
J. Austral. Math. Soc. Sen B 41(2000), 487-507

ACCELERATED SPECTRAL REFINEMENT
PART I: SIMPLE EIGENVALUE

RAFIKUL ALAM1, REKHA P. KULKARNI1 and BALMOHAN V. LIMAYE1

(Received 27 November 1995; revised 11 June 1998)

Abstract

A general framework is developed for constructing higher order spectral refinement schemes
for a simple eigenvalue. Well-known techniques for ordinary spectral refinement are carried
over to higher order spectral refinement yielding faster rates of convergence. Numerical
examples are given by considering an integral operator.

1. Introduction

Spectral refinement is a procedure that allows one to approximate eigenelements of a
very large discrete system by successively improving upon the eigenelements obtained
from a coarse model through direct methods. Several refinement methods such as the
Rayleigh-Schrodinger method ([2,7,8,14,15]), the fixed slope Newton scheme and
its variants ([3,4,8,11,15]) and the defect correction method ([1,8,16]) have been
studied for approximating a simple eigenvalue. These methods avoid solving large
matrix eigenvalue problems, thus saving time and memory. However, the convergence
of these methods can be very slow, and to achieve a desired accuracy it may even be
necessary to consider a finer discretization, which often results in computational
complexities. In [9] Dellwo proposed two higher order refinement schemes for a
simple eigenvalue which achieve better rates of convergence. His schemes involve the
solution of a polynomial eigenvalue problem of order q>\. While his first scheme
reduces to the well-known fixed slope Newton scheme when q = 1, his second scheme
is obtained from the first by simply adding an extra term in the summations.

The main objective of this paper is to develop a general framework for constructing
a higher order spectral refinement for a simple eigenvalue. Let (Tn) be a sequence of
bounded operators on a complex Banach space X approximating a bounded operator
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T in the following sense: the sequence (|| rn||) is bounded and \\{T - Tnf\\ -» 0 as
n —* oo. We construct two operators T<n) and T,,n on the product space Xq, consisting
of q copies of X, which have the properties:

(i) IfA. ^ O,thenA. e a (T) if and only if A. e a (T£°) and the algebraic multiplicity
of A. as an eigenvalue of T is the same as the algebraic multiplicity of A. as an eigenvalue
ofT™;

(ii) ||T,,,,-T<»>||00 = | | ( r - r B )« | | ;
(iii) kqn is an eigenvalue of T, n and T,,n<!>,_„ = A,,n<t>9n for some nonzero <!>,„

[ ± . -it

4>qin, -^-,... , ^—- , where the first component
0,,n of <Pq<n satisfies

n 4>q,n = 0 .
;=<> /

The last equation states the polynomial eigenvalue problem considered by Dellwo in
[9]. Several well-known refinement schemes for a simple eigenvalue can be upgraded
to higher order schemes by considering the operators T^n) and T,n . Although the
proofs of the error estimates for these accelerated refinement schemes are similar to
the case when q = 1, one needs to show that various constants appearing in the
error bounds are independent not only of n but also of the order q. Then one can
conclude that a larger value of q would imply a faster rate of convergence of the
iterates. This approach is illustrated by considering the fixed slope Newton scheme.
We first prove the results under the additional assumption |A| > 1. Then the results
are proved in general by scaling all the operators involved in the process. The scaling
factor is based on the knowledge of a lower bound (not necessarily sharp) for | A. |. The
implementability of the accelerated refinement schemes is also discussed. Numerical
examples for computing the largest and the second largest simple eigenvalue of an
integral operator, which was considered by Dellwo, are presented. Our results compare
favourably with those given by him in [9].

An additional merit of our approach is that it can be employed to treat the case
of a multiple eigenvalue or, more generally, of a cluster of eigenvalues whose total
algebraic multiplicity is finite. This will be considered in Part II of this paper. It is not
clear how Dellwo's schemes given in [9] can be extended to treat this general case.

2. Preliminaries

Let X be a complex Banach space and BL(X) denote the Banach space of all
bounded linear operators on X along with the operator norm. For T € BL(X), let
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p(T) and o(J) denote the resolvent set and the spectrum of T, respectively:

p(T) = [z e £ : (T-ziy1 eBL(X)} and a(T) = C\p(T).

The spectral radius of T is defined as

ra(T) = sup{|A| : k e

Unless otherwise stated, T will denote a simple closed positively oriented rectifiable
curve in C and i(V) will denote its length.

We are interested in numerically solving the eigenvalue problem

T(j) = k<f>, U C , 0 ^ <t> € X.

Let (Tn) be a sequence of operators in BL(X) and An = T - Tn. In [9], Dellwo
considered the following polynomial eigenvalue problem which is supposed to provide
an approximate solution of the eigenvalue problem for T:

W Aj Tn ) <£,,„ = 0,
)

X W j ) Xq,n e C, 0 ^ </>,,„ € X.

Notice that for q = 1 the polynomial eigenvalue problem reduces to

Tn<t>\,n = ^l,n<t>l,n, 0 ̂  (j>Un S X .

We show that the polynomial eigenvalue problem can be converted to the ordinary
eigenvalue problem defined on a product space. For this purpose we introduce the
following notations. Let q be a positive integer and X, denote the set of all column
vectors x = [JC, , . . . , * , ] ' with xu... , xq in X. Define

l|x||oo = maxdlJCyll :j = 1 , . . . ,q}.

Then Xq is a Banach space with respect to the norm || H ,̂. We identify the adjoint
space of X, with the set of all column vectors x* = [x * , . . . , x*]' with x*,... , x* in
X*. Define *

If we let

(x, x*> = (*, ,*•)+ ..• + (*,, x*),

then it is clear that |(x, x*)| < HxlUlxl,.
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For nonzero z in C, let

[4]

;=o *•

The polynomial eigenvalue problem can be written as

Let T9 „ be the following companion matrix of the polynomial zq~l Aqtn(z):

, then

I 0

0

0

0 0 ••• / 0

if and only if <!>,,„ = | «/>,„, T ^ ) . . . ,

<>„,„ satisfies

, where the first component <f>qn of

Aq,n(^q,n)4>g,tt = 0.

For the rest of this paper, we let q > 2 and make the hypothesis:

(H): (|| Tn ||) is a bounded sequence and || (T - Tnf || ->

Then for all large n, we have

I 2(117 II -I- IIA T

0 as n —>• oo.

Let A be a cluster of nonzero eigenvalues of T whose total algebraic multiplicity is
finite, say m, and which is isolated by a curve r in p(T) \ {0} from the rest of o{T)
as well as from 0, that is, 0 £ T U Int T and a(T) D Int T = A.

The following results were proved in Proposition 3.2 (b) and Theorem 3.5 of [6].

PROPOSITION 2 .1 . (a) For all large n and all q = 2 , 3 , . . . , T C p(Tq,n), so that

1 C
Pq,n = -T—. / (T,,n - zL , ) - 1 dz,

where \q is the identity operator on Xq, defines the spectral projection associated with
T9,n and A,,n = or(T9,n) D Int T, and

rankP9,n = m.
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(b) If min{|z| : z e T} > 1, then for all large n and all q = 2, 3 , . . . ,

491

where C is a constant independent of q and n.

We now introduce another operator T£° : X? -> Xq such that for k ^ 0, A. e a(T)
if and only if k e a(T£°), the algebraic multiplicity of A. as an eigenvalue of T is the
same as the algebraic multiplicity of A. as an eigenvalue of T^n), and ||T9n — T^Hoo =
UT-Tny\\.

For nonzero z in C, let

y=o *•

It is easy to see that

Let n be a positive integer such that ra (An) < |z|. Then we have

and hence A^\z) is invertible if and only if z e p{T).
Let T^n) be the companion matrix of the polynomial zq~lA^\z):

I

0

0

Anrn

0

• • .

0
0
/ 0

(2.1)

(2.2)

Since the spectrum of a monic operator polynomial is the same as the spectrum of its
companion matrix, we see that if z e C and z ^ O , then for all large n, T^n) — zl is
invertible if and only if z € p(T). Note that this matrix differs from the matrix T,,n

only in the last entry of the first row and

^ — T — II (T —
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PROPOSITION 2.2. (a) For all large n and all q = 2,3 F C p(Tf>),

ff(TW) nintr = a(T) nintr = A.

(b) If min{\z\ : z e F} > 1, then for all large n and all q = 2,3,...,

max||(T'n)-zU-1|lco<2C,
zer q

where C is as in Proposition 2.1 (b).
(c) Let

«) — / fr(n) — 7\ T
1

~ 2ni Jr
 ( " Zq)

dz

denote the spectral projections associated with Tg
n) and A. Then \\¥q

n) — P9,n ||oo -*• 0
as n —*• oo, uniformly in q = 2,3, .... so that

^ = rankP,,n =m

for all large n and all q = 2,3,

PROOF, (a) Note that ra(An) < ||A^||1/2 -*• 0 as n -> oo by our hypothesis (H).
Thus if n is so large that ra(An) < min{|z| : z e F}, then for all q = 2, 3 , . . . ,
F c p(T<">) and

a(T,w) n Intr = a(T) n IntF = A.

(b) By Proposition 2.1 (b), we have for all large n and all q — 2, 3 ,

Fix n0 such that for n > n0, q = 2, 3 , . . . ,

| | T ( n ) — T II <

As a consequence

Since

(Tf - zlq) = [lq - (T,.. - T<">)(T,,n - zl,)"1] (T,,n - z\q), z e F,
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it follows that for n > n0, q = 2, 3 , . . . ,

493

max max

(c) We have

- HO1,.,, -
< 2 C .

l) dz

-THy a s n ^ o o .

Hence if ||P<") - P^.J^ < 1, then rankP<"> = rankP,,n = n.

In this paper, we consider the case m = 1, that is, when A consists of only one
nonzero simple eigenvalue X of T. Let P denote the spectral projection associated
with T and X, and let R(P) denote the range of P. Since m = 1, we have

#(P) = W(r - XI) and /?(Pf) = 7V(T<n) - A.I,).

(p, —,... , - ^ - . Then

A A*~ J
using (2.1), we obtain

Hence /?(P^n)) = span{<!>9}. Let 4>* be the unique eigenvector of T* corresponding to
A. such that

If we define <DJ = [<£*, 0 , . . . , 0] ' , then

Since rankP 9 n = rank P = 1 for all large n and q = 2, 3 , . . . . consider the
nonzero simple eigenvalue A.,n of T,,n which is near A. Let 4>, _„ be an eigenvector of
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T9,n corresponding to X,n and 4>* n be the unique eigenvector of T* n corresponding
to its eigenvalue X9,n such that

Then

P?,nx = (x, **,„>*,,„, x e X,,

and the reduced resolvent Sq,„ associated with T9„ and kqn is given by

1

Z — Kq,n

The operators T, n , Pq „ and S,n commute with each other. They satisfy

(T?,n - X,,nI,)S9,n = I, - P,,a and P,,nS,,n = 0.

3. Fixed slope Newton scheme and its convergence analysis

In analogy with the ordinary fixed slope Newton scheme, we consider the fixed
slope Newton scheme of order q with an initial guess <J>9 „ given by

==*«.» and for y = 1 ,2 , . . . ,

q,n (3.1)

Note that for a suitably chosen fixed n, the first component of the j th iterate <J>̂  is
supposed to approximate an eigenvector of T corresponding to A..

For a fixed q = 2, 3 , . . . , we have

l|T<n) - T ^ I U = ||(7 - TnY\\ -+ 0 as n -+ oo,

by our hypothesis (H). Hence error estimates for the iterates in the q th order fixed
slope Newton scheme can be obtained in the usual manner. Of course, the constants
appearing in these error estimates may depend on the order q of the spectral analysis.
Further, these error estimates will be valid for all n > n0, where n0 may also depend
on q. With a view to make these considerations independent of q, we note that if
|A.| > 1, then by Proposition 2.1, there is an integer n0 such that for all n > n0 and
q = 2,3,...,

maxIKT^-zI^- ' l loo^ C,

for some constant C independent of q and n.
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LEMMA 3.1. Let \k\ > 1.

(a) For all large n and all q = 2,3,..., we have

495

~ 2n '
| |fT(n) — T "><& II <
I K 1 , iq.nJ^qWoo 2: ...q

IIS,.,, Hoc <
7rd i s t (A . ,D '

l|P,.n*,-*,lloo<
t(T)C\\4>\\

(b) / / we define the scalars Af,,n = (* , , **_„> and Nq,n =
Nq,nMqn —*• 1 as n —*• oo, uniformly in q = 2,3,

>),

PROOF. Since A. is an isolated point of a(T) and |A.| > 1, we can choose a curve T
in p(T) isolating X from the rest of o(T) and from 0 such that min{|z| : z € F) > 1.
(a) The bound for ||P, „ Hoc is immediate. We have

W
— T ")

Since <t>g e /?(P<n)), we have

— " 0 0

= l ip <j> — p(")<i)

1

1

/ ((T,,B - zl,)-1 - (Tf - zl,)"1) * , dz
Jr

f (T,,n - zIqr
l

Jr
- Tq,n)(Tq

n) - dz

Noting that (T£° - z l , )" 1 <bq =
(b) We have

- z) for all z € T, we obtain the desired result.

- * n I I<DII, l lool l* , l l , <
2 7 r d i s t ( x r )

If II Aj || < |X|2, then for all <? = 2, 3 , . . . ,

< max

Hence by our hypothesis (H), it follows that Nq%nMq%n -*• 1 as n -> oo, uniformly
in g.
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For obtaining the bound for ||S?,n||oo, note that kq,„ —> k as n ->• oo, uniformly in
q = 2,3,... by [6, Theorem 3.6]. Hence

1 ,.
2

IX,,,, - X| < - dist(X, r )

for all large n and all q = 2, 3 , . . . , so that

i(T)C
US,.«||oo <

2n dist(X,,B, T) ~ n dist(X, T)

THEOREM 3.2. Suppose that \k\ > 1 am/ that an eigenvector Qqn ofTqn corre-
sponding to kq_„ is so chosen that its first component 4>q,„ satisfies

0 < d < WqJ\ < c

for all large n and all q = 2, 3 , . . . , and some constants c, d independent of q
and n. Then there is a positive integer n\ such that for all n > n\, all q > 2 and all
j = 0 , 1 , . . . ,

a and b are constants, independent of q, n andj.

PROOF. By part (b) of Lemma 3.1, there is some positive integer n0 such that for
all n > n0 and all q = 2, 3 , . . . , \Nq,nMqJ > 1/2. Then M,,n ^ 0. Note that
(M q

l
n$>q, <*>*„) = 1. First we prove that the sequences (l/|Mg,n|) and (||$* J|i) are

uniformly bounded in q and n. By part (b) of Lemma 3.1,

1 i \r i

<2|((/>,,„, <t>*)\ <
\MqJ \Mq,nNqJ

Since HP^Iloo = H ^ l l o o l l ^ l l i and ||d>,,BIU > Uq,n\\ > d, we have

Let us now consider the case j = 0. Since O^0)
n = <t>9 „ = P,,n(M~^<J>9), we have

2wdist(X,r)
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for all large n and all q = 2, 3 , . . . by part (a) of Lemma 3.1.
Next, since T<n)(M-J<D9) = J*, and (Af-J*,, *;„) = 1, we have

Now

Since the sequences (||T9,n||oo) and (!!<&* n | | i ) are bounded uniformly in q and n, we
see that there is a positive integer n0 such that for all n > n0 and all q = 2, 3 , . . . ,

for some constant a, independent of ^ and n.
Since |A.| > 1, we have ||^>9||oo = 11011, so that

l l^ lleo
\Mq,n

<2c||0||

Also, since the sequences (IIS^Hoo) and (||4>*n||i) are bounded uniformly in q andn,
there is a positive constant b such that

and

for all large n and all 9 = 2, 3 If ||(T - Tn)
2|| < 1, then ||T<n) - T ^ I L =

11(7" - Tn)"\\ < max{l, ||T - rn||}||(r - 7n)
2|| -^ 0 as n -* oo. Hence there is a

positive integer n{ such that \\(T - Tn)
q\\ < \/b for all n > nx and all q = 2, 3

Now we prove the error bounds by induction on j . If j = 0, then the result is
proved above. Now assuming that the result holds fory — 1 withy > 1, we prove it
fory. We have

)i~l UT ~ Tn)"llb- w* "(r ~ Tn)

= 7^-UT - Tn)"T\\(bUT - Tn)"\\y .
\A.\1
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Also,

M-\% - ^ n = Sg,n {(Tq,n - T<">)(M">9 - •jZ-D) + (x _ X0)) M-^q

Writing kfn - kq<n = k<£ - k + k - kq,n and using b\\(T - Tn)"\\ < 1, we have

,i - V.I < 7^7 11(7" - Tn)"T\\ (b\\(T - Tn)"\\y + -£-11(7- - Tn)<T\\

and hence

< T ^ - il(r - Tn)"T\\
|A|«

as desired.

Now we obtain error estimates for the iterates in the qth order fixed slope Newton
scheme (3.1) without requiring that |A.| > 1 and in the process, improve the results for
the case |A.| > 1 in the sense that as |X| increases, the estimates become sharper.

For this purpose, we consider a particular kind of scaling of the operators T9
n) and

T9,n . Fix a positive scalar a and define Dq : X, —>• Xq by

D q [ x u . . . , x q ] ' = [ x u a x 2 , . . . , a q ~ l x q ] ' , [ x u . . . , x q ] ' e Xq.

Let Tg
n) and T9 n denote the operators obtained by replacing T and Tn by a T and a Tn

in Tq
n) and T9,n, respectively. Then

tq
n) = Dq\aT<

q
n))Dq and f,,n = Dq

l(aTq,n)Dq.

The corresponding spectral projections are given by

Thus, if <I>9 is an eigenvector of T^n) corresponding to k, then <!>, = D~lQ>q is an
eigenvector of Tg

n) corresponding toaX. Let 4>* = DqQ>*. Then
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Similarly, if <t>?n is an eigenvector of T , n corresponding to its eigenvalue A.,,n, then

4>9,n = D~l<Pq,n is an eigenvector of T9>n corresponding to its eigenvalue akqn, and

if ®q,n 1S an eigenvector of T*n corresponding to its eigenvalue Xq<n, then <!>*„ =

Dq<$>* „ is an eigenvector of T* „ corresponding to its eigenvalue akqjl, and further

If kq<n is a simple eigenvalue of T,iB, then the reduced resolvent associated with
Tq ,„ and akqn is given by

* a

Let a be a positive scalar. Consider the fixed slope Newton scheme corresponding
to the scaled operators:

and for 7 = 1 , 2 , . . . ,

(3.2)

LEMMA 3.3. For j = 0 , 1 , . . . .

In particular, the first component of the scaled iterate O^J, is the same as the first
component of the iterate 4>^, j = 0, 1

PROOF. We prove the desired result by induction on j . The case j = 0 is a part of
the definition. Assume that the result holds fory. Then

£ = (fW

Also,

Thus the result holds for 7 + 1 and the inductive step is complete.
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As the first component of Dqx is the same as the first component of x for each
x e X , , w e see that the first components of <J>̂  and <b^n are the same.

Since the first components of the eigenvector iterates approximate a suitable eigen-
vector of T, we give error estimates for these first components.

THEOREM 3.4. Suppose that |A.| > € and that an eigenvector <!>,„ o/T,,n corre-
sponding to kq<n is so chosen that its first component <j>q,n satisfies

0<d< UqJ\<c

for all large n, all q = 2, 3 , . . . , and some constants c, d independent of q and n.
Let Mq,n = (<t>q, **„>• Let 0 ^ denote the first component of <J> ,̂ j = 0, 1,
Then there is a positive integer nt such that for all n > n\ and all q = 2, 3 , . . . ,
j = 0 , 1 , . . . ,

where a' and b' are constants, independent ofq, n and j .

PROOF. Let or = 1/e. Then A. = ak is a simple eigenvalue of aT and \k\ > 1.
Consider the scaled operators T£° and T9 „. Now <J>9n = D~'<!>,,„ is an eigenvector
of T9,n corresponding to its eigenvalue kq<n = akqn. Let k^l and <J>^ be the iterates
obtained from (3.2). Note that the first components of <J>?n and 4>,n are the same.
Hence by Theorem 3.2, there is a positive integer nx such that for n > nx and all
9 = 2 , 3 , . . . , j = 0 , 1 , . . . ,

where a and b are constants, independent of q, n andy. Since

k = ak, ^>=aXW> and , ^

by Lemma 3.3, and since | |M~>, -<pq,n\\ < \\D-\M^q - *«>)||oo, we have

| x"X^' - i ^ 7 l l ( r " Tn)"n 7UT~

and

Taking a' = max{a, aa] and b' = b, the desired result follows.

https://doi.org/10.1017/S0334270000011784 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011784


[15] Accelerated spectral refinement. Part I 501

Since the simple eigenvalue A. of T is assumed to be nonzero, it is natural to expect
that a lower bound e > 0 for \X\ is available. The preceding Theorem 3.4 then gives
a computable estimate

a' (V ^
-\\(T-T)"T\\ -

for the errors in the j th eigenvalue and eigenvector iterates. Of course, if a better
lower bound e' for |A.| is available, that is, if 0 < e < e' < \X\, then the preceding
error estimate with e replaced by e' becomes sharper.

4. Implementation

In this section we show how the refinement scheme (3.1) can be implemented when
each Tn is a bounded operator of finite rank. We also show how an eigenvector 4>9n of
T9,n can be chosen so that its first component <f>q,„ is bounded and also bounded away
from zero as required in Theorem 3.4.

For simplicity, we assume that rank Tn < n, so that there are xnA,... , *„,„ in X
and x*, x*n in X* such that

Tnx = (x, **,)*„.! H + (x, x*n)xn,n, x e X.

We describe a canonical procedure for discretizing Tn.
Define Fn : X ->• C and Gn : C -+ X by

Fnx = [(x, x*nl),... , (x, *;„)]', x € X,

Gnu = u(l)A:n,, + • • • + u(n)xn,n, u = [K(1), . . . , u(n)]' e €",

where the superscript t denotes transpose. Then F* : C" -> X* and G* : X* -> C
are given by

F > = u ( l ) < , + • • • + u(n)<n, u

G>* = [(*• ,*„ . , ) , . . . , (x*. *,, ,)] ' , x*eX*.

It is easy to see that GnFn - Tn and T* = F*G*n.
Note that fork = 0 , . . . , q — 1, the (i,y )th entry of the n x n matrix FnA*Gn is

(A*xn,y , x"ni), ij = 1 , . . . , n. Let

fl." ~~

FnGn FnAnGn

/„ 0

0

0 0

0

0
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where /„ is the n x n identity matrix.
The following results can be easily verified.

PROPOSITION 4.1. Let \x e C, /x ^ 0. Then

(i) T,,nx = (xx for x e Xq if and only ifx =

9-1

x
x/fi

_x/fi 9-1

and

flX. (4.1)
j=o

(ii) A,,B U = fi Ufor U e V"> if and only if U =

u
u/fi

u/fj. q-\

and

9 - 1

(4.2)
j=o

(iii) If fx andx satisfy (4.1), then /x and Fnx satisfy (4.2). Conversely, if fx and u
satisfy (4.2), then \x and J^Zl V~' KGnU satisfy (4.1).
Thus /x is an eigenvalue o/T9 n if and only iffi is an eigenvalue ofAgn.

Recall that kqn is the unique nonzero simple eigenvalue of Tgn near the given
nonzero simple eigenvalue X of T. Then kq„ is also an eigenvalue of Agn near A..
(In fact, kq<n is a simple eigenvalue of A,n.) Let C/9,n be an eigenvector of Aq,n
corresponding to kq<n and V,n be the eigenvector of \"n corresponding to Xq,n such
that

(Uq,n, Vq.n) = Vg
H

nUq,n = l.

Here the superscript H denotes conjugate transpose. Then

- r ^±a uin T
q.n — M9,n. ^ , . . . , , ,

L A9.« ^q,n J

for some nonzero «,„ € C". Let

9-1

(4.3)
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Then
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$ - L til *2±\'
L Aq.n A.q,n J

is an eigenvector of T9>n corresponding to A.,-n. Define F , n : X, Cq by

9.«

Since Fn<j>q,n = «,,„, we get

; =

~Fnxx~
•

. n Q —

for
"*i"

eX,.

F n<J> „ = U „ .

It can be easily checked that F^T, , , = A,,nF,,n and F ^

503

(4.4)

= T;nF*n. Let

T* d>* — T* F* V — F* A w V — X F* V — X <I>*
1<7,n^9,n — 1q,nrq,n V9.» ~ r q,nAq,n Vq.n ~ Aq,»r

 q,n
 Vq.n ~ Aq."^q,

and

Let || ||n be a norm on C". We assume that

| | F n | |<a and \\GH\\ < 0

for some constants a and 0, independent of n. We remark that the boundedness of the
sequences (|| Fn ||) and (|| Gn ||) depends on the choice of a norm || ||n on C" for each
n = 1,2,... and, in general, this choice will be dictated by the given norm || || on
the Banach space X. Several examples of commonly used finite rank operators and
appropriate choices of a norm || ||n on C are given in [5].

We normalize «,„ such that ||«g,n|U = 1. Let |A.9>n| > e > 0. Choose n so large
that || Aj || <<r2. Then

110,.. II =
9 - 1

y=o
q—1 it i j || a oo

< ^ " i 77T7llG'.ll < ~ y ! - p
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If, in fact, || A; || < c2/2 and || An|| < y, then

Also,

1 = I K J I " = II Fn49An < II F J 110,,. || < OtWh.nW.

Taking d = I/a and c = 2^(1 + y/e)/e, we have

0 < d < \\<j>qJ < c,

which is precisely the condition assumed in Theorem 3.4.

5. Numerical examples

We consider the space X = C([a, b]) of all complex-valued continuous functions
on the interval [a, b] with the sup norm. Let T be an integral operator on X given by

Tx(s) = / k(s, t)x(t)dt, x € X, s 6 [a, b],

where the kernel k(.,.) is continuous on [a, b] x [a, b\. Note that T is a compact
operator on AT. In actual computations, T is replaced by its Nystrom approximation
t given by

fx(s) = J 2 w™h (s, tjM))xtfM)), x € X , s e [ a , b],

where the positive integer M is very large. The nodes t[M),... , ffl in [a, b] and the
weights w\M),... , w(^ in C are assumed to give a convergent quadrature formula

M

7 = 1

For n « M, we choose nodes f,("\ . . . , t^n) in [a, b]. Let ef'',... , e*n) denote the
piecewise linear hat functions associated with the nodes t[n\... , r/]

(n) and consider the
piecewise linear interpolatory projection given by

;=•
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Define Tn = nnT, the projection approximation of T. Then \\T — Tn\\ —> 0 if the
mesh of the partition tends to zero as n -* oo. We have

Fnx = [Tx(t[n)),..., Tx(^n))]', x e X,

Gnu = M(l)e{n) + • • • + u{n)e<Z\ u € C".

We consider the sup norm on C , so that ||Fn\\ < \\T\\ and ||Gn|| < 1 for all n.
Consider the kernel &„(.,.): [0, 1] x [0, 1] -> OS given by

77 + S — t if S > t,

where r\ is a real parameter. We choose nodes and weights:

f{m = J a -1 /V3) /M if j is odd,
'' ~ j (i - 1 +" l/*/3)/M if i is even ,

and w(jM) = 1/M, i = 1 , . . . , M. These are obtained by the Compound Gauss Two
Point Rule on [0, 1]. For n <£ M, let

fw = | ( i - l / V 3 ) / n if i is odd,

[ (i - 1 + l/V3)/n if J is even ,

andtuf0 = l /«for / = 1, . . . ,n.
This kernel was considered by Dellwo in [9]. The eigenvalue problem for this

kernel becomes unstable as r) approaches 0. We refer to [9] for a description of the
spectrum of T when rj approaches 0. While Dellwo had given numerical results for
the largest eigenvalue of T and t] = —0.66, —0.68, —0.70, we consider the largest
and the second largest eigenvalues of T and rj = —0.66. Like Dellwo, we have taken
M = 500 and n = 5 when q = 2, 3, 4.

Let X denote the largest eigenvalue of T, and X^n and <t>̂> denote the eigenvalue
and eigenvector iterates obtained from the gth order fixed slope Newton scheme (3.1).
Let <p^n be the first component of <t> .̂ For j = 0 , 1 , . . . , let

rq,n — II l 'Pq.n Kq,n'f>q,n H°°

denote the j th residual. Let ix denote the second largest eigenvalue of T. Let fi^\ and
rfjl denote the eigenvalue iterate and the residual for the second largest eigenvalue.
Our computations were performed on CDC CYBER-180/840 with an accuracy of 15
digits.
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TABLE 5.1. t) = -0.66, q = 1, n = 30 (qn = 30)

[20]

j
0
1
2
3
4

1*-
8.45
4.43
4.52
1.42
9.06

— /

X

X

X

X

X

^ • > l

io-5

io-8

io-"
1Q-14

io-'4

2.01
1
1
1
3

.36

.11
01
29

Q

X

X

X

X

X

n

io-2

io-5

io-8

io-"
io-'3

1
M-
.88

6.62
2
9
3

83
77
55

- /
X

X

X

X

X

lVn\
io-4

10"8

io-11

io-15

io-14

2.06
1
1
1
1

.67

.38
92
89

q.

X

X

X

X

X

)
n
io-2

io-6

10"8

io-'2

io-'3

TABLE5.2. rj = -0.66,q = 2,n = 5(qn = 10)

j
0
1
2
3

1*-
3.05
1.16
6.11
7.81

- /
X

X

X

X

^q.n<

10"5

io-8

io-'2

io-'4

6.72
2.90
1.46
3.81

q.
X

X

X

X

)
1

io-4

io-7

io-'°
io-'3

IM-
1.83
8.09
1.03
8.61

- /
X

X

X

X

lTn\
io-4

10"8

10"'°
io-'4

2.76
2.21
2.17
2.45

pO)
q.n
X

X

X

X

lO"3

io-6

io-9

io-'2

TABLE 5.3. r) = -0.66, q = 3, n = 5 (qn = 15)

j
0
1
2

4
2.
5.

1*-
.03
24
32

— i

X

X

X

io-7

io-'2

io-'4

8.95
5.70
2.22

rt
X

X

X

)
1

io-6

io-"
io-13

IM-
5.76
2.64
3.20

-1
X

X

X

10"6

io-'°
io-'4

9.89
5.95
5.90

q
X

X

X

n

io-5

io-9

io-'3

TABLE 5.4. r) = -0.66, q = 4, n = 5 (qn = 20)

j
0
1

1 Q.ni rq,n

AA1 x 10"9 1.02 x IO-7

5.15 x lO"14 2.17 x IO-'3

| /n - / i^ | r^n

1.80 x IO-7 3.11 x 10"6

4.79 x IO-'3 9.39 x 10~12

Our aim is to approximate eigenelements of the M x M matrix associated with f.
Assume that an eigenpair (A.9>n, Uq,„) of the matrix A9 „ is already found and the LU
decomposition of A,,n — A., „/,„ is computed. Then using formulae (4.3) and (4.4),
we compute <Pq „ which requires Mqn + Mq flops. This is the cost of initialization.

The cost of computation of k^n isMn+n2+2n flops. For each iteration we also need
to solve a system of the type (Agn — \q<n Iqn)a = ft. Since the LU decomposition of the
associated matrix is available, the solution of the system costs {qn)2 flops. Finally, the
computation of the eigenvector iterate <b^n needs M2+M(qn+2n+2q+2)+n2 flops.
Thus the total cost per iteration is M2 + M(qn + 3« + 2q + 2) + (qn)2 + qn + n2 + 2n.
As M is large compared to qn, the cost per iteration is dominated by the factor M2

irrespective of the value of q.
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Table 5.1 gives error estimates for the case q = 1 which is simply the usual fixed
slope Newton scheme ([4,8,11,15]). Note that the eigenvalue problem solved for
initialization is of size 30 and in each iteration a linear system of size 30 is solved.

In Tables 5.2-5.4 we give results for n = 5, TJ = —0.66 and for q = 2, 3,4.
The eigenvalue problem solved for initialization for the qth order fixed slope Newton
scheme is of the size qn. Also, in each iteration a linear system of size qn is solved.

These tables illustrate how higher order refinement schemes can prove to be efficient
and economical. We note that the results in these tables compare favourably with the
results given by Dellwo [9, Table 3].
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