argument as
in [5].

If we set

() = 33 a()ni(x)

the boundary condition (2) can be written in the form

oU

(2) BU=a’—n+T’U+‘BU=f

with the suitable tangential vector field y’. Using the conormal vector
field v=(v,, - - -, v,) with

@) = 35 au(@)na),

and setting

(4) W —a@l v (2L =20,
an aV Jj=1 axj

we can rewrite (2') as

@) BU—aﬂ+rU+ BU = f

with & = &’a, and y = &'y, + 7/, where ay(x) is a positive C~-function on
I' and y, is also a tangential vector field. Assumptions 1), 2) and 3) yield
that a(x) vanishes only on I',, that y is transversal to I',, and that the
boundary condition (2”) is elliptic (i.e. satisfies the Lopatinsky condition)
on I' except for I'y, that is, I', is a singular manifold for the boundary
value problem (1)-(2). For the sake of simplicity, we assume that I,
is connected. Following Egorov-Kondrat’ev we can then classify the
singular manifold I",, by denoting I'.(I'.) = {xeI"; a(x) > 0 (a(x) < 0)},
as follows;
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(I) I'_=¢ (.e. @ =0 throughout I") or
I', = ¢ (i.e. « <0 throughout [7),

(II) I', % ¢, I'_ > ¢ and 7 is transversal from I'_ to I', on [,

) ', x¢, I'_ x ¢ and 7y is transversal from [', to I'_ on [',.
It is clear that I’; is a closed manifold in case (II) or (III).

In Chapter 1, we reduce the boundary problem (1)-(2”) to the
pseudo-differential equation (@S 4+ 7y + p)u = f on I' (Proposition 1.2) and
introduce Hilbert spaces in which solutions of the equation are seeked
by making use of the Lax-Milgram theorem. In Chapters 2, 8 and 4, we
consider the boundary conditions, according to cases (I), (I) and (III),
respectively. As in [5], we use the variational apprcach, and apply the
elliptic regularization. A special feature of the proofs is to introduce the
appropriate auxiliary functions % in the respective types (I), (II) and (III)
so that ha is positive on I'\I", and vanishes on [, etc. (see Lemmas 2.1
and 3.1), and to consider the equations Pu = f instead of the equation
(@S + 7+ pu=Ff, where P = (@S + 7+ p incase (), P = (@S + 7 + ph
in case (I) and P = A(@S + y + B) in case (III). Fortunately, we can
choose in respective cases pseudo-differential operators H of order zero
so that (P + H)u = [ are uniquely solvable for all f in some functional
spaces. If we set u = Kf, it can be proved that the equation Pu = f is
altered to the equation (1 — HK)g = f with u = Kg. In order to solve
the latter equation, it is sufficient to show that the operator HK is com-
pact (to apply the Riesz-Schauder theory).

In §§2.1, 3.1 and 4.1, we introduce h, H and treat (P + H)u = f.
The equation Pu = f is considered in §§ 2.2, 3.2 and 4.2. Sections 2.3, 3.3
and 4.3 are devoted to the uniqueness of solutions of Pu = f. Finally, in
§§2.4, 3.4 and 4.4, we return to the original problem (1)-(2) and prove
the uniqueness, the existence and the regularity.

For the more general case where the singular manifold ', consists
of finite number of disjoint manifold of types (I), (II) and (III), we can
also formulate the similar results by virtue of the results obtained in the
respective types and their local character.

Recently, in [8] Winzell investigates the problem (1)-(2) (8 = 0),
allowing I', to be fairly complicated and to have a certain width.

Chapter 1. Preliminaries

1.0. Let 2 be a bounded domain of R" with C~-boundary I of dimen-
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sion n — 1 and let A be the second order elliptic differential operator
described in Introduction. Here we assume that 2 is of the form I" X (0, 1)
near I’ and that A is defined and is elliptic in a larger domain £, with
C~-boundary such that 2 € 2,. Near I" we choose a coordinate system
(«, x,) such that ¥’ eI" and x, is a normal coordinate on x’. Let {0},
be a finite open covering of I and x;, be a C~-coordinate transformation
y = r(x) such that o; is mapped onto an open ball B, in R?' with the
origin as center and o, N I', onto {y, =0} N B, if w; N [’y = ¢, and such
that y is transformed to 3/0y, on w, such that o, N I'y 3 ¢. Let {{;}{-, be
a partition of unity subordinate to the covering {w,};., such that y({;) = 0
in a neighborhood of ', for all j.
Let E, (s: real) be a pseudo-differential operator on R"™' defined by

@y EwG) = @) [ @+ lerrraerds

where
a@) = [ unerdy.
R7n—1
Now H,(I") is the usual Sobolev space with the norm
‘ ~
lul = (% [IECDrdY» =0
luly= | lurda,
where, as well as in the below, #i(y) denotes a function on B, defined by
W(y) = 7 (), veD(w)
and do is the Lebesgue measure on I'.

1.1. Following [2], in a neighborhood of I" we write the differential
operator A in (1) in the form A = >73%_, A;D], where D, = i'9/ox, (i =
+/—=1) and A, is a differential operator of order 2 — j acting along the
parallel surface of I'. Throughout this paper, we suppose the existence
of the Green kernel G (pseudo-differential operator on 2,) of A for the
Dirichlet problem on £2,. We denote by & the surface measure on I
Then according to [2, Sections 2.1 and 2.2], we can prove the following

ProrositioN 1.1. (a) Let U be in H,(R) with real s so that AU =0
in 2. Then the restriction of DiU on I', u, = DiU|, is well defined in
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H,_,_.,(I") for j = 0,1, and U is written in the form
1 1—-7
(1.2) U=i"2 2 GA;...Di(wd).
7=0%k=0

Furthermore, u, and u, satisfy

(1.3) U, = Quu, + Qiu, ,
where Q. (k = 0, 1) are the pseudo-differential operators on I' of order — k
defined by
.4 Q=3 GApn DIOD:  (E=0,1).
Jj=0

() Let u; (j=0,1) be in H,_;_,,(I") (s real). If u, and u, satisfy
(1.3), then the U given by (1.2) is a distribution in H(2) such that AU = 0
in 2, uy, = U|; and u, = D,U|;. Moreover there exists a constant ¢ > 0
such that

¢ Ullso < [ olls-1p + illsese < €l| Ullsya

where |-||,,o represents the norm in the usual Sobolev space H.(9).
(¢c) The Q, defined by (1.4) is actually elliptic and invertible, and the
operator

S, = i@l — Q)

is a pseudo-differential operator on I' of order 1. Moreover there exist two
constants ¢; > 0 and ¢’ such that the inequality

(1.5) Re(Syg, ) = cilidli. — 'l
holds for every ¢ € C=(I"), where

(u, v) = fr uvdo .

Proof. We refer to [2] for the proof of (a) and (b). Let = be a
pseudo-differential operator given by

n(g) = G(gd)lr,  geC=([).

Then we can write

(1.6) Re(ng, ) = Re | G(9)- g dx,

https://doi.org/10.1017/50027763000019784 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019784

6 YOSHIO KATO

noting that ¢d e H_(2,) and G(¢6) € H,(2,). On the other hand, for any
fe C=(2)), we have setting u = Gf

@7 Re[ Gffdx=Re| w-Audszc|uliszcIflta,
21 21

with suitable constants ¢ >0, ¢’ > 0. Let {f,}=., be a sequence in C=(2,)
such that f, converges to ¢d in H_(2,) as n—>oco. Applying (1.7) to f=f,
and letting n to infinity, we obtain

Re [ G@0)Fodx = ¢|901tn0 = ¢ I18]Ean,
with a constant ¢” > 0 independent of ¢. It then follows from (1.6) that

the inequality

Re(zg, ) = | I

holds for every ¢e C=(I"). This shows that = and hence @, =i 'rA,
are elliptic of order — 1 and invertible. Therefore the operator S, =
QY1 — Q,) is a pseudo-differential operator of order 1.

Now it easily follows that the principal symbol of S, is given by

0(So) = i'c,(x/, &)

in a local coordinate system such that x, =0 on I, if we denote by
z.(x’, &) one root with positive imaginary part of the equation in ¢,

A (N + AN, &) + A, &) =0

where A and A are the principal part of A, and A, with respect to &/,
respectively, of order 1 and 2. The inequality (1.5) immediately follows
from the fact that Reo,(S;) > 0.

1.2. Let a,x) and 7, be as given in (4) and set
S = ao(x)—l(so - To) .

Then it easily follows from (1.5) that there exist two constants ¢, > 0 and
M such that the inequality

(1.8) Re(S4, ¢) = c:llglk. — MI$li

holds for every ¢ €c(I"). Moreover it follows that if U is in H,(2) and
satisfies AU = 0 in £, then u = U]|, belongs to H,_,,(I") and aU/dy|, = Su,
and conversely if u is in H,_,(I"), then there exists only one U in H,(Q)
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such that AU= 0 in £, Ul|; = u and 9U/dv|, = Su. Thus we can prove

ProrositioN 1.2. Solving in H(Q) the boundary problem (1)-(2) with
F = 0 is equivalent to finding solutions of the equation

@S+7+pu=f on I”
in Hy_ ().
It can be easily seen from (1.8) that the operator E = Re S + M (Re S
= (S + S*)/2) is formally self-adjoint and positive, where S* is the formally

adjoint of S. Hence there exists the square root 6 of the closure of E
in IXI") and so we have

(1.9) ReS=6¢"—-— M.

The 6 is also regarded as a pseudo-differential operator of order 1/2 and
invertible. The norms |[¢|,. and |6¢|, are equivalent.

1.3. Let p be in C=(I") so that p(x) >0 on I'. By %’ and F* we
denote two Hilbert spaces obtained by the completion of C=(I") with
respect to the norms

(1.10) ull = (v p 0ul} + l|ulp)”
and
(L1 I = sup 101

wewans [|u]

respectively. It should be noted that %#* is isometric to the dual space
of %* and that the multiplication mapping u — ¢u with ¢ € C=(I") is con-
tinuous on #* as well as on F°.

Now let s be a real number. By #¢ and &*¢ we denote two Hilbert
spaces obtained by the completion of C=(I") with respect to the respective

norms
‘ ) 1/2
lell, = (SN Tl + li-1n)
and
, ¢ o 1/2
11 = (S UTPull + 1)
where 7@ (j =1, - - -, £) are pseudo-differential operators on I" of order s
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which are defined as follows. We can write the operator E, defined by
(1.1) in the form E, = T, — F, where T, is properly supported, F, has a
C>-kernel and 7, is the identity, and further assume that for each j = 1,
- -+, £ there exists a compact subset K; of B, such that supp [T,q}] C K;
for every ¢e Cy(R*') whose support is contained in the compact set
supp [£,(»)] of B,. A pseudo-differential operator T¢ on I' of order s is
defined by

Ts(ijﬂ') (":j(x» ’ X € wj
0, X ¢ w;

12) (TOu)(x) = {

for each j =1, ---, 4.
It is easily seen that #* = %¢{ and %* = %, since T{¥u = {,u. We
can further prove

ProprositioN 1.3. For all real s,
Hs—1/2(F) - %Q > HS(F) ) %g ) H3+1/2(P)
is valid with the continuous injections.

Proof. First we note that there exist positive constants ¢, ¢, such
that for all ue C=(I")

crtflulle £ llull £ allwll.,  allullye S el £ cllul,.
Then it easily follows that #¢ D H,,,(I") and #¢ D H(I") with continuous
injections. Now for ue C~(I"), we have
I3
@19 ult < const. (N1 TulR + [ulf-is) < const. lul
i=1
and
lzli-12 < const. S TP ullye + lulf-) < const.|||ul|l;” .

These imply H(") D %t and H,_,,, D F¢, respectively. Q.E.D.
Finally we state two propositions.

ProposiTioN 1.4. Let L be a first order differential operator on I' with
C=-coefficients. Then for every s, there exists a constant C, > 0 such that

”L(P)u”s+1/2 g Cs “Iul”s

holds for every ue C=(I"), where p is the function introduced at the begin-
ning of this section.
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Proof. Let ue C=(I"). Then by (1.13) and Lemma A.2, we have
1)l < ClOL@ul, < C(35 1 TOL el + 10L()ul-1z)
< C( 3 1LE@OTPuls + [l e + |LeulL)

< C(Z NTLul + w1 + 1 Lul)
< C(lull, + |1 L)l .

where C denotes the various positive constants, from which we can con-
clude the proposition. Q.E.D.

ProposiTiON 1.5. Let L be the same as in the preceding proposition.
Then for every s, there exists a constant C, > 0 such that

IIL(@ulls.1. = Cllulls
holds for every uec C=(I').
Proof. It is enough to prove the inequality
T L(e)w) I < const. ||ull;
forj=1,---,4. For any ve C=(I'), we have
(TaLlo), v) = (07 T Lio)u, 00)
= (07 Tpu, L(p)0v) + (107" Ty, Lo)]u, 6v) .

Hence by Lemma A.2

(T2 Lip)u, v)] < comst. ([ull|lv p 60l + | 4]l-sr ]|Vl
< const. ||/l J|v]l ,

which completes the proof.

Chapter 2. The case of type (I)

2.0. In this chapter, we suppose the manifold 7', to be of type (I).
For simplicity, we assume a > 0 throughout I'. This case was treated
also in [4], but the formulation has a little difference.

2.1. The following lemma is nothing but Lemma 4 in [4].

LemmA 2.1. There exists a function h in C>(I") such that h >0on I”
and
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r¥(h) + hp=1 on Iy,

where y* is the adjoint of y defined by the identity
j Tu.ada=j urFvde, u, veC(I).
r r

Proof. First note that there exists C~-function b(x) on I' such that
¥ = — ¢ + b(x). Then, we have only to find A such that — y(h) +
(b + 28)h =2 on I',, which is written by the transformation y = r,(x) as
— 0h/3y, + (b + 28)h =2 in B, when w; N I', % ¢. Let A = h, be a posi-
tive solution of this equation. We then define as A,(x) = k,k,(x)). On
the other hand, on ; such that w; N I’y = ¢, we define h,(x) = 1. The
function h = 3%, ¢;h; on I' is the desired one. Q.E.D.

We are going to consider the equation

h@S+ 71+ pu=f

instead of treating the equation (@S + y + f)u = f. Introducing a bilinear
form

Qlu, v] = (h(@S + 7 + Pu, v),
we have by (1.9), after simple calculation,
Re Q[u, u] = (habu, 6u)

1 b (W) | DS =8 ), )

+ (Gr*(h) + hp)u, u)

for ue C=(I"), where [4, Bl = AB — BA. Since ha > 0 on I'\I',, it follows
from Lemma 2.1 that there exist a constant R > 0 such that

2.2) Rha + £7*(W) + 3 > 0 on I'.

Let H be a pseudo-differential operator on I' defined by

[[ha, 61,61  [ha, S — S*]

H = Rh haM —
o + ho 5 1

and set, for ¢ such that 0 <e< 1,
Q.[u, v] = Q[u, v] + (Hu, v) + &(S + M)u, v).

Then it easily follows from (1.9), (2.1) and (2.2) that there exists two
positive constants ¢,, C independent of ¢ such that
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Re Qu[u, u] = c|lull] + ell6ul
lQ.[u, U]l 2_ C“u”uz“U“:/z ’

for all u,ve H,,(I"). Here and throughout this section, ||u|| and ||f]|/
mean norms (1.10) and (1.11), respectively, with p = ha. The Lax-Milgram
theorem guarantees the existence of u, € H,,(I") for every fe C~(I") such that

Quu, vl = (f,v), veHu).
Substitution v = u, gives us the inequality
2.9) llwl = Gl

with a constant C, > 0 not depending on e. Since u, is a weak solution
of the elliptic equation, we can assert u,e C~(I"), which satisfies the
equation

(2.5) (WMaS+7+p +H+eS+ M, =f onl.

THEOREM 2.1. Let s = L. For every fe " we can find one and only
one ue U™ satisfying the equation

haS+7+H+Hu=Ff onl.

Moreover the inequality

(2.3) {

lleellls < ColllFIls
holds with a constant C, > 0 independent of f.

Proof. First suppose fe C*(I") and substitute u = T u, (see (1.12)
for T¥) in (2.3). Then we have, for j =1, .--,4, by (2.5)

GlITulP + 0T ulo < Re QITVw,, TP ul
=Re({aS+ 7y + 8+ h'H + ¢h™ (S + M) T u, hTu,)
= Re(T9h7'f, hTPu,) + Re ([{- - -}, T"Tu., AT u,)
= Re(TYh7f, h\TPu) + Re (g + h'H + ¢h™'M, TPlu,, RTPu.)
+ReX; + Y, + Z)
S WTERFINNTOwl + Re (X; + Y, + Z) + O(lulls-1)

with
X; = ([aS, TPu, hTPu,),
Y; = ([ch™'S, T¢lu,, hTu,) ,
Z, = Iy, Tlu,, ATPu,) .
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In this section, we denote generally by C various constants independent
of ¢, 0 < e <1, and write, for brevity, as u = u, and T' = T¢ in the below.
Since

X, = (0[S, Tu, 6haTu) + ([a, T1Su, hTu)

it easily follows from Lemmas A.1 and A.2 that

1X)| < Cllwls-sllhatTulo + |V e 0wl + [[]-1s2) -
Accordingly, for every 6 > 0 there exists a constant C; > 0 such that

1X,| < 8llvha 6Tulls 4 Cslluliye-
Similarly, since
Y; = (0'[eh'S, Tu, 6hTu),

we obtain

1Yy < eCllulls-1pll0Tully < @l0Tull + Collulfi-1) -

Thus we have

cll Tullf + ell0Tully < WTFIV N Tull + o1l v/ha 0 Tul}
+ 2el|6Tuli + Cillulf-,. + Re Z;

which implies

WITull < CUITAN™ + lulk-1. + Re Z)).

Consequently,
26) lull = C(IAI + - + 3 ReZ, ).
Now we shall show the existence of a constant C; for any 6 > 0 such
that
@7 I ReZ, < 3ljull + Cillulis-

On o; such that w;, N I'; % ¢, the operator [y, T'] is transformed by «,5to

[ 12 = [ 1)
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since T = T and [0/dy,, E,] = 0. Hence we have

1Z;] = Clr@ulls + Nulo-)llul .

From the fact that y(¢,) = 0 in some neighborhood of I, it follows by
(1.13) that

”T(Ci)u”s _S_ C”ha’u”s é C
(2.8)
Cc

<o

Using the interpolation inequality, we can assert the existence of C;, for
any 6 > 0, such that

¢
(; ” ThauHO + |] u“s-1/2>
¢

Tl + [l e) -

”T(Cj)u“s =9 ; N6haTul, + Cilitlls-e -

On the other hand, on w; such that w, N [, = ¢ we can immediately ob-
tain

1Zy] < Cllr@Culls + ISl lwll -

Since ¢; as well as y({;) vanishes near I',, we can estimate ||7({;))u|, and
|¢;ull, as in (2.8). Thus we can establish (2.7), and hence (2.6) becomes

2.9) Nzl < CAIANE + Naelle-s2) -

[f s > 1/2, it then follows from (2.4) and the interpolation inequality that
for any 6 > 0 there exists a constant C; > 0 such that

leells-1e < Ollluells + GlIFIE,

which together with (2.9) implies the inequality
2.10) el = Clllf1l:

‘or all s > 1/2 with a constant C, > 0 independent of ¢ and f, where we
ut again u = u,.

By (2.10), we can choose a sequence ¢ >¢ > --- — 0 such that u,;
converges in C=(I"). Let u be the limit function. Then we have from
2.5) and (2.10)

2.11) {h(ocS +r+Pp+Hu=f onl

el < ClllfI -
Now let fe #%(s = 1/2) and choose f; in C=(I") so that f; —>f in F"* as
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j— co. We have just proved that, for each f, there exists u,e C~(I")
satisfying (2.11) with z = u; and f = f;. It is not hard to prove that the
sequence u; has a limit u belonging to #** and satisfying (2.11).

To complete the proof, we must show the uniqueness. Let u be a
solution in #?*(s = 1/2) of the equation {A(@S+ y+ p) + Hlu =0 on I
It follows from Proposition 1.3 that ue H,,,(I"). Hence, by (2.3) with ¢ = 0,
we have

0= (MaS + 7 + Pu + Hu, u) = Qu, u] = c||u|.
This implies z = 0.

2.2. If we write the solution u in Theorem 2.1 as u = Kf, then K is
a continuous mapping of #** into #** (s = 1/2) and satisfies

MaS+7r+pH+HEK=1 on Fi.

Proposition 1.3 guarantees that K is also a continuous mapping of H,(I")
(s = 1/2) into itself. Let f be in H(I"). If ge H(I') and satisfies

(2.12) (1—-HK)g=f,
then u = Kg satisfies
2.13) h@S+7r+Pu=f.

Conversely, if ue H(I") and satisfies (2.13), we have A(aS + 7y + fu + Hu
=+ Hu. Therefore u = K(f + Hu). Put g=f-+ Hu. Then h(aS + 7
+ B)Kg = f. So we have (2.12). Thus it is enough to treat the equation
(2.12) in order to solve the equation (2.13). If ge H(I), then Kge %=
Using Proposition 1.4, Lemmas A.1 and A.2, we have HKgec H,,,,(I').
Moreover it easily follows that HK is a continuous mapping of H,(I")
into H,,,,(I'). Accordingly, HK is a compact operator on H(I"). Applying
the Riesz-Schauder theory, we can establish the main theorem of this
section.

TaeorREM 2.2. (i) Let s = 1/2 and fe H(I"). Then the equation (2.13)
admits a solution uc H/(I') if and only if f is orthogonal to a finite-dimen-
sional subspaces N, of H(I'), which has the same dimension as N = {ue
H((I'); @S+ ¢+ Bu=0}. (i) Every solution ue H(I")(s = 1/2) of (2.13)
belongs to H(I') if fe H(I") with t > s.

Proof. For the proof of (i), see pp. 284-5 of [9]. So we shall prove
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only (ii). Let f be in H(I') with ¢t >s. If ue H(I') and satisfies (2.13),
then 2(aS + 7 + f)u + Hu = f + Hu. By Proposition 1.5 (o = ha), we have
Hue #,,,, Therefore u= Kf+ KHuecH(I') if t< s+ 1/2, and ue
H,. ('Y if t > s+ 1/2. If the later takes place, we have only to repeat
the above process. Q.E.D.

Remark 2.1. The dimension of N is independent of s. In fact, by
virtue of Theorem 2.2 (ii), we have N C C=(I").

2.3. We shall study the possibility of dimIV = 0 in the preceding
theorem. For this purpose we first state a lemma which is similar to
Lemma 2 in [4]. Using Lemma 2.1, we can easily prove it.

LEmMA 2.2. We can find a function q(x) e C=(2) satisfying
(1) q(x) >0in Q and q(x) = h(x)a(x) on I,
(ii) there exist two positive constants k and d such that

k dis(x, I") < q(x) in 2, ={xe2;dis(x, ") < d},
(iil) the inequality
109¢ 1 w1 np>
2 au + 2 r ( ) + ﬁ = c3

holds on I' with a constant c; > 0.

Now we consider a bilinear form

BIU, V] = j (z a,0,U-3(qV) + gbiaiU.TV+ cU.EV)dx
+ L h(ru + pu)-vdo ,

with u = U|; and v = V|,. Integrating by part, we obtain
214  B[U, V] = LqAU- Vdx + fr h(a%] +oru+ ﬁu)-vda.
On the other hand, by (3) we have

Re B[U, U] = Re Lq(za“a,U-aTU + 3b3,U.T + cUT)dx

+ L j Sa,9.q(UT)dx + f <_1_y*(h) + h,@)u-ﬁdo
2 Ja r\2
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= S poUlke + [ (e — WIpUPds + L | A-|UPds

+ [ (524 Ly + hp)ubas,
where ¢ is a constant, p(x) = Vq(x), A,g = — 3.7 ,.;0/a,0,9) and

1POUIG0 = 35 [ al0,UFdx

It then follows from Lemma 2.2 and Lemma A.3 that there exist two
constants ¢, > 0 and 2, such that

(2.15) Re B[U, U] z ¢,||pdUlfs,o — 4llpUllk0 + cllull

for all Ue C=(Q2).

Denote by S, the operator S corresponding to the operator A, = A
4+ A. Then we have

TaEOREM 2.3. Let N()={uec H([)(s=1/2); (@S, + 1+ Bu=0}. Then
dim N(2) = 0 for all 2 = A,

Proof. In view of Theorem 2.2 (ii), we can immediately prove that
N, < C=(I'). Let U be a C~-solution of the Dirichlet problem; A, U = 0
in 2 and U= u on I' with ue N(2). From Proposition 1.2, it follows
adUfoy + yU + BU = 0 on I'. This implies U = 0, if we apply (2.14) and
(2.15) with this U. So we have u = 0.

2.4. Finally we return to the original problem (1)-(2). Corresponding
to Theorem 2.2, we can state

THEOREM 2.4. (i) Let s =0 and (F,f) belong to H() X H,, ().
Then the problem

AU=F in 2

(2.16) aU UL BU=F onT

admits a solution Uec H,, (2) if and only if (F,f) is orthogonal to a finite-
dimensional subspace of H(2) X H,,,,(I"), and the space of solutions of
(2.16) with F = f =0 has the finite dimension. (i) If (F,f)e H(Q) X
H, (") (t > s =0), every solution Ue H,, () of (2.15) belongs to H,, ().
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Proof. (1) Let V= V, be the unique solution in H, ,(2) of the
Dirichlet problem; AV=F in £ and V=0 on /. Then v = aV/ov| is
in H,,,,(I") and the inequality

(2.17) [V lss12 £ ClVllsi2,0 = CliF s,

holds for every F e H(2). Applying Theorem 2.2 (i), we can find a solution
ueH,, (") of the equation

@.18) @S+7+Pu=f—a

if and only if A(f — av’) is orthogonal to N, .

Let u be a solution in H,,,,(I") of (2.18). It then follows from Propo-
sitions 1.1 and 1.2 that a solution W of the Dirichlet problem, AW = 0
in £ and W= u on I, satisfies

oW

X ——-
ov

2.19) + W+ BW=f—at
on I'. We can easily see that U= V 4+ W satisfies (2.16). Conversely,
let Uc H,, (2) be a solution of the problem (2.16) and V = V, be the
same function as above. Then it follows that W= U — V satisfies AW
=0in Q and (2.19). Hence u = W|, is in H,,,,(I") and satisfies (2.18).
Thus we showed the problem (2.16) admits a solution in H,,,(?) if and
only if A(f — av’) is orthogonal to N,,,,. By (2.17), the linear mapping
(F,f)— f — av' is a continuous operator of H,(2) X H,,,.(I") into H,,,(]").
Hence there exists a finite number of linear functionals @, on H(2) X
H,,, (") such that (2.16) admits a solution in H,,(2) if and only if
O(F,f) =0 for all i. Now if U satisfies (2.16) with F' = 0 and f = 0, then
we have (@S + ¢ + fpu = 0 (uw = U|;). These complete the proof of (i).
(i) Let (F,f)e H(?) X H,,,,XI") and U be a solution in H,,,(2) of
(2.16) Set W= U— V. Here V=V, and note that Ve H,, (2). Then
w = W], satisfies (2.18), where f — av’ belongs to H,,,,(I"). According to
Theorem 2.2 (ii), we have we H,,,(I"), which proves We H,,,(2). Hence
UeH, (9. Q.E.D.
As a corollary of Theorems 2.3 and 2.4, we can prove

TuEOREM 2.5. Let 2, be the number introduced in (2.15) and 2 be any
real number such that A= 2. Then for every (F,f)e H(2) X H,,,I")
(s = 0), we can find one and only one Ue H,, (2) satisfying
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A+DU=F inQ

(2.20) aaa—U + U4 BU=f on .
v

Moreover the inequality

” U“u—l,a é Cx(“F“s,D + “f”u-llz)
holds with a suitable constant C, > 0.

Proof. Let 2= 2. Theorem 2.2 with S = S, and Theorem 2.3 guar-
antee that for every (F,f)e H(2) X H,,,,(I") (s = 0), the equation (2.20)
has one and only one solution U in H,,,(2). Now we set W= U — V.
Then it follows that w = W/|, satisfies (2.18) and is estimated by

“w”s+1/2 -—<— COHSt.“f - “v/“sn/z S const. (“F“s,a + ”f”sﬂ/Z) .

Therefore by (2.17), we have
“U”s+1,9 g “V“s+1,0 + ”W”8+1,9 é ConSt'(“F“s,{) + ”W”s+1/2) ’

which completes the proof.

Chapter 3. The case of type (II)

3.0. This chapter is devoted to the manifold I', of type (II). Suppose
that I', is a closed manifold which devides I" into two open sets I'_, I,
sothat a<<O0Oon I'_,«a>0o0on I, and « =0 on I', We then consider
the boundary condition (2”) with y transversal from I'_ to I', on I.

3.1. After Lemma 2.1, we first introduce an auxiliary function h.
Note that this A is different from A in Lemma 2.1.

LemMA 3.1. There exists a function h in C~(I") such that

(i) A<O0onl_,h>0onIl, and h=0on I,

(ii) 7y(h) =1 near I,

(ili) on w; such that w; N I'y % ¢, h(x) is transformed to y, by «;, i.e.
A7 (y)) = ¥, on the ball B; in R with the origin as center.

Proof. Setting y = «,(x), we define
']
h(x) = jZ=:1 L(0)h(x),

where h/(x) = y, on o, such that o; N I’y % ¢, = 1 on w, such that o, C
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I', and = — 1 on w; such that o, C I'"_. Then (i) and (iii) are obvious.
Since 7({;) = 0 near I', and 7(h,) = 1 on o, for all j such that o, N I', =
¢, we have y(h) = >35_, {;y(h;) = 1 near I',, which prove (ii). Q.E.D.

Now we consider the equation
@S+ 7+ phu=f

instead of (S + 7y + Ppu =f. We can then obtain similar results as in
Theorems 2.1, 2.2 and 2.3. To do so, we introduce a bilinear form

Qlu, vl = ((haS + hy + By, v),
where f, is defined by
(@S + 7+ P)h = haS + hy + B,
i.e., B = y(h) + A8 + a[S, h]. By the same way as in (2.1), we have

Re Q[u, u] = (hadu, 6u)

" << [[ha,zﬂ], 0] | [he, 84— S _ haM)u, u)

(o 255 )es).

LEMMA 3.2. There exist two positive constants R and c¢ such that

(Rha + 7(h) + $hb + hP)u, u) — (S, hlu, w)| = cllulf, we C=(I),

(3.1)

where b is a C=-function on I' defined by y* = —y + b.

Proof. Since ha >0 in I'[,, y(h) =1 on I', and A =0 on [,, we
can find two positive constants R, and ¢ such that

Riho + 4y(h) + }hb + A =2¢c on I'.

Accordingly, we have

(R + Rohec + 37(h) + $hb + h)u, )] = 2¢ljul} + R, | halutdo

= 2¢fjulf + R min (o) |uff,r- »

where V is a neighborhood of I'; and R, is any positive constant. Taking
Vas V,={xel;|a(x)] < é} for § > 0, we can establish, for all ue C=(I),

(3.2) ,Ir «fS, hlu-udo| < KoHu”o(H“u“o,w + H“u”o,r—n)

https://doi.org/10.1017/5S0027763000019784 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019784

20 YOSHIO KATO

< Killull(@llull + ml?xlal‘”u”o,r—-m)

K,
< 2K0|lulf 0
= ollull + 5

max|al-[ulf,rv,

where K, is positive constant such that
IS, hlul, < Kollull, uweC=().
Choosing § = ¢/2K, and

— K,max, |a|
! 46 min; _,, (ah) ’

we can conclude the lemma, with R = R, + R.. Q.E.D.
Let H be a pseudo-differential operator on I" defined by

[[Aa, 61,01  [ha, S — S*]
2 4

H = Rha + haM —

and set, for ¢ such that 0 <e< 1,
Q.[u, v] = Qlu, v] + (Hu, v) + (S + M)u, v).
It then follows from (3.1) that

Re Q.[u, u] = (habu, Ou) + ((%r*(h) + ‘B"—;‘BL* + Rhaf)u, u) + & 6u),

> (habu, 6u) + ((Rha + %r(h) + %hb + hﬁ)u, u)
— (@IS, hlu, w)| + el|ouli .

Therefore, by Lemma 3.2 we have

3.3 ReQ.u, ul = (hadu, 6u) + cllull; + el|0ul; = cl|oll* + elloul}

with a suitable constant ¢, > 0. Using the same argument as in §2, we
can obtain u, € C~(I") for every fe C~(I") such that ||u.|| < Cl|f|ll and

3.4 {@S+7+ph+H+e(S+ M}u,=f onl.

THEOREM 3.1. Let s = 1/2. For every fe #" we can find one and only
one uc U satisfying the equation

{@S+7+Oh+Hu=f onl.

Moreover the inequality
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llulls < Gl Il
holds with a constant C, > 0 independent of f.
Proof. Suppose fe C*(I") and substitute u = TPu,(s = 1/2) in (3.3),

which we write, for simplicity, as T« in the below. If we go through the
same procedure as in the proof of Theorem 2.1, it follows from (3.4) that
for each j=1,.--,¢
G|l TulP + el|0Tull; < Re (Tf, Tw) + Re ([f, + H + M, Tlu, Tu)
+ Re ([haS + hy + &S, Tu, Tu)
S WTAINN Tull + Re(X; + Y, + Z) + Cllulls-sp
with
X, = ([haS, Tu, Tu)
Yj = ([GS, T]u, Tu) ’
Z; = ([, Tlu, Tuw)

and that for every 6 > 0 there exists a constant C; > 0 such that
| X,| < 0lvha0Tul; + Clluli-i»

(3.5) 1Y,| < e@)0Tull; + Cilluli-1 ,
[(Aly, Tu, Tw)| < ollull} + Cllwlf-1se

from which we can easily deduce
1
(3.6) el < COIFNE + ulf-iz + Re jZ:}l([h, Tlru, Tw)) .

Here and in the following, the letters C, C,, C,- - - stand for positive con-
stants.

Now we shall estimate the last term of (3.6). On o, such that o, N
I’y % ¢, the operator [k, T"]y is transformed by &; to

mimi=M%m§+mRm}

ayl Y1 Y1
3.7 = Iy E1-2 2, — [y, B1 + [y, F21-2
0y, oy v

= s(i>2EH§j + p.d.0. of order s — 1.

Y1

Since E, = (1 — 4,)E,_(4,) = > 7, (3/dy,)"), we have
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F)
i

2o ~ —_——
= — s [(2)T.-La-4, T Faldildy + OQullul.-)
Y1

=%

(. Thyw, Tw) = s [, (L) Buod- O = )EZal ) dy + OQullul-)

az
0y,09y;

7, 2,a| 1 dy + O(lul,ul.-)

where J; is the Jacobian of the mapping &, and do = [J; |dy on o,. Con-
sequently

Re ([h, Tlyu, Tuw) < Cllull | ul,-, -
Now for j such that w; N I'y = ¢, we can immediately obtain

[(th, Tyu, Tw)| < C((Csulls + Nl wll -

Thus we can obtain the inequality similar to (2.7) by the same argument
as in (2.8). Combining this inequality with (3.6), we obtain

el < CAUFNS + Nlells-1) ,

where we wrote again u = u,.
To complete the proof, we have only to proceed likewise in Theorem
2.1

3.2. Let K be a continuous mapping of F"** into #%**(s = 1/2) such
that

{(@S+ 71+ Ph+HKf=f, feFr.

This K is well defined by Theorem 3.1. By the same way as in Theorem
2.2, we can apply the Riesz-Schauder theory to the equation

1—-—HKu=f
and can deduce
TueoreM 3.2. (i) Let s = 1/2 and fe H(I'). Then the equation
(3.8) @S+ 7r+phu=f onl

admits a solution ue H(I') if and only if f is orthogonal to a finite-dimen-
sional subspace N, of H,I'), which has the same dimension as N =
{ue H(I); (@S + 7y + phu = 0}. (ii) Every solution uec H(I') (s = 1/2) of
(8.8) belongs to H(I') if fe H(I') with t > s.
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Remark 3.1. The null space N is independent of s and is contained
in C*(I').

3.3. We shall investigate the possibility of dim NV = 0 in Theorem 3.2.
For this purpose, we introduce auxiliary functions gq,, q; in 2, associated
with the function 4 defined in Lemma 3.1. Corresponding to Lemma 2.2,
we can state

LeMMA 3.3. Let V be a neighborhood of I'y and K, be a positive
constant. Then we can find two functions q,(x) and q,(x) in C=(2), satisfying
for j =0, 1,

(i) gi{x)>0in 2 and q,x) = L h(x)a(x) on T,

(i1) there exist two positive constants k and d such that

kdis (x, I') < q(x) in 2, ={xe0;dis (x,I") < d}

(iii), there exists a constant c, > 0 such that the inequality

;aq°-|-—(h)+ b + g > ¢,

holds on I.
(iii); dq,/ov = 0 on I' and for every ue C>(I")

[ 5 22 updo = Kl
V
For the proof, we have only to note

1)+ $hb+hg =~ on T,

which follows from Lemma 3.1.
Setting q(x) = q,(x) 4 ¢.(x), we consider bilinear form

BIU, V] = j (;‘ 0.9,U-34qV) + z b0,U-qV + cU. qv)d
+ [ G + hpu + oIS, Mo do

with u = Ul; and v = V|,. Integrating by part, we have

(39 BIU, VI = qAU.Vdx + f (ha_ + alS, Blu + 7(hu) + hﬁu)vdo

On the other hand, it follows from (8), Lemma A.3, Lemma 3.3 and (3.2)
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that there exist constants ¢, > 0 and 2, such that

Re B[U, U] _—_Rej (z a.0,U-3,U + zba U.U+ cUU)d

i,7=1

Z a,0,q-0,(U0)dx

1]‘

+ Re j ) + hpu + oIS, Muyads = 2| paUlk.,

2 1 2
10 + [ €~ wipUrdzx + 5 | Ag-iUrdz

+ [ (2% + L) + 1 + hp)iurda

[ L% upds — |[ als, Hu-ndo
r
= 04“an”0,9 — 4|pUlke + clllf
1 aql 2 2 KO
+ —lufde — 2Kd||ul; — max lee] -2l r-vse
r2 oy 40

Taking, in Lemma 3.3, V=V, with § = ¢,/4K, and K, = K,max; |«|/43,
we obtain, for all Ue C=(2),

(3.11) Re B[U, U] = ¢,|pdUl}e — 2 |lpUlRq + %nuuz.
TuEoREM 3.3. Let N() = {ue H,(I') (s = 1/2); @S, + 7 + p)hu = 0}.
Then dimN(2) = 0 for all 2= 4.

Proof. Let uc N(2). By the same argument as in Theorem 2.3, we
can first establish uwe C=(I"). The solution U of the Dirichlet problem,
AU=0in 2 and U= u on I, is in C~(2) and satisfies hadUjdv + y(hu)
+ hfu + a[S,, hlu = 0, because haS;u + y(hu) + hfu + a[S, hlu =0 on I'.
Therefore, by (3.9) we have

BIU, V] + quUde =0

for all Ve C~(2). Applying (3.11) to this U, we have u = 0. Q.E.D.

3.4. We return again to the problem (1)-(2). We shall say a function
U contained in H,, () to vanish on I, if there exists u, ¢ H,,,,(I") such
that U = hu, on I. In that case we write briefly U =0 on I,

TeHEOREM 34. (i) Let s=0 and (F,f) belong to H(Q)XH,, (')
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Then the problem

AU=F inQ
(3.12) (x%g 4 U+BU=Ff onT
v
U=0 on I',

admits a solution Ue H,,(2) if and only if (F,f) is orthogonal to « finite
dimensional subspace of H(2) X H,,.,(I"), and the space of solutions of
(8.12) with F=f=0 has the finite dimension. (i) If (F,f)e H(2) X
H,..,(I") (t > s = 0), every solution Ue H,,(2) of (3.12) belongs to H,,(£).

The proof is established by similar argument as in the proof of
Theorem 2.4.

Now we can state a uniqueness theorem as a corollary of Theorems
3.3 and 3.4.

THEOREM 3.5. Let A, be the number appearing in (3.11) and 1 be any
number such that 2 = 2,. Then for every (F,f)e H(2) X H,,,,(I") (s = 0),
we can find one and only one Ue H,, (2) satisfying

A+DU=F in Q
o—— + U+ pU=Ff on I’

Moreover the inequality

10510 = Co(lF 5,0 + flls 1)
holds with a suitable constant C, > 0.

Chapter 4. The case of type (III)

4.0. In this final chapter, we consider the manifold ', of type (III).
Suppose that I, is a closed manifold which devides I” into two open sets
I', ', sothat «<Oon I'., «a >0o0n I', and « = 0 on [, and that the
tangential vector field — y is transversal from /', to I'_ on [I',. So that
we can assume that «, y and $ are the same things as in §3. Then we
must treat the boundary condition

oc~%g—rU+ﬁU:f on [,
v
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that is, solve the equation

@S—r+pu=f on I".
To do so we consider the equation
@1 h@S — 7+ pu=f

instead of it, with the same function A as the one defined in Lemma 3.1,
and shall give a solution u in Hy(I") which is smooth in I'\I",.

4.1. We first study the equation (4.1) and set
Qlu, v] = (h(a@S — 7 + Pu, v).

a simple calculation gives

(42  ReQlu, ul = (hatu, 0w + (L1 b Ve 8= 571 _ papg)u, u)

+ ((é_r(h) - %hb + hﬁ)u, u) .

Since y(h) = 1 near I, (see Lemma 3.1), there exists a constant R >0
such that

(4.3) Rha + %r(h) + hp — %bh >0 onl.

Let H be a pseudo-differential operator on I defined by

[[ha, 61,6] _ [ha, S — S%]
2 4

H = Rha + haM —

and set, for ¢ such that 0 <e < 1,
Q.[u, v] = Q[u, v] + (Hu, v) + (S + M)u, v).

It then follows from (4.2) and (4.3) that there exists a constant ¢, > 0
such that

449 Re Q.[u, u] = c|lull’ + el[fuls.

Accordingly, for every fe C=(I") we can find u, e C=(I") satisfying
{heS—7+ B+ H+eS+ Ml =f onl

and

(4.5) i < Gl Il
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with a constant C, > 0 not depending on e.

We now introduce sequences %, and & ,, (m =0,1,2, ---) of sub-
spaces of ™ and F", respectively; %, and £ ,,, are the Hilbert spaces
obtained by the completion of C~(I") with respect to the norms

(W = (35 IPewlla)

and
, m k /2 1/2
(Fn = (NI
respectively. It is easily seen that
U =Dy D ooy Fr=FDF D -
with continuous injections. Then we can state

TuHEOREM 4.1. Let m be a non-nagative integer. For every fe % ..,
we can find one and only one ue %, satisfying the equation

{haS—y+ B+ Hlu=f onl.
and the inequality
(Wnp < CoplHup
with a constant C,, > 0 independent of f. Moreover the u is unique in

H(I).

Proof. Suppose first fe C=(I") and substitute u = TP(h™u,) (s = m/2)
in (4.4). Writting, for simplicity, T as T and u, as u, we have, for
i=1-4

el Th™ulf + |6Th™uli < Re Q[Th™u, Th™u]
=Re({haS — 7+ p) + H+ «(S + M}Th"u, Th"u)
= Re(Th™{ }u, Th™u) + Re([{ }, Th™]u, Th™u)
= Re (Th*f, Th™u) + Re([hB + H, Th™]u, Th™w)
+ Re([haS — hy + &S, Th™lu, Th"u) =1+ II + II.
First we shall estimate the second term II of the right hand side which
is written as Re A,. Rewritting as

[hg + H, Th™] = [hf + H, TIh" + TIH, h]
= [hg + H, TIh™ + T'S, H,_.h*,
k=0
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we have
(4.6) Re A; = Re (0[hB + H, Th™]u, 67'Th"u) < C{u)i-1,

where H,_, is a pseudo-differential operator of order k — m and, as well
as in the following, C, C,, C,, - - - denote positive constants not depending
on e.

Now we shall estimate the third term III. To do so we represent this
term as the sum of Re X,, Re Y, and Re Z,, where

X, = ([haS, Th™lu, Th™w)
Y, = ([S, Th™Tu, Th™w),
Z, = — (Thy, Th™lu, Th™u).

Since
X, = (ThalS, h™]u, Th™u) + ([haS, T1h™u, Th™u)

and the second term has the same form as X, in §3, we have only
calculate the first. Noting that

m—1
[S’ hm] = Z Sl+k—7n.hk )
%=0
with pseudo-differential operators S,,;_, of order 1 + 2 — m, we obtain

Re (ThalS, h™lu, Th™w)
< Re'S {(TS...nh*u, haTh™u) + (O[T, helS., . h*u, 6~ Th"w)}
k=0

—Re'S (0TS, ., nh*u, habTh™w) + O(w):-.)
k=0
m~1

< O Ihulinl hadTh uly + (u)1n).

This and (3.5) show that for every § there exists a constant C; > 0 such
that

4.7 Re X, < 8||VhadTh™ul} + C(u)?i_,z-
By the same argument as in the above, we can obtain, for every ¢ > 0,
(4.8) Re Y; < e(0[6Th™uls + Ci{u)i-ir)

with a constant C; > 0.
Finally we consider Z, which is written as
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Z;, = — ([hy, T1h™u, Th™u) — (Thly, h™]u, Th™u)
= — ([h, Tlyh™u, Th™u) — (hly, T1h"u, Th™u)
— m(Th™u, Th™u) — m(T(y(h) — 1)h™u, Th™u) .

Consequently

ReZ, < — Re ([h, Tlrh™u, Th™u) — m| Th™ul}
+ |(hly, T1h™u, Th™u) + C||(y(h) — Dh™u|, [|A"ul .

It then follows from (3.5) and the fact that y(h) = 1 near I', that for every
0 > 0 there exists a constant C; > 0 such that

4.9 ReZ, < — Re([h, Tlyh™u, Th™u) — m|| Th™ulf;
+ o|[h"ullls + GllA™wlfi -y -

By (3.7) we have, for j such that o, N I, =% ¢,
— Re ([n, TOyh™u, T h™u)

= —s L} ( —a% )2Es_z(€,y;"a).(1 —y Y R (R BAL,
+ Ol h™ul, | A ull,-,)

= Y P amiN AT (P m)

=s IBI <5y—1> E, _,(C,yra)-4,E,_(C,;y"0)|J;| dy

+ O( h™ul, | ],
— i FoamiT)|2 _ = Y P oamiy
= s [T Cororigldy — o 33 [ (1) T.aCora)
A, Tyl dy + O(hmull | A" ull,-0)

~ . n n 2 ~ o 2
= s (14,7 Coraidldy — s 3333 [| - 2T Cova)| 19,1y
k=251 1 9y.0y

+ O(lh™ull|| A™ul;-,) -

Since
| TRl = [ 4,8, Loyrapiddy + O k"ul,[hu].-)
we have by (4.9)

ReZ, < (s — m) [ 4,7, Gyt ldy + Cllhmul.hmull.
+ ollBmuly + IR ulE s

Accordingly, for any 6 > 0 there exists another constant C, > 0 such that
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(4.10) Re Z; < ol|A™ull + Gl R ulfs-1z

by taking account of s — m = — m/2. This remain valid also for j such
that w; N Iy = ¢. Thus it follows from (4.6), (4.7), (4.8) and (4.10) that

(uds < CLMY + (i1

is valid for all s=m/2 (n=10,1,2, ---). By (4.5) and induction on m,
we obtain

(u)s < CLF)5s
for all s=m/2 (m=10,1,2, --.), with a constant C, >0 not depending

on e.

Let m be fixed. Then it follows from the theorem of Banach-Sacks
that there exists a decreasing sequence ¢, ¢, - - - converging to zero such
that

v, = U, + - + u,
n

converges to some u in %, (s = m/2). Accordingly the u satisfies
{{h(aS~—r—|-,B)+H}u=f on I’
() = CulF):.

Now let fe 4, and choose f;, in C=(I') so that f;—f in F, as j— oo.

For each f,, we can find u, in %, satisfying (4.11) with f = f,. As is easily

seen, u, converges in %, as j — co and the limit u satisfies (4.11).
Finally we shall prove the uniqueness of u in Hy(I'). To do so, we

consider the dual problem

(4.12) {@S—7+ Bp*h+ Hv=g.

Let g be in C~(I"). Then, by (4.4), we can find v, e C>(I") such that

{@S—7+ph+H+eS*+Mp,=g onl

and ||v.]] £ Gllglll with a constant C, independent of e. Substitute u =
Tv, (s real = 1/2) in (4.4). Then following the same argument as in the
proof of Theorem 3.1, we can derive the inequality

(4.11)

vl = Cliglis -

Thus we can prove that for every ge %"= there exists one and only one
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ve " satisfying (4.12). Furthermore the result of Theorem 3.2 remains
valid for the equation (@S — 7 -+ p)*hv = g.
Now let v be in Hy(I") and satisfy {h(aS —y + B) + Hlu =0 on I
This means that
(u, {(@S — v+ p)*h + Hlv) =0

for all ve C>(I"). Hence we have (u, g) = 0 for all ge C~(I"). Thus the
proof of Theorem 4.1 is completed.

4.2, Let m be a non-negative integer. By (") (s = m/2) we denote
the Hilbert space obtained by the completion of C=(I") with respect to
the norm

Wy, = (Z 1hulks) -

It easily follows from Proposition 1.3 that for all s = m/2
(4.13) F,DH#() DU,

is valid and the injections are continuous. Using Theorem 4.1, we can
define a continuous mapping K of 4, into %, such that

{h@S—7r+p +HK=1.

Hence (4.13) guarantees that K is also a continuous mapping of # (1)
into itself. Thus we have only to consider the equation

1-HK)g=f
in order to solve the original equation
(4.149) haS—r+Pu=f.

TaeoreM 4.2. (1) Let m be a non-negative integer and f be in # (")
(s = m/2). Then the equation (4.14) admits a solution uec A (') if and only
if f is orthogonal to a finite-dimensional subspace N, of H# (") which has
the same dimension as N = {ue #(["); MaS — y + pu = 0}. (ii) Every
solution u in # (") (s = m/2) of (4.14) belongs to (") if fe # (") (t =
£/2) with integer ¢ > m.

Proof. In order to show (i), it is sufficient to prove the compactness
of the operator HK on #(I"), where s = m/2. If ge #(I"), then Kge %,,
that is, h*Kge %% for k=0, 1, ---, m. Hence we have
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WHKg — Hh*Kg + [*, H|Kg — Hh*Kg — 5" H,_h'Kg
=0

where H,_, is a pseudo-differential operator of order i — k. Proposition
1.4 implies hW*HKge Hy (") for k=10, 1, -- -, m, from which it follows
that HK is a compact operator on ().

@) If wisin #(I") (s = m/2) and satisfy (4.14), then H(aS — 7y + Bu
+ Hu = f + Hu. By Proposition 1.5, we have Hue &,,,,, since h'ue
H.,I) for k=0,1, ---, m and

WHu = Hh'u — S H,_ b,
i=0

Therefore u = Kf + KHue A (INif £ <m+ 1. If4>m+ 1, uef,, ().
After repeating this argument, we obtain ue #,,(I). Q.E.D.

Remark 4.1. The null space N is independent of s and is contained
in Np_y # np("), which easily follows from Theorem 4.2 (ii).

4.3. We shall again study the possibility of dim N = 0 in Theorem
4.2, To do so we first introduce a C>-function g(x) in £ in like manner
as in Lemmas 2.2 and 3.2.

LeEmmA 4.2. We can find a function g(x) in C=(2) satisfying (i) and
(1) of Lemma 2.2, and
(iii) the inequality

1 ag

2 oy +

1

1
—y(h) — =hb + BB > ¢
5 1) — 5-hb+ g >c

holds on I' with a constant c, > 0, where h is the function introduced in
Lemma 3.1.

Now we consider a bilinear form

BIU, V] = L (z; a,9,U-34qV) + z b5.U-qV + cU-qV)dx

+ [ (= W@ + hpwyvda,

v and v being the restrictions of U and V on I, respectively. Similar
calculation as in (2.14) and (2.15) leads to

415) B[U, V] = L gAU-V dx + f . (hoz%? — hy(u) + hfwodo
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and
(4.16) Re B[U, V] = ¢,|paUl} o — 4lpUlko + clluli

for all U and V in C=(2), where c, is a positive constant, p = +/ ¢ and
A, 1s a real number.

TarOREM 4.3. Let N(A) = {uc o, (") (m integer = 0); MaS, — 7 + Pu
= 0}. Then dim N(2) = 0 for all 2= 4,

Proof. First we prove that if v is in H, (") (s = 1/2) and satisfies
(@S, — 2+ p)*hv = 0 with 1> 4, then v = 0. It is obvious that ve C~(I")
(see the final part of Proof of Theorem 4.1). Let V be in C~(2), and
satisfy A,V=01in £ and V=v on I'. It then follows from (4.15) that
for every Ue C~(2) such that A,U =10 in

(&.17) BIU, V] + 2 j _qU-Vdx = (haS, — 7 + P, v)

= (u, (@S, — 7y + p)y*hv) =0,

where u = Ul|;. Taking V as U in (4.17) and applying (4.16) for U =V,
we have v = 0. Accordingly, for every ge C~(I"), we can find ve C=(I")
so that (@S, — 7y + p)*hv = g (cf. Theorem 38.2). Now let ue N21). We
then have

0 = (u, (@S, — r + p)*hv) = (v, 8) .
Hence u = 0.
4.4. Let y(x) be a C~-function in £, such that 7(x) = A(x)* on I" and
7(x) >0 in Q. For every non-negative integer m and real number p, we

denote by #, ,(2) the Hilbert space obtained by the completion of C*(2)
with respect to the norm

Ul = (517U Rna) -

Then it is easily seen that if Ue o#,, (2), then 8,Ue o#,, ,.,(Q) for j =1,
-+, n. Moreover we can prove that if g > 1/2, then the restriction on
I of Ue #, (2Q) is in #,("), by using the following

PrOPOSITION 4.1. Let k be an integer = 1. Then there exists a constant
C. > 0 such that the inequality

(4.18) 1Rwlle-rz = Celllwlli-s + 1A*ulle)

https://doi.org/10.1017/50027763000019784 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019784

34 YOSHIO KATO

holds for every ue C=(I').

Proof. It is sufficient to prove (4.18) when u has its support in o,
such that ;N fo % ¢. Then, by the transformation y = &,(x), the inequality
(4.18) is altered to

4.19) Hy1¢“k-1/2,Rn—1 < Ck(”¢“k-l,Rﬂ—l -+ “yf¢”rc,m—1) s
where ¢(y) = u(k;'(y)). Integrating by part, we have

2 — 2 k-l/z_aiiﬂg
(B - j(1+ jgpy-n-26. 2% de

o ~ - oye-120°P ) 7
= — [{er - nea +1en "o A ’ag}f"df

< @k =D [ @+ g L |as

2\k-1/2] 1 a2q§
+ a1 25| ds

Accordingly, by the Schwarz inequality,
ly:Blfi-re < (2R — DIGlle-illyiPlle-1 + N Dll-:llyidlle »

where we omit the suffix R*~'. This immediately implies (4.19), and hence
(4.18) is proved.
Now we can state

THEOREM 4.4. (1) Let m be a non-negative integer and (F,[) belong
to A, ()X H (). Then the problem

AU=F in 2
(4.20) h(oz%g — U+ ﬂU) — kW onT
v
admits a solution U in #,,,(2) if and only if (F,f) is orthogonal to a
finite-dimensional subspace of # ., ()X # (") and the space of solutions

in #n1:(2) of (4.20) with F = f = 0 has the finite dimension. (i) If (F,f)
belongs to o, ()X H (") (¢ integer > m), then Ue H#,,,(Q).

Proof (cf. Proof of Theorem 2.4). (i) Let (F,f) be in o2, (2) X ().
By V we mean a solution in H,(2) of the Dirichlet problem; AV = F in
£ and V=0 an I'. Since we have

AW(*V) = 9*F + [A, "]V = 9*F + Py*~'V + Py**V
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for k=1 (P,= 0 if k= 1), with some differential operators P, (i = 0, 1)
of order i, it then follows from (2.17) that

17 Vs = C(”ﬂkF“k + 17" Vicise + 19572 Vile-2s0)

Accordingly we have
(4.21) Vim0 = Cll Flino,0 -

This implies Ve o, (2). Hence dV/dve £, (2) and so Vv = dV/oy|, is in
H (). As a matter of fact, we can obtain the inequality

n £ CZ I1A*vll,, veC=(I),

applying (4.18) with u = A*-%*v. From this the inequality

(4.22) VDn < Cl|Vlins,e

is easily derived. Accordingly, Theorem 4.2 (i) guarantees that the equation
(4.23) MaS — 1 + Pw = h(f — av’)

admits a solution w in #,(I") if and only if A(f — av’) is orthogonal to
N..

Let w be a solution in 4#,(I") of (4.23). It then follows from Propo-
sitions 1.1 and 1.2 that the distribution on £2,,

(4.24) IZII Z—; GAJ+k+1DZn(wk5) (W, = w, w, = iS,w)
k=0

j=0

belongs to #,,,,(2), and satisfies AW =10 in 2, W= w on I" and

(4.25) h(«ﬁﬂi W pw) = I(f — av))

on I'. In fact, we have

1

2{ GA,, 0 Din*(wd) + [7*, GAy,,..Dil (wd)}

W =i

»-n«.
s, ©

-1

1
Z=
1
Z GAJ+£+1 Di(h*w,0) + Z P Y (w,&)}

J=0£=0

where P_; =4+ 2,---,¢ + k + 1) are pseudo-differential operators on
0, of order — j. Following [2, Section 2.1], we can obtain

17* Wl si,0 < Ci Z (1 A*w,ll; + | A*will;-1)
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with a suitable constant C,. Accordingly
(4‘26) ”W“m,x/z,a é C<w>m ’

which immediately implies We 57, (). Thus it follows that U= V +
W is in o, ,,(2) and satisfies (4.20). Conversely, let Ue #,, ,,(2) be a
solution of (4.20). Then W= U — V satisfies AW =0 in 2 and (4.25),
and hence w = W|, satisfies (4.23). Since We s, ,,(2)C H,,(2), we have,
by Proposition 11 (a), we H(I') = s (I"). Therefore Theorem 4.2 (ii)
guarantees we i, ("), since right hand side of (4.23) is contained in
H (). Thus we could show that the problem (4.20) admits a solution in
Hm1(Q) if and only if A(f — av’) is orthogonal to N,. Now if U is in
Hm1(82) and satisfies (4.20) with F = f = 0, as we have seen above, u =
U|; belongs to #,(I") and satisfies A(wS — y + B)u = 0. These complete
the proof of (i).

(i) Let (F,f)e #,(2) X #') and U be a solution in #, ,,(2) of
(4.20). Set W= U — V. Note that Ve s, (2). Then w = W]|, satisfies
(4.23) whose right hand side belongs to s#,(I"). Therefore in virtue of
Theorem 4.2 (ii), we have we #(I"), which together with (4.26) proves
Ue A 1(2). Q.E.D.

As a corollary of Theorems 4.3 and 4.4, we can state

TuEOREM 4.5. Let A, be the number introduced in (4.16) and A be any
real number such that 2= 2. Then for every (F,f)e #, (2) X #,.(") (m
integer = 0), we can find one and only one Ue i#, ,,(2) satisfying

A+DU=F in
h(aaa—U — U+ ,9U)U=hf onT.
v

Moreover the inequality

(4'27) “U“m,llz,a é Cm(“F“m,O,{) + <f>m) .
holds with a suitable constant C, > 0.

Proof. The first half of the theorem is obvious. We only prove (4.27).
Let V and v be the same as in the proof of the preceding theorem and
w be a solution in 2#,(I") of (4.23). Then we can write as U= V + W,
where W is defined by (4.24). Consequently, we have by (4.21), (4.22) and
(4.26)
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10l 12,0 < 1V llmz,0 + Wl ,i2,0 S 1V kim0 + CKWD
< CIVllnso + FOw)= CllFllno,0 + {FDu) -

Appendix

LemmA A.1l (see Lemma 1 in [5]). Let f(x) be in C*(R™) and P be a
pseudo-differential operator on R™ of order t. Then there exist pseudo-

differential operators P; (j=1,---,m) and @ on R™ of order t — 1 and
t — 2, respectively, such that

,P=3 % p q.

=1 0x;

LEMMmA A.2 (see Lemma A.1 in [3]). Let f(x) be in C3(R™) such that
f(x) =0 in R™. Then

T @< 2k f), xR (G=1,-m),
ox;

where

K, = sup

xE€RM

of
0x% (x)l.

LEmmA A.3 (see Lemma 3 in [4]). Let 2 be a bounded domain in R™
with C= boundary of dimension m — 1 and let q(x) be in C=(2) such that
q(x) >0 in 2 and C dis(x,I") < q(x) in 2, = {xe 2;dis (x, ') < d} with
suitable constant C >0 and d > 0. Then for any o > 0 there exists a
constant C, > 0 such that

|UIEo < 8IpaUlR . + CillpUlE,  Ue C=(2),
where p = +/ q .
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