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ACCELERATED SPECTRAL REFINEMENT
PART I: SIMPLE EIGENVALUE
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Abstract

A general framework is developed for constructing higher order spectral refinement schemes
for a simple eigenvalue. Well-known techniques for ordinary spectral refinement are carried
over to higher order spectral refinement yielding faster rates of convergence. Numerical
examples are given by considering an integral operator.

1. Introduction

Spectral refinement is a procedure that allows one to approximate eigenelements of a
very large discrete system by successively improving upon the eigenelements obtained
from a coarse model through direct methods. Several refinement methods such as the
Rayleigh-Schrédinger method ([2, 7, 8, 14, 15]), the fixed slope Newton scheme and
its variants ([3,4, 8,11, 15]) and the defect correction method ([1, 8, 16]) have been
studied for approximating a simple eigenvalue. These methods avoid solving large
matrix eigenvalue problems, thus saving time and memory. However, the convergence
of these methods can be very slow, and to achieve a desired accuracy it may even be
necessary to consider a finer discretization, which often results in computational
complexities. In [9] Dellwo proposed two higher order refinement schemes for a
simple eigenvalue which achieve better rates of convergence. His schemes involve the
solution of a polynomial eigenvalue problem of order ¢ > 1. While his first scheme
reduces to the well-known fixed slope Newton scheme when g = 1, his second scheme
is obtained from the first by simply adding an extra term in the summations.

The main objective of this paper is to develop a general framework for constructing
a higher order spectral refinement for a simple eigenvalue. Let (7,,) be a sequence of
bounded operators on a complex Banach space X approximating a bounded operator
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T in the following sense: the sequence (|| 7, is bounded and ||(T — T,,)|| = O as
n — 0o. We construct two operators T;"’ and T, , on the product space X, consisting
of g copies of X, which have the properties:

(1) IfA #0,then) € o(T)ifandonlyifi € o (Tf]")) and the algebraic multiplicity
of A as an eigenvalue of T is the same as the algebraic multiplicity of A as an eigenvalue
of T;

() N1Tgn — TPl = T = T)°II;
(iii)) A, is an eigenvalue of T, , and T, , D, , = A, , P, , for some nonzero ®,,

in X, if and only if ®,, = |:¢q',., 2 _Pan

!

FURRRRRRIY )q_l] , where the first component
. q.n q.n

¢g.n of O, satisfies

qg-1
(()\vq,n)ql - Z()‘q.n)q_l-j A{,T;l) ¢q.n =0.

j=0

The last equation states the polynomial eigenvalue problem considered by Dellwo in
[9]. Several well-known refinement schemes for a simple eigenvalue can be upgraded
to higher order schemes by considering the operators Tfl") and T,,. Although the
proofs of the error estimates for these accelerated refinement schemes are similar to
the case when ¢ = 1, one needs to show that various constants appearing in the
error bounds are independent not only of n but also of the order g. Then one can
conclude that a larger value of g would imply a faster rate of convergence of the
iterates. This approach is illustrated by considering the fixed slope Newton scheme.
We first prove the results under the additional assumption || > 1. Then the results
are proved in general by scaling all the operators involved in the process. The scaling
factor is based on the knowledge of alower bound (not necessarily sharp) for |A|. The
implementability of the accelerated refinement schemes is also discussed. Numerical
examples for computing the largest and the second largest simple eigenvalue of an
integral operator, which was considered by Dellwo, are presented. Our results compare
favourably with those given by him in [9].

An additional merit of our approach is that it can be employed to treat the case
of a multiple eigenvalue or, more generally, of a cluster of eigenvalues whose total
algebraic multiplicity is finite. This will be considered in Part II of this paper. It is not
clear how Dellwo’s schemes given in [9] can be extended to treat this general case.

2. Preliminaries

Let X be a complex Banach space and BL(X) denote the Banach space of all
bounded linear operators on X along with the operator norm. For T € BL(X), let
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p(T) and o (T) denote the resolvent set and the spectrum of T, respectively:
p(T)={zeC:(T—z)"' € BL(X)} and o(T)=C\ p(T).
The spectral radius of T is defined as
r,(T) = sup{|A] : A € a(T)}.

Unless otherwise stated, I" will denote a simple closed positively oriented rectifiable
curve in C and £(T") will denote its length.
We are interested in numerically solving the eigenvalue problem

Tep=rp, reC, O0#¢peX.

Let (7,) be a sequence of operators in BL(X) and A, = T — T,. In {9), Dellwo
considered the following polynomial eigenvalue problem which is supposed to provide
an approximate solution of the eigenvalue problem for 7'

q-1
((Aq,n)"l =) Q)T Aﬁn) $en=0, An€C, O#¢,,€X.
Jj=0

Notice that for g = 1 the polynomial eigenvalue problem reduces to

T;l¢l,n = A-l,n¢l,ns O # ¢l.n € X.

We show that the polynomial eigenvalue problem can be converted to the ordinary
eigenvalue problem defined on a product space. For this purpose we introduce the
following notations. Let q be a positive integer and X, denote the set of all column
vectors X = [x, ..., x,])’ withx,, ..., x, in X. Define

Xllo = max(ix; |} : j = 1,..., q}.

Then X, is a Banach space with respect to the norm || |l,,. We identify the adjoint

space of X, with the set of all column vectors x* = [x}, ..., xg) withxp, ..., x7 in
X*. Define

X = gl + - -+ + llx; 1l
If we let

(x1 x‘) = (xl’ x;) + M + (xq1 x;)y

then it is clear that |(x, X*)] < |IX]loo|IX*|};.
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For nonzero z in C, let

g-1 j
AT,
Agn@ =2 -) —=".
= Z

The polynomial eigenvalue problem can be written as

A'Z:;.lAq.n ()‘q,n)¢q,n = O, 0 75 ¢q.n €X.

Let T, , be the following companion matrix of the polynomial z¢ 1A an(2):

T, AT, --- - AZ”E_
I 0 0

0
0 0 1 0 |

If A, # 0, then
TonPon =2gnPyn, Pon €X,

¢q.n ¢q,n

if and only if @, , = |:¢q,,,, FURRE Gy
q.n q.n

®, , satisfies

t
] , where the first component ¢, , of

Aq,n(A-q,n)¢q,n =0.
For the rest of this paper, we let g > 2 and make the hypothesis:
(H): (| T.|]) is a bounded sequence and ||(T — T,)|| = O as n — oo.

Then for all large n, we have
1Tl < max{1, 20| Il + AL oD}

Let A be a cluster of nonzero eigenvalues of T whose total algebraic multiplicity is
finite, say m, and which is isolated by a curve I' in p(7T) \ {0} from the rest of o (T)
as well as from O, thatis, 0 ¢ T UIntI"and o (T) NInt " = A.

The following results were proved in Proposition 3.2 (b) and Theorem 3.5 of [6].

PROPOSITION 2.1. (a) Foralllargenandallq =2,3,...,T C p(T,,), so that
1
P,,=—— T,, —zI,) 'dz,
¢ 2711'/,- (T, 2ly) z

where 1, is the identity operator on X,, defines the spectral projection associated with
Tynand Ay, =0 (T,,) NIntT, and

rank P, , = m.
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(b) If min{|z| : z € T'} > 1, then for alllarge n and all q = 2,3, ...,
max [(Tgn — 2I) "'l < C,

where C is a constant independent of q and n.

We now introduce another operator T{” : X, — X, such that for » # 0, 4 € o(T)
if and only if A € o(T{"), the algebraic multiplicity of A as an eigenvalue of T is the
same as the algebraic multiplicity of A as an eigenvalue of Tfl"’, and ||T,, — Tfl") lo =
IKT = T.).

For nonzero z in C, let

2 AT ATlT
(n) ntn n
Aq () =zI - E

= 7 27!
It is easy to see that
g=l Aj
A
AP@ =) @l =D 2.1)
j=0

Let n be a positive integer such that r,(A,) < |z|. Then we have

-1

z9

and hence A{”(z) is invertible if and only if z € p(T).
Let T be the companion matrix of the polynomial z?~'A{" (2):

[T, AT, --- AT, AT
I 0 0 0

0 . .

: . 0 :
| 0 0 1 0

Since the spectrum of a monic operator polynomial is the same as the spectrum of its
companion matrix, we see that if z € C and z # 0, then for all large n, Tf,") —zlis
invertible if and only if z € p(T). Note that this matrix differs from the matrix T, ,
only in the last entry of the first row and

ITY ~ Tynlloo = (T = T)II.
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PROPOSITION 2.2. (a) Foralllargenandallq=2,3,...,T C p(Tf;')),
o(TP)NIntT = o(T) NIntT = A.
() If min{|z| : z € '} > 1, then forall largenandallq =2,3, ...,

<2C,

(n) _ -1
max [|(T,” = z1,) ™l

where C is as in Proposition 2.1 (b).
(c) Let

1
Py =~ fr (T™ — 21,)" dz

denote the spectral projections associated with T, and A. Then |PS — P, ,]lee — 0
asn — oo, uniformlying =2,3, ..., so that

rank P = rank P, , = m
foralllargenandall g =2,3, ....

PROOE. (a) Note that 7,(A,) < [|A%]|'”2 — 0 as n — oo by our hypothesis (H).
Thus if n is so large that r,(A,) < min{|z| : z € T}, then for all ¢ = 2,3,...,
I' C p(T) and

o(TP)NIntT = o(T) NIntT = A.
(b) By Proposition 2.1 (b), we have for all large n and allg = 2, 3, . ..,
max || (Tq,n - ZIq)_lnoo <C.
zel

Fix ng such that forn > ny, ¢ =2,3,...,

1
(n)
"Tq - Tq,n"oo =< ‘2?:'

As a consequence

1
max [ (T — To) (Fpn = 21|, < 5.

Since

(Tf;n) -y = [Iq — (Tgn — T;"))(Tq'n - Zlq)_l] (Ton ~2lp), z&T,
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it follows that forn > ny, g = 2,3, ...,

T,,—zI,)!
max " (T;") —_ ZIq)_l"oo S max ”( g, = Z q) ”oo <
zel €l 1 — (T — T )(Tyn — 2I) oo

(c) We have
PP — Py alloo = “—-1— f (T — 1)~ ~ (T, — 2) ") dz
<O o 7,1,
<X H)Czu(r— Tl —> 0 asn— co.

Hence if [P™ — P, , |l < 1, then rank P® = rank P, , = n.
q 9 q q,

In this paper, we consider the case m = 1, that is, when A consists of only one
nonzero simple eigenvalue A of 7. Let P denote the spectral projection associated
with T and A, and let R(P) denote the range of P. Since m = 1, we have

R(P)=N(T—AI) and R(PY)=N(TP —1Al).

!
Let ¢ be an eigenvector of T corresponding to A and ®, = [¢, %, ceey %] . Then

using (2.1), we obtain

q=2 Aj -1 d
AT, AT ¢ ¢
(n) _ n s
Tq P, = [(,-20 I + —=— Ve )¢ @, RV M_zjl

= A ¢ ¢
=[ZF(T—A1)¢+A¢,¢, T ——}

i=o A9=2

=Ad,.

Hence R(P{”) = span{®,}. Let ¢* be the unique eigenvector of T* corresponding to
X such that

(¢, ") = 1.
If we define <b; = [¢*,0,...,0], then
(@, ®2) = (4, ¢") = 1.

Since rankP,, = rank P = 1 for all large n and g = 2,3, ..., consider the
nonzero simple eigenvalue A, , of T, , which is near A. Let &, , be an eigenvector of
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Tyn corresponditlg to A4, and ®;  be the unique eigenvector of T} , corresponding
to its eigenvalue A, , such that

(Qgn, ;) =1
Then
Pox=(x, P, )P,n, x€X,,
and the reduced resolvent S, , associated with T, , and A, , is given by

! ——-——(Tq'" — ) dz.

2mi r Z—A.q',,

q.n

The operators T, ,, P, , and S, , commute with each other. They satisfy

(Tq',, - )‘q.nlq)sq,n = Iq - Pq,,. and Pq,nSq,n =0.
3. Fixed slope Newton scheme and its convergence analysis

In analogy with the ordinary fixed slope Newton scheme, we consider the fixed
slope Newton scheme of order g with an initial guess &, , given by

A =g OV =@, andforj =1,2,...,
A = (TP, 0F ) 3.1
V) =YV -8, [TPOY D — 20 oy V],

Note that for a suitably chosen fixed n, the first component of the j th iterate CDfl’}, is

supposed to approximate an eigenvector of T corresponding to A.
Forafixedg = 2,3, ..., we have

IT® — Tyl = (T = )7l = 0 asn — oo,

by our hypothesis (H). Hence error estimates for the iterates in the ¢ th order fixed
slope Newton scheme can be obtained in the usual manner. Of course, the constants
appearing in these error estimates may depend on the order g of the spectral analysis.
Further, these error estimates will be valid for all n > n,, where ny may also depend
on g. With a view to make these considerations independent of g, we note that if
|A] > 1, then by Proposition 2.1, there is an integer no such that for all n > ny and
q=2,3,...,
max ||(T,.» — 21)) " lleo < C,

for some constant C independent of g and n.
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LEMMA 3.1. Let |A| > 1.
(a) Foralllargenandallq =2,3,..., we have

ol

L{r)c -
IPgallc < o (T — Tg.)Pgllec < W IAIT,
(e LMYClloll AITY
S n L — P n<I> - =< . - -
ISq.nlloo = w dist(A, ) IPy.0 Pg alleo = 2 dist(A, ') |AJ2

(b) If we define the scalars M,, = (¥, ®;,) and Ny, = (Pgns ). then
Ng.M,, — 1lasn — 0o, uniformlying =2,3,....

PROOF. Since A is an isolated point of o (T’) and |A| > 1, we can choose a curve I'
in p(T) isolating A from the rest of o (7T) and from O such that min{|z| : z € I'} > 1.
(a) The bound for ||P, .|l is immediate. We have

n Al g
”(T‘(l) -— Tq_n)q)q”oo = “I:A_q:’ 0, vy O] “oo

= “[Am’,o,... ,o] ” < M||AgT||.
A9 T

Since ®, € R (Pfl")), we have

"Pq,n(bq - <I>q"oo = "Pq.nd)q - Pgl)q)q "oo

1
= " / ((Tq‘n - Zlq)—l - (Tf,") - Zlq)_l) ®,dz

JT r 00

1
= / (T = 21)™ (T = Ty )T — 21,)"'®, dz

7T r oo

Noting that (Tf,") —zI)"'®, = ®,/(L —z) forall z € T, we obtain the desired result.
(b) We have

qu.an,n - 1| = '((Mq,nq)q.n - (Dq), (b;)l = I(Pq.nq)q - (Dq’ ¢;)I
LMCloll llo*ll AZTY|
2w dist(A, ') [AJe

< "Pq.ncbq - d)q“oo"q);"l <

If A% < |A|% thenforallg =2,3,...,

Az <max[1 uAnu] a1
e = LTI e

Hence by our hypothesis (H), it follows that N, ,M,, — 1 as n — 00, uniformly
in g.
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For obtaining the bound for ||S, .||, note that A, , — A as n — 00, uniformly in
g =2,3,... by [6, Theorem 3.6]. Hence

[Agn — Al < -;—dist(k, )

for all large n and all g = 2, 3, ..., so that

{nMc < (I

Senlle < < — .
1Sq.01 2 7 dist(hy 0, T') ~ mdist(x, T)

THEOREM 3.2. Suppose that |\| > 1 and that an eigenvector &, , of T, , corre-
sponding to A, , is so chosen that its first component ¢, , satisfies

0<d=<|ignll <c

for all large n and all ¢ = 2,3, ..., and some constants c,d independent of q
and n. Then there is a positive integer ny such that for alln > n,, all q > 2 and all
j=0,1,...,

Ix =29, M0, — 29|

ITI_||(T T TI{bIT — T)IY

where a and b are constants, independent of q, n and j .

PROOF. By part (b) of Lemma 3.1, there is some positive integer ng such that for
alln > noand all g = 2,3, ..., |IN;,M;.l > 1/2. Then M,, # 0. Note that
(M“<I> 7 ,) = 1. First we prove that the sequences (1/|M, ,|) and (||<D* II1) are
umformly bounded in g and n. By part (b) of Lemma 3.1,

1 |Ngal
Mol quannl_

2[{pgn, &M = 2llgnll ¢"1 < 2¢llp™ .

Since [Py nlloc = l1@g,nllool| P 11 and | @y nlicc = llpg.nll = d, we have

IPgalle _ €£)C
d = 2md

1931l <

Let us now consider the case j = 0. Since @Y, = &, , =P, (M, ®,), we have

[Pg — Pg.nPglleo
| M0l
EC)ClI 1T = T)T||
= 2m dist(2, T) e

|Mz200 - @0, =

2clig”ll
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for all large n and all ¢ = 2, 3, ... by part (a) of Lemma 3.1.
Next, since TSV (M) ®,) = AM_ &, and (M, ®,, ;) = 1, we have
A=A 0= 1A = Agal
= (TP = T)M; 0y, @) ) + (T (M 0y — D), D))
< (TP = Ty )M\ Pglloo + 1T nllooll My r g — Py alleo) 19} 111

Now

T ! *
AT 0] “ < 290 7 _ yeriien.

(n) __ -1 —
"(Tq Tq,n)Mq,n(bq"oo - "[Aqu,n y Vy |),|‘I

Since the sequences (||T, .ll) and _(||<D;_,,|h) are bounded uniformly in g and n, we
see that there is a positive integer no such that foralln > npandallg =2, 3, ...,

© -1 © a
IA’ - A'q,nl’ "Mq,nd)q - q)q-""oo = W"(T— T;t)qT"
for some constant a, independent of ¢ and n.
Since |A| > 1, we have ||®,]lo = l|¢]], so that
1P,
— < 2cligll li¢*ll.
| Mgl
Also, since the sequences ([|S,,.ll) and (| P} , lI:} are bounded uniformly in g and n,
there is a positive constant b such that
1}, <b and [Sglle (1 + M| 1] 01+ 2a||T||) <b
for all large nand all ¢ = 2,3,.... If (T — T,)|| < 1, then ||Tf,") = Tonllo =
(T — T,)7) < max{1,||T — T,|}I(T — T,)*|| > 0asn — oo. Hence there is a
positive integer n, such that ||(T— T,)¢|| < 1/bforalln > n;andallqg =2, 3,....
Now we prove the error bounds by induction on j. If j = O, then the result is
proved above. Now assuming that the result holds for j — 1 with j > 1, we prove it
for j. We have

i)p — (n) -1 G-=1 *
A= A9 = [((T® — T, )M @, — dI-), @ )]
< IM7A®, — BYT ol T — Tymlloo 195,11

< ﬁ ICT = T)* T BICT = T)NY " I(T — T,)?1b

a .
= WII(T — LY TIGIT - T)NY .
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Also,
Mg 0 — O, = Sq, {(Tgn = TPIM, g — BL0) + O = A0 M7 0,
+ A =AM, 0, — DYDY
Writing AY) — Ay, = AY) — 1 4+ 1 — A, , and using b||(T — T,)7|} < 1, we have

AU)—A"<L T —T)'T| (b T—T;,"j 4 T—TN)T
|Agn q'l_l}»l"”( YT (BlIC )II)+|MqII( YT

<2a||TI (T — )l
and hence
M@, — DDl < IM 1@, = DY Pl [1Sg.nlloo (1 + 1M1 @4 looll D3, 111
+2a||TI)I(T — T)|

< ﬁ I(T — TYIT| (BII(T — T " bI(T — T

a .
= (T = T TN GIKT = T)*1IY,

as desired.

Now we obtain error estimates for the iterates in the gth order fixed slope Newton
scheme (3.1) without requiring that [A| > 1 and in the process, improve the results for
the case JA| > 1 in the sense that as |A| increases, the estimates become sharper.

For this purpose, we consider a particular kind of scaling of the operators Tfl") and
T, » . Fix a positive scalar o and define D, : X, — X, by

-1 ’
Dylxy, ..., x)" =[xy, axg oo, @7 x, 1, [xyg, ..., %) € X,

Let 'i‘fl") and T, , denote the operators obtained by replacing T and T, by « T and o T,
in T and T, ,, respectively. Then

T = D;'@T)D, and T,,=D;'@T,.)D,.
The corresponding spectral projections are given by
f’:(;n) = D;]P:(;")Dq and f)q," = Dq_IP‘l"‘Dq'

Thus, if @, is an eigenvector of T{" corresponding to A, then o, = D;'®, is an
eigenvector of 'ffl") corresponding to aA. Let <i>; = D, ®;. Then

(Bg, D)) = (D, D).
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Similarly, if &, , is an eigenvector of T, , corresponding to its eigenvalue A, ,, then
5>q_n = Dq“cbq_,, is an eigenvector of ’i‘q,,. corresponding to its eigenvalue aA, ,, and
if @, is an eigenvector of T , corresponding to its eigenvalue A, ,, then ®; =
D,®; , is an eigenvector of T; , corresponding to its eigenvalue aA,,, and further
(Bgns D;,) = (Pgn, D7), |

If A, . is a simple eigenvalue of T, ,, then the reduced resolvent associated with
T,.» and aA, , is given by

~ S,
Sen=D;'=D,

Let a be a positive scalar. Consider the fixed slope Newton scheme corresponding
to the scaled operators:

A =ary,, 90 :=D]'®,,, ¥,,:=D,®,, andforj=1,2,...,
T0) . (TMHG-D  GH*
A‘q.n - (Tq q>q,n ’ q)q.n)' . (32)
O — HU-D _§  |[TWHU-D _ ) HU-D
B9, = 870 -8, [T0EYY - 1080,
LEMMA 3.3, Forj =0,1,...,
10) — A @) P — p-lepW)
Adn=ar], and @] =D &/ .

In particular, the first component of the scaled iterate égl is the same as the first
component of the iterate ®Y), j =0,1,....

wn

PROOF. We prove the desired result by induction on j. The case j = 0 is a part of
the definition. Assume that the result holds for j. Then

TG i HG Fo* — - n - i) *
A = (TOU), &) ) = (D, («T™)D,(D;'®Y)), D,®;,)

q.n’

= (D] TP, D,®;,) = a(TPOY, @;,) = arl??.

q.n? q.n’

Also,
HU+D _ HU) _ Q TMFHU) _ 36G+DHUY)
Y0 = 89, - §,, [TOSD, - 1080
Sqn
a
— -l (W) ) HU) _ 3G+ W)
- Dq {(Dq.n _Sq-" [Tq cbq-n Atl-n cpq.n]}
— D-lpU+D
= D;'oU*.

=D’ {cbg_}, - D, [D,'(@T)D(D;'®Y)) — axg:‘>0;1¢g;]]

Thus the result holds for j + 1 and the inductive step is complete.
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As the first component of D,x is the same as the first component of x for each
x € X,, we see that the first components of Y, and ®Y), are the same.

Since the first components of the eigenvector iterates approximate a suitable eigen-
vector of T, we give error estimates for these first components.

THEOREM 3.4. Suppose that |A| > € and that an eigenvector ®,, of T, . corre-
sponding to A, , is so chosen that its first component @, » satisfies

0<d=<|lggnll =c

for all large n, all ¢ = 2,3, ..., and some constants c, d independent of q and n.
Let My, = (&g, ®; ). Let ¢U) denote the first component of ®Y), j = 0,1,....
Then there is a positive integer n, such that for alln > nyand all ¢ = 2,3, ...,
ji=0,1,...,

_ . ' b j
_ 3 gy s < 2T — Ty O T — Ty
1A =aul IMg¢q — &)1 < e (T — T)'T| L" (T —T) ||} ,

where a’ and V' are constants, independent of q, n and j .

PROOF. Let ¢ = 1/e. Theri A= ad is a simple eigenvalue of T and |i| > 1.
Consider the scaled operators T{” and T, ,. Now ®,, = D;'®,, is an eigenvector
of T, , corresponding to its eigenvalue i, = ak,,. Let ig’}, and &’22: be the iterates
obtained from (3.2). Note that the first components of &, , and ®,, are the same.

Hence by Theorem 3.2, there is a positive integer n; such that for n > n; and all

g=23,....i=01,...,
A =290, 1D, (M2 0,) = DY) lloo
a ~ J
< 53 1T —aTyaTl {BlaT — ot}
q

where @ and b are constants, independent of g, n and j . Since
Y = 10) — () HV) — p-lep®)
A=ak, Al,=a)r/, and &/ =D P/

by Lemma 3.3, and since I|M;;¢q — gl < ||D;‘(M.;,',d>q — &) |0, We have

~ J
. a b .
A =29l =< o 1T = T {;mr ~ Tn)qu]

and

~ -~ J
gy sy < X8 e marn L B e e
M, ¢ — &) < e (T = T.)T| [6‘1 (T —T,) l|] .

Taking @’ = max{a, ad} and ' = b, the desired result follows.
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Since the simple eigenvalue A of T is assumed to be nonzero, it is natural to expect
that a lower bound € > 0 for |A| is available. The preceding Theorem 3.4 then gives
a computable estimate

’ b Jj
(T =Ty Ty (— I(T - Tn)"u)
€9 €9

for the errors in the j th eigenvalue and eigenvector iterates. Of course, if a better
lower bound €’ for |A| is available, that is, if 0 < € < €' < |A], then the preceding
error estimate with e replaced by €’ becomes sharper. '

4. Implementation

In this section we show how the refinement scheme (3.1) can be implemented when
each T, is a bounded operator of finite rank. We also show how an eigenvector ¢, , of
T,.» can be chosen so that its first component ¢, , is bounded and also bounded away
from zero as required in Theorem 3.4

For simplicity, we assume that rank 7, < n, so that there are x,;,... , X5, in X
and x , X, , in X* such that

P
Tx = (x, x; Vxn1+ -+ + (x, x:_")x,.,,., xeX.
We describe a canonical procedure for discretizing T;,.
Define F, : X > C*and G, : C" - X by
Fox = [{x, x; ), ..., {x, x:_n)]’, xeX,
Gou=u(Dxpy + -+ u(M)xpn, uw=[u(),...,u@»)]) €C,
where the superscript ¢ denotes transpose. Then F; : C" — X*and G} : X* — ("
are given by
Flv=v(x; +---+vmx,,, v=[(),...,v(n]) €C",
Gix* =[{x*, xp1)s .., (X7, xaa)l', x> €X*.
It is easy to see that G, F, = T, and T, = F;G;.
Note that for k = 0, ..., q — 1, the (i, j)th entry of the n x n matrix F,A*G, is
(Afxnj, x2 ), 6,j =1,...,n. Let

FFn Gn FnAnG" e F"AZ—ZG" F,,AZ_IG"—
I, 0 .. 0 0
Agn={ 0 : ,
' 0
- 0 0 In 0 B
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where I, is the n x n identity matrix.
The following results can be easily verified.

PROPOSITION 4.1. Let u € C, i # 0. Then

x
. ) . x/u
1) T,.x=uxforx € X, ifandonlyifx = . and
x /i

q-1 o

> w7 AT = px.

j=0

u
iy . . ufu
(1) A, U=pnuUfor Ue CYifandonly if U = . and
u/ps!

g-1
Zu’j F, A Gyu = pu.

i=0

[16]

4.1)

4.2)

(iii) If u and x satisfy (4.1), then u and F,x satisfy (4.2). Conversely, if u and u

satisfy (4.2), then p and Y7~ ™ A G, u satisfy (4.1).

Thus p is an eigenvalue of T, ,, if and only if yu is an eigenvalue of A, .

Recall that A, , is the unique nonzero simple eigenvalue of T, , near the given
nonzero simple eigenvalue A of 7. Then A, , is also an eigenvalue of A, , near A.
(In fact, A, . is a simple eigenvalue of A,,.) Let U,, be an eigenvector of A, ,
corresponding to A, , and V, , be the eigenvector of AZ , corresponding to A, , such

that
(Upns Vou) = V' Upn = 1.

Here the superscript H denotes conjugate transpose. Then

t
u u
q.n q.n
Uyn = l:uq‘,,, —, ... :I ,

’ b
g-1
A"lv" Avq,n

for some nonzero u, , € C". Let

g—1
—_ § —J=YAJ
¢q,n = A'q'],, A{, Gnuq,n-
j=0 ’
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Then

— ¢q‘" ¢q.n !

is an eigenvector of T, , corresponding to A, ,,. Define F, , : X, = C" by

X1 Fox, X1
Fq,n = : fOl' € X‘l’

Xq Foxg X,
Since Fo¢q.n = uyn, We get
Fon®gn = Uyn.

It can be easily checked that F,,T,, = A,,F,, and F; A¥ = T; F; . Let
®; , =F, V. Then '

+ * * * — F* H _ 3 * -3 *
T, ,2,,=T,.F F: A =AgnKy, Von = APy,

g.n qn q.n qn

and
(Pgny @) = (Pygns Fy Vi) = (Fon®yn, Vo) = (Upns Vo) = 1.
Let || ||, be a norm on C". We assume that
[Fal <a and [|G.ll < B

for some constants « and B, independent of n. We remark that the boundedness of the
sequences (|| F,||) and (]| G,||) depends on the choice of anorm || |, on C” for each
n =1,2,... and, in general, this choice will be dictated by the given norm || | on
the Banach space X. Several examples of commonly used finite rank operators and
appropriate choices of a norm || ||, on C" are given in [5].

We normalize u,, such that [|u,.|l, = 1. Let [A;,| > € > 0. Choose n so large
that |]A2%|| < €. Then

"¢qn" = -J l(A{,Gﬂuq,n)

AL RS IIA’ f ﬂ (1 +[Axll/€)
: Z gt Ol = Z (1 —1az)/e?)’
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If, in fact, || A,z,ll < €%/2and ||A,|| <y, then

190al = 22 (14 1),

€
Also,
1 = lugnlls = 1 Fadpgnlln < IFall lidgnll < alidy.all-
Taking d = 1/@ and ¢ = 28(1 + y /€) /€, we have
0<d =gl =c

which is precisely the condition assumed in Theorem 3.4.

5. Numerical examples

We consider the space X = C([a, b]) of all complex-valued continuous functions
on the interval [a, b] with the sup norm. Let T be an integral operator on X given by

b
Tx(s) = / k(s,)x(t)dt, x € X, s €]a,b],

where the kernel k(.,.) is continuous on [a, b] x [a, b]. Note that T is a compact
operator on X. In actual computations, T is replaced by its Nystrom approximation
T given by

M
Tx(s) = Z w](-M)k (s, tj(M))x (tj(M)), x €X, s €[a,b],
j=1

(M) (M)

where the positive integer M is very large. The nodes ¢,", ... , t;;" in [a, b] and the
(M) (M)

weights w;" ', ... , w, in C are assumed to give a convergent quadrature formula
M
_ (M), ( (M)
Qx—ij x(tj ), x €X.
ji=1

For n € M, we choose nodes ¢, ... ,#" in [a, b). Let &, ... , & denote the
piecewise linear hat functions associated with the nodes ¢, ... , £ and consider the

piecewise linear interpolatory projection given by

MpX = zl:x (tj(")) e, x e C(o,1]).

J
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Define 7, = m, T, the projection approximation of T. Then |T — T,|| — O if the
mesh of the partition tends to zero as n — 00. We have

Fx =[Tx(@t™),..., Tx(t™)), xeX,
Gou = u(1)el” + -+ u(n)e™, ueC.

We consider the sup norm on C”, so that | F,|| < ||T|| and ||G,|| < 1 for all n.
Consider the kernel £,,(., ) : [0, 1] x [0, 1] — R given by

n ift >s,

k,(s,t) =
(s 1) [7)+s—t ifs > t,

where 7 is a real parameter. We choose nodes and weights:

[ _ (i — 1/4/3)/M if i is odd,
" T lG-1+41/V3)/M  ifiiseven,

and w™ = 1/M,i =1,..., M. These are obtained by the Compound Gauss Two
Point Rule on [0, 1]. Forn <« M, let

[ (i —1/v/3)/n if i is odd,
L (i—-141/V/3)/n ifiiseven,

andwf”) =1/nfori=1,...,n.

This kernel was considered by Dellwo in [9]. The eigenvalue problem for this
kernel becomes unstable as n approaches 0. We refer to [9] for a description of the
spectrum of T when n approaches 0. While Dellwo had given numerical results for
the largest eigenvalue of T and n = —0.66, —0.68, —0.70, we consider the largest
and the second largest eigenvalues of T and n = —0.66. Like Dellwo, we have taken
M =500and n = 5 whenq =2, 3, 4.

Let A denote the largest eigenvalue.of T, and 1Y), and ®Y) denote the eigenvalue
and eigenvector iterates obtained from the gth order fixed slope Newton scheme (3.1).
Let ¢;’:}, be the first component of <I>f]f,2,. Forj =0,1,...,let

r = IT8 =200

denote the j th residual. Let o denote the second largest eigenvalue of 7. Let uf,",L and
?g{,’, denote the eigenvalue iterate and the residual for the second largest eigenvalue.
Our computations were performed on CDC CYBER-180/840 with an accuracy of 15
digits.
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TABLES5.1. n = -0.66, g = 1, n = 30 (gn = 30)

j | A=A 9 lu = 1)l 7

0| 845x 10> 2.01 x 1072 1.88 x 10™* 2.06 x 1072

1|443x10% 136x107° | 6.62x10"% 1.67x 107

21452x107" 1.11x107% | 283 x107'" 1.38 x 1078

31142x107% 1.01 x107 | 9.77 x 1075 192 x 10712

41906x107* 329x10°"|3.55x10""* 1.89x 107"
TABLES.2, n = -0.66,9 =2,n =5 (gn = 10)

T T R =20 2 P )

0| 305%x107° 6.72x10™* | 1.83x10™* 276 x 1073

1| 1.16x10®% 290x 1077 | 8.09x 10" 221 x10°°

21611 x107"? 146x1071 | 1.03x 107 2.17 x10~°

31781 x107"* 381 x1071P | 861 x107"* 245x107"?
TABLE 5.3. n = -0.66,9g =3,n =5(gn = 15)

ji |l =29 9 lu— ul) o

0| 403x1077 895x10°% | 576 x 107 9.89 x 10~°

1[224x1072 570x 1071 | 2.64 x 1071 595 x 10~°

21532x107"% 222x107B | 320x107"* 590 x 1013
TABLE 54. n = -0.66,q = 4,n = 5 (gn = 20)

j 1 IA=29 o) lp — w9 )

0| 447x10° 1.02x1077 | 1.80 x 1077 3.11 x 107®

1]|515x107"% 2.17x1072 | 479 x 1072 9,39 x 10~!2

[20]

Our aim is to approximate eigenelements of the M x M matrix associated with T.
Assume that an eigenpair (X, ., U, ,) of the matrix A, , is already found and the LU
decomposition of A, , — A, .1, is computed. Then using formulae (4.3) and (4.4),
we compute P, , which requires Mgn + Mgq flops. This is the cost of initialization.

The cost of computation of AY), is Mn+n?+2n flops. Foreach iteration we also need
to solve asystem of the type (A, , — A, .1;.)a = B. Since the LU decomposition of the
associated matrix is available, the solution of the system costs (gn)? flops. Finally, the
computation of the eigenvector iterate ®Y) needs M>+M (gn+2n+2q+2)+n’ flops.
Thus the total cost per iteration is M2+ M (qn + 3n+2q +2) + (qn)* + gn+n? +2n.
As M is large compared to gn, the cost per iteration is dominated by the factor M2

irrespective of the value of g.
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Table 5.1 gives error estimates for the case ¢ = 1 which is simply the usual fixed
slope Newton scheme ([4,8,11,15]). Note that the eigenvalue problem solved for
initialization is of size 30 and in each iteration a linear system of size 30 is solved.

In Tables 5.2-5.4 we give results for n = 5, n = —0.66 and for ¢ = 2,3, 4.
The eigenvalue problem solved for initialization for the gth order fixed slope Newton
scheme is of the size gn. Also, in each iteration a linear system of size gn is solved.

These tables illustrate how higher order refinement schemes can prove to be efficient
and economical. We note that the results in these tables compare favourably with the
results given by Dellwo [9, Table 3].
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