THERE ARE NO DENTING POINTS IN THE UNIT BALL OF $\mathcal{P}\left({ }^{2} H\right)$

Sung Guen Kim

For any infinite dimensional real Hilbert space H we show that the unit ball of the space of continuous 2-homogeneous polynomials on $H, \mathcal{P}\left({ }^{2} H\right)$, has no denting points. Thus the unit ball of $\mathcal{P}\left({ }^{2} H\right)$ has no strongly exposed points.

Throughout we assume that E is a real Banach space with its dual E^{*}. Let B_{E} and S_{E} be the closed unit ball and the unit sphere of E, respectively. A point $x \in S_{E}$ is an extreme point of B_{E} if $x=(y+z) / 2$ with $y, z \in B_{E}$ implies $x=y=z$. A point $x \in S_{E}$ is a strongly exposed point of B_{E} if there is a unit vector $\dot{f} \in E^{*}$ so that $f(x)=1$ and given any sequence (x_{k}) in B_{E} with $f\left(x_{k}\right) \rightarrow 1$ we can conclude that $x_{k} \rightarrow x$ in norm. A point $x \in S_{E}$ is said to be a denting point of B_{E} if and only if for every $\varepsilon>0$ there exist $f \in E^{*}$ and $0<\delta<f(x)$ such that $\operatorname{diam} S\left(B_{E}, f, \delta\right):=\operatorname{diam}\left\{y \in B_{E}: f(y)>\delta\right\}<\varepsilon$. It is easy to see that every denting point of B_{E} is an extreme point, and that every strongly exposed point of B_{E} is a denting point.

Let H be a real Hilbert space. A mapping $P: H \rightarrow \mathbb{R}$ is called a continuous n homogeneous polynomial if there is a continuous n-linear mapping $A: H \times \cdots \times H \rightarrow \mathbb{R}$ such that $P(x)=A(x, \ldots, x)$ for each $x \in H$. We let $\mathcal{P}\left({ }^{n} H\right)$ denote the Banach space of continuous n-homogeneous polynomials of H into \mathbb{R}, endowed with the polynomial norm $\|P\|=\sup \{|P(x)|:\|x\| \leqslant 1\}$. See [1] for details about the theory of polynomials on an infinite dimensional Banach space.

To establish our result, we need the description of the extreme points of the unit ball of $\mathcal{P}\left({ }^{2} H\right)$ given in [2].

Theorem 1. (Grecu) It is true that for a real Hilbert space H, P is an extreme point of the unit ball of $\mathcal{P}\left({ }^{2} H\right)$ if and only if there exists an orthogonal decomposition of $H=H_{1} \bigoplus H_{2}$ such that $P(x)=\left\|\pi_{1}(x)\right\|^{2}-\left\|\pi_{2}(x)\right\|^{2}$, where $\pi_{j}: H \rightarrow H_{j}$ are the orthogonal projections of H onto $H_{j}(j=1,2)$.

For an infinite compact set K and for any Banach space E, Rao [4] showed that the unit ball of the space of E - valued functions on K that are continuous when E is equipped with the weak topology, has no denting points.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 SA2.00+0.00.

Recently Kim and Lee [3, Theorem 2] showed that if H is an infinite dimensional real Hilbert space, then the unit ball of the space $\mathcal{P}\left({ }^{2} H\right)$ has no strongly exposed points. In this note we show that for any infinite dimensional real Hilbert space H the unit ball of $\mathcal{P}\left({ }^{2} H\right)$ has no denting points. Thus the unit ball of $\mathcal{P}\left({ }^{2} H\right)$ has no strongly exposed points.

Here is our main result.
Theorem 2. Let H be an infinite dimensional real Hilbert space. Then the unit ball of $\mathcal{P}\left({ }^{2} H\right)$ has no denting points.

Proof: It suffices to show that every extreme point of the unit ball of $\mathcal{P}\left({ }^{2} H\right)$ is not a denting point. Let P be an extreme point of the unit ball of $\mathcal{P}\left({ }^{2} H\right)$. By Theorem 1 we have

$$
P(x)=\sum_{\alpha \in A}\left\langle x, e_{\alpha}\right\rangle^{2}-\sum_{\beta \in B}\left\langle x, t_{\beta}\right\rangle^{2} \quad(x \in H)
$$

where $\left\{e_{\alpha}, t_{\beta}\right\}$ forms an orthonormal basis of H.
We claim that $\operatorname{diam} S\left(B_{\mathcal{P}\left({ }^{2} H\right)}, f, \delta\right)=2$ for each $f \in \mathcal{P}\left({ }^{2} H\right)^{*}$ with $f(P)>\delta$ and for each $\delta>0$. We may assume that A is an infinite set. Note that

$$
f(P)=\sum_{\alpha \in A} f\left(\left\langle\cdot, e_{\alpha}\right\rangle^{2}\right)-\sum_{\beta \in B} f\left(\left\langle\cdot, t_{\beta}\right\rangle^{2}\right)
$$

so $f\left(\left\langle\cdot, e_{\alpha}\right\rangle^{2}\right) \rightarrow 0$ as $\alpha \rightarrow \infty$. Choose $\alpha_{1} \in A$ such that $2 f\left(\left\langle\cdot, e_{\alpha_{1}}\right\rangle^{2}\right)<f(P)-\delta$.
Let $Q=P-2\left\langle\cdot, e_{\alpha_{1}}\right\rangle^{2}$. By Parseval's identity we have

$$
Q \in B_{\mathcal{P}\left({ }^{2} H\right)} \text { and } f(Q)>\delta
$$

so $Q \in S\left(B_{\mathcal{P}\left({ }^{2} H\right)}, f, \delta\right)$. So we have

$$
2 \geqslant \operatorname{diam} S\left(B_{\mathcal{P}\left({ }^{2} H\right)}, f, \delta\right) \geqslant\|P-Q\|=\left\|2\left\langle\cdot, e_{\alpha_{1}}\right\rangle^{2}\right\|=2
$$

Thus P is not a denting point.

References

[1] S. Dineen, Complex analysis on infinite dimensional spaces, Springer Monographs in Mathematics (Springer-Verlag, London, 1999).
[2] B.C. Grecu, 'Extreme polynomials on Hilbert spaces', (preprint).
[3] S.G. Kim and S.H. Lee, 'Exposed 2-homogeneous polynomials on Hilbert spaces', Proc. Amer. Math. Soc. (to appear).
[4] T.S.S.R.K. Rao, 'There are no denting points in the unit ball of $W C(K, X)$ ', Proc. Amer. Math. Soc. 127 (1999), 2969-2973.

Department of Mathematics
Kyungpook National University
Daegu (702-701)
Korea
e-mail: sgk317@knu.ac.kr

[^0]: Received 20th May, 2002
 The author wishes to acknowledge the financial support of BK 21-Project.

