THERE ARE NO DENTING POINTS IN THE UNIT BALL OF $\mathcal{P}(^{2}H)$

SUNG GUEN KIM

For any infinite dimensional real Hilbert space H we show that the unit ball of the space of continuous 2-homogeneous polynomials on H, $\mathcal{P}(^{2}H)$, has no denting points. Thus the unit ball of $\mathcal{P}(^{2}H)$ has no strongly exposed points.

Throughout we assume that E is a real Banach space with its dual E^* . Let B_E and S_E be the closed unit ball and the unit sphere of E, respectively. A point $x \in S_E$ is an extreme point of B_E if x = (y + z)/2 with $y, z \in B_E$ implies x = y = z. A point $x \in S_E$ is a strongly exposed point of B_E if there is a unit vector $f \in E^*$ so that f(x) = 1 and given any sequence (x_k) in B_E with $f(x_k) \to 1$ we can conclude that $x_k \to x$ in norm. A point $x \in S_E$ is said to be a denting point of B_E if and only if for every $\varepsilon > 0$ there exist $f \in E^*$ and $0 < \delta < f(x)$ such that diam $S(B_E, f, \delta) := \text{diam}\{y \in B_E : f(y) > \delta\} < \varepsilon$. It is easy to see that every denting point of B_E is an extreme point, and that every strongly exposed point of B_E is a denting point.

Let *H* be a real Hilbert space. A mapping $P : H \to \mathbb{R}$ is called a continuous *n*-homogeneous polynomial if there is a continuous *n*-linear mapping $A : H \times \cdots \times H \to \mathbb{R}$ such that $P(x) = A(x, \ldots, x)$ for each $x \in H$. We let $\mathcal{P}(^nH)$ denote the Banach space of continuous *n*-homogeneous polynomials of *H* into \mathbb{R} , endowed with the polynomial norm $||P|| = \sup\{|P(x)| : ||x|| \leq 1\}$. See [1] for details about the theory of polynomials on an infinite dimensional Banach space.

To establish our result, we need the description of the extreme points of the unit ball of $\mathcal{P}(^{2}H)$ given in [2].

THEOREM 1. (Grecu) It is true that for a real Hilbert space H, P is an extreme point of the unit ball of $\mathcal{P}(^{2}H)$ if and only if there exists an orthogonal decomposition of $H = H_1 \bigoplus H_2$ such that $P(x) = ||\pi_1(x)||^2 - ||\pi_2(x)||^2$, where $\pi_j : H \to H_j$ are the orthogonal projections of H onto H_j (j = 1, 2).

For an infinite compact set K and for any Banach space E, Rao [4] showed that the unit ball of the space of E- valued functions on K that are continuous when E is equipped with the weak topology, has no denting points.

Received 20th May, 2002

The author wishes to acknowledge the financial support of BK 21-Project.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

Recently Kim and Lee [3, Theorem 2] showed that if H is an infinite dimensional real Hilbert space, then the unit ball of the space $\mathcal{P}(^{2}H)$ has no strongly exposed points. In this note we show that for any infinite dimensional real Hilbert space H the unit ball of $\mathcal{P}(^{2}H)$ has no denting points. Thus the unit ball of $\mathcal{P}(^{2}H)$ has no strongly exposed points.

Here is our main result.

498

THEOREM 2. Let H be an infinite dimensional real Hilbert space. Then the unit ball of $\mathcal{P}(^{2}H)$ has no denting points.

PROOF: It suffices to show that every extreme point of the unit ball of $\mathcal{P}(^{2}H)$ is not a denting point. Let P be an extreme point of the unit ball of $\mathcal{P}(^{2}H)$. By Theorem 1 we have

$$P(x) = \sum_{\alpha \in A} \langle x, e_{\alpha} \rangle^{2} - \sum_{\beta \in B} \langle x, t_{\beta} \rangle^{2} \qquad (x \in H)$$

where $\{e_{\alpha}, t_{\beta}\}$ forms an orthonormal basis of *H*.

We claim that diam $S(B_{\mathcal{P}(^{2}H)}, f, \delta) = 2$ for each $f \in \mathcal{P}(^{2}H)^{*}$ with $f(P) > \delta$ and for each $\delta > 0$. We may assume that A is an infinite set. Note that

$$f(P) = \sum_{\alpha \in A} f(\langle \cdot, e_{\alpha} \rangle^2) - \sum_{\beta \in B} f(\langle \cdot, t_{\beta} \rangle^2),$$

so $f(\langle \cdot, e_{\alpha} \rangle^2) \to 0$ as $\alpha \to \infty$. Choose $\alpha_1 \in A$ such that $2f(\langle \cdot, e_{\alpha_1} \rangle^2) < f(P) - \delta$. Let $Q = P - 2\langle \cdot, e_{\alpha_1} \rangle^2$. By Parseval's identity we have

$$Q \in B_{\mathcal{P}(^{2}H)}$$
 and $f(Q) > \delta$,

so $Q \in S(B_{\mathcal{P}(^{2}H)}, f, \delta)$. So we have

$$2 \ge \operatorname{diam} S(B_{\mathcal{P}(^{2}H)}, f, \delta) \ge ||P - Q|| = ||2\langle \cdot, e_{\alpha_{1}}\rangle^{2}|| = 2.$$

Thus P is not a denting point.

References

- [1] S. Dineen, Complex analysis on infinite dimensional spaces, Springer Monographs in Mathematics (Springer-Verlag, London, 1999).
- [2] B.C. Grecu, 'Extreme polynomials on Hilbert spaces', (preprint).
- [3] S.G. Kim and S.H. Lee, 'Exposed 2-homogeneous polynomials on Hilbert spaces', Proc. Amer. Math. Soc. (to appear).
- [4] T.S.S.R.K. Rao, 'There are no denting points in the unit ball of WC(K, X)', Proc. Amer. Math. Soc. 127 (1999), 2969-2973.

Department of Mathematics Kyungpook National University Daegu (702-701) Korea e-mail: sgk317@knu.ac.kr 0