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1. Introduction

We consider non-zero po lynomia l s /^ , ..., xk) in k variables xit ..., xk

with coefficients in the finite field GF[q] (q = p" for some prime p and positive
integer n). We assume that the polynomials have been normalised by selecting
one polynomial from each equivalence class with respect to multiplication by
non-zero elements of GF[q]. By the degree of a polynomial f(xu ..., xk) will
be understood the ordered set (mu ..., mk), where mi is the degree of/(x1( ..., xk)
in X-, (i = 1, 2, ..., A;). The degree (mu ..., mk) of a polynomial will be called
totally positive if m,>0, i = 1, 2, ..., k.

We investigate here the number of normalised irreducible polynomials
distributed among all the normalised polynomials f(xu ..., xk) of degree
(mlt ..., mk). Let N(mu ..., mk) denote the number of normalised polynomials
of degree (mlt ..., mk) in k variables xu ..., xk and M(mu ..., mk) the corres-
ponding number of irreducibles. When k = 1, M(m) can be evaluated explicitly
and is given by

- £ Kr)qs, (1.1)

where n(r) is the Mobius function. It follows from (1.1) that

M(m)~ -qm=~N{m), (m-»oo), (1.2)
m m

for fixed q. More generally, Carlitz (1) has proved that, if k jg 1, Nk(m) is
the number of normalised polynomials in xu ..., xk which split into m linear
factors in some extension of GF[q] and in which x™ actually appears, and Mk(m)
is the corresponding number of irreducible polynomials, then Nk(m) and Mk(m)
are given by

Nk(m) = qkm

and

Mk(m) = - Y, H(r)qkm. (1.3)
Vfi rs — m

Hence

Mk(m)~-Nk(m), (m->oo) (1.4)
m

E.M.S.—A
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2 S. D. COHEN

holds for all k S; 1 and fixed q. When k ^ 2 and we consider all polynomials
of degree (mu ..., mk), the situation is different and much more difficult. In
this case, no explicit formula corresponding to (1.1) or (1.3) is available.
Carlitz (2) has shown that, in contrast to (1.2) and (1.4), when k ^ 2, in a
certain sense, " almost all " polynomials are irreducible. Carlitz (3) has studied
the case k = 2 in greater detail. Here we obtain the corresponding results
for a general k(>. 2). We shall assume from now on that k 2: 2. We shall
show, for example, that for fixed mlt ..., mk_lt numbered so that

mk-l = max mh
1 & i & k - l

M(mu ..., mk) = (l-q-"k)N(mu ..., mk) + O(mkq°n> + 1)-(mk-2 + i)mk->mk), (1.5)

where

«*= f *ff
\t = I

and the constant in the O-term is independent of mk. We shall see later that

where the constant implied by the 0-term depends only on q. We examine
results like (1.5) more closely obtaining improvements in most cases. We
conclude by giving some examples.

2. Fundamental formula
The following lemma is an extension of the corresponding result for k = 2

in (3).

Lemma 1. We have

niiN^mi, ...,mk)= £ ... X! riL(ru •••> ' " /kW'Wi-r , , .. . , mk-rk), (2.1)
rt = 0 I* = 0

where
L(ru...,rk)= £ I M f e .... V). (2-2)

[It will be necessary to distinguish by context the degree (rx, ..., /-fc) and the
symbol (rt, ..., rk) meaning the greatest common divisor of ru ..., rk.\

Proof. Put
F(mu ..., mk) = n/C^i, ..., xt), (2.3)

where the product extends over all normalised polynomials of degree (m1, ...,
mk); also put

P(mu ..., mk) = T\p(xu ..., xk), (2.4)
where now the product is restricted to the normalised irreducibles of degree
(mu ..., mk). I f / i s an arbitrary polynomial of degree (mt, ..., mk) and p is
an irreducible polynomial of degree (r,, ..., rk), we may put

https://doi.org/10.1017/S001309150001213X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001213X


IRREDUCIBLE POLYNOMIALS OVER A FINITE FIELD 3

where e is a non-negative integer. Let <b{ju •••,jk', p) denote the number of
normalised polynomials of degree (ju ...,jk) that are not divisible by p. Then
it follows from (2.3) that

F(mu ..., mk) = [1 peO(""-eri •*-"«'>, (2.5)
e> P

where the product is over all e, ru ..., rk and all irreducibles p of degree (ru

..., rk) such that er1 ^ mu ..., erk ̂  mk. Moreover, it is evident from the
definition of <^(m1, ..., mk; p) that

Q>(jnu ..., mk; p) = N^m^ ..., m^ — Nimx — r^, ..., mk — rk),

provided mi ^ ru ..., mk ^ rk; otherwise

<$>(mu . . . , mk; p) = N{mu ..., mk).
Thus (2.5) becomes

mi mjt

F(mu ..., mk)= n ••• I I IIPW' (2-6)
r, = 0 rk = 0

where w= ^e$(m 1 -e r 1 , ..., mk-erk; p)
e

1 - 2 r 1 , ..., mJk-2rit)}

1 - 3 r i , ..., mk-3rk)}

k — hrk),

w h e r e h is t he l a rges t i n t ege r such t h a t hrv S mu •••» Art ^ mfc. T h u s
h

w = X ^{mi-jru ...,mk-jrk), (2.7)
./ = i

so that (2.6) becomes

F(m1,...,mk)= [I - FI Wri,...,r,yr, (2.8)
ri = O rfc = 0

with w defined by (2.7) and P(ru ..., rk) by (2.4). Clearly the degree in ^ of
F(ml, ..., mk) is m1N(m1, ..., mk), while the degree in xx of P(ru ..., r t) is
rvM(ru ..., rfc). Hence (2.8) yields

..., mk)

m\ ntfc h

E ••• E r i M ( r i . •••»'"*) E N(mi-Jru •••> "h-jrk)
= 0 rfc = 0 j = l

g ... 2 ^ , - u , mr%) £ M ^
u, = o uk = o JHm,...,uk) J \J

mi mic

-Ui, ...,mk-uk)L{ui, ...,uk),
u, = 0 i/fc = 0

where L(uu ..., uk) is defined by (2.2). This completes the proof of the lemma.
We note that equating the degrees in xt (i = 2, ..., k) in (2.8) yields only

those companion formulae to (2.1) obtainable by symmetry.
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4 S. D. COHEN

3. Further preliminaries
Before applying Lemma 1, we require some further notation and pre-

liminary results. For convenience, we shall assume that (mu ..., mk)(k ^ 2)
is totally positive.

Let n, i be integers with 1 ̂  i ̂  n. In what follows, we shall denote by
YJ a sum over all distinct selections (disregarding order) of / elements, j \ , ...,/,-,
n, i

out of the set {1, 2, ..., «}. The remaining n—i elements (in any order) will
be denoted by j i + 1 , ...,jn.

We define 2, and £ , to be the sum over rJt as rJt takes integral values from

0 tomJt — 1 and from 1 to mJt — l, respectively. Here, as usual, empty sums are
taken to be zero. We denote the multiple sums S .̂-.S,- and £ i - -Z" by £(l)

i i
and £ ( 0 , respectively. Write

i
Q _ „(">, +l)...(mk+l)

Qi = E ' g"'l-"'i<»V|ti
 + 1>"-(«VI> + « (j = 1, . . . , k).

k,i

Then the function N(mu ..., mt) has the properties given in Lemma 2 below.

Lemma 2. We have

(,q-l)N(mu...,mk)= £ (-l)'ft. (3-1)
i = 0

u t ) 0> (3-2)
and

N(mu ..., mk)-qN(mu ..., mk-l) = (l-q-nk)N(mu ..., mk)

k-l

+ £ o^^c^+D-'^+i)), (33)
J = i

where

//ze constants implied by the O-terms depend only on q.

Proof. In this proof we shall be considering only polynomials of degree
at most ntf in xt (i = 1, ..., k). By the principal terms of a polynomial
f(xu ..., xk) of degree {mu ..., mk), we shall mean those terms of/(jc1; ..., xk)
which contain xJJ for at least oney, 1 ^j^k. Thus, N(mu ..., mk) is the
number of normalised polynomials which contain at least one principal term
involving x™' for each i, i = 1, ..., k.

Now, for each /, with 0 ̂  i' ̂  k, the number of polynomials in which
Xi, ..., Xj (say) do not appear to the /w,th power and in which the coefficients
of principal terms not involving JC™1, ..., xf1 may be zero is

_mi...mi(m, + i + l)...(mfc+l) j _ Q ^ (3 5)
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(with obvious conventions for / = 0 or k). The sum, for fixed /, of all terms
of the form (3.5) is Q, (i = 0, ..., k).

Hence, for any r, with 0 ̂  r :g i, the number of times a polynomial in
which exactly xu ...,xt (say) do not appear to the powers m1,...,mi, respectively,

is counted in the number Qr is I . I = I I and so the number of times such

a polynomial is counted in the sum

r = 0

is

.?„<-')-(;) = {J; ! :£ . . ,* .
Hence S is exactly the number of polynomials of degree (mt, ..., mk). Since
the number of equivalence classes is (q— X)~1S, result (3.1) follows.

(3.2) is a simple consequence of (3.1).
For (3.3), consider

gg _ _ m i ( m 2 + l ) . . . ( m k + 1 ) _ _ (mi + l ) . . . ( m k - i + l)mk

+terms of smaller order)
_ _ / - g ( m i + l).. .(mfc-i + l )m J t _ mi(m2+l). . .(mf c-i + l ) m k _ _ (mj + l ) . . . ( m k - i + l ) (mf c -1)

+terms of smaller order),

by (3.1). This, ignoring the terms of smaller order, equals

r_(m! + l)...(mfc_, + l ) m t + 1 _ _ (mi + l) . . . (mf c- , + l ) ( m k - 1) +1"|

_ r (m1 + l ) . . . (m k - 1 + l ) m k + l _ _ (m, + l) . . . (mk- , + l ) ( m k - 1) + 1"|

The terms displayed cancel out in pairs, and the remaining terms give rise
to the error terms shown in (3.3) (on dividing by q— 1). The result (3.3) follows.
This completes the proof of the lemma.

Note. For large q,

N(mlt ..., mk) = o(€(»i + i)-("»+i)-i).

In the present context q is fixed.
From Lemma 1 and (3.2), we have

L(jnu ..., mk) ̂  N(mlt ..., mk) = o(€<»« + D-0"* + O). (3.6)

We shall use (3.6) later in the estimation of L(ml, ..., mk).
Now, for fixed positive integers m,, ..., mk and non-negative integers

ru ..., rewrite

T(ru .... rt) = (
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6 S. D. COHEN

so that, by (3.6),

UTu -.., rJNC/Jij-rj, ..., mk-rk)

^ N(ru ..., rk)N{mi-ru .... mk-rk) = O(qn" '*>). (3.7)

The following properties of T(rlt ..., rk) are immediate; viz.

T(rJi,...,rik) = T(ru...,rk), (3.8)

for any permutation {j\, ...,jk} of {1, ..., k), the mt's being permuted in the
same way, and

T(mi-ru ..., mk-rk) = T(ru ..., rt). (3.9)

We shall require upper bounds for terms of the form (3.7); we obtain these
in Lemmas 3 and 4 below.

Lemma 3 . Letmu ...,mk,u be fixedpositive integers such that 1 ^ a ^ k—\,
m, ^ 2(u<t ^ k). Suppose also that su ..., sk are integers satisfying

l^s , ^m,-l, (u<t^k); j

then

T(si, ..., st) g T(ml5 ..., mH, m B + 1 - l , ..., mk-l). (3.11)

Proof. To prove (3.11), we observe that if 2s, S; m,, t — 1, ..., A:, then, for
each j with 1 ^j^k,

k1 k

r IT (mt-5, + l ) ^
S + 1 I

O5y Sj + 1 i = i m^ — Sj + 11 = I

at the point (su ..., sk). Thus T is increasing with respect to Sj for each j ,
1 <.j-£k. Hence for this case (3.11) holds.

We now show that for general su ..., sk satisfying (3.10), there exist integers
s'i, .., sk also satisfying (3.10) with, in addition, 2s', ^ m,(t = 1, ..., k) and

T(su ...,sk)^T(s'u ...,s'k). (3.12)

Thus, by the first part of the proof applied to T(si, ..., s'k) and (3.12), (3.11) is
proved.

Let v be the number of the s, (t = 1, ..., k) such that 2s, ^ m, and so
0 :£ v ^ A:. We have already discussed the case v = k and the case v = 0
reduces to it on application of (3.9) and noting that (3.10) remains valid with
s, replaced by m,—s, (t = 1, ..., k). Suppose now that v ^ 0, k and let
S7i> •••' sJk b e a rearrangement of st, ..., sk such that 2s,-( ^ >w,-.(l ^ i ̂  t>)
and 2Sj-( < ntj^v + 1 £ i^k). Now, if J, satisfies one of the pair of inequalities
in (3.10), m,—s, satisfies the same inequality. Further 2(mJt - sJt) ^ mh,
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IRREDUCIBLE POLYNOMIALS OVER A FINITE FIELD 7

v+l g i ^ k. Hence

T{sJx, ..., sJv, mu+l-sJv+l, ..., m^-SjJ-nsj^ .... sJk)

= I fi (sy,+D- n K(-Si,+i)}{ n K - , - ^ , + 1 ) - n (**
w = I i = i ; w = p+i t = o+i

Whence (3.12) holds with

after using the permutation rule (3.8). This completes the proof.

Lemma 4. Let mu ..., mk, u be fixed positive integers with 1 ^ u ^ /c— 1.
TAen

T(mu ..., mu, 0, ..., 0)

g max {T(mi, ..., mu, mu+l-l, ..., mk-\),

Tinit-l, ..., m,,-l, mu+u ..., mk)}. (3.13)

Proof, (i) Suppose first that 2u^k. Then

T(mu ..., mu, mu+l-l, ..., mk-i)-T(mu ..., mu, 0, ..... 0)

(ii) Suppose now that 2u<k. By (3.9), (3.8)

T(mu .... mu, 0, ..., 0) = T(0, ..., 0, mu+1, ....

= ^ ( ^ u + i , •••> mk, 0 , . . . , 0 )

g T(mu+l, .... mt, nJ i -1 , .
by (i), since 2(k-u)>k.

This completes the proof.
Evidently,

T(mu ..., mu, ?nu + 1- l , ..., mk-V) = (m1+l)...(mu + i)mu+

(3.14)
In fact, the constant in (3.14) is 2k~".

4. Estimation of M(ml, ..., mk)
It may be verified by direct substitution that we can rewrite (2.2) as

I ^ ^ (4.1)
, mk) J \ J J /

where n(j) is the Mobius function.
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8 S. E>. COHEN

Using the results of §§ 2-3, we obtain an estimate forL(mt,..., mk) and invoke
(4.1) to deduce the corresponding estimate for M(m1, ..., mk). We restrict
ourselves again, without loss of generality, to the case {mu ..., mk) totally
positive.

We recall, from Lemma 1,

u ...,mk)= £ ... £ r^r^ ..., r^Ninti-r^ ..., mk + rk)
<-i = 0 i-fc = 0

mk

= mi Y, L ( m i> '•••> ™k-u rk)N(0, ..., 0, m/t-r^ + miE,
rk = 0

(4.2)
where,

< ^
~ i =

Using

since
- l

(3.7),

rjml g 1
Wife

/ /
L . i r k =

we obtain

t-i
£ = E

i = 1

, we

(T ,
{LA

0

k-1,

have

irji> •

i
2
= 0

j^r^, ..., mh-rh, 0, ..., 0, mk-rk)}.

(4.3)

where the implied constants depend only on q. We divide the summation of
(4.3) into two cases:

(i) rh = 0(t = 1, ..., /). These terms are restated in (4.5) below. Since
the summand in (2.1) contains the factor rx we can neglect terms in which
rt takes the value zero in (4.3). This justifies the omission of the term

2
rk = 0

from the second multiple sum of (4.5).
(ii) rJt ^ 1, for some / with 1 5S t g /. On application of Lemma 3, these

terms give rise to a sum

t - l i - l mfc

y y1' y y» yus) y ^)rgT(m(i)-i,...,m(,)-i(m(«+i),...,mk)i (4.4)
i = l t - l , i j = l i , i 1 rk = 0

where the subscript (?) in w(r) denotes j h . The sum (4.4) can be rewritten to
give the first multiple sum in the expression

£ = E a » E ' E ( 0 Z r ( 1 1 > }
i = 1 k - l , i 1 rk = 0

+ I* E ' E °{9 r ( 0 °'""'+' mk)}.
> = 1 * - l . i r k = 0
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where, for 1 g i g k — \, we have

) + l 2

Application of Lemma 4 and (3.14) to (4.5) yields

E= I I ' O(m.1...m,.qm^-^<(m^+» + 1 ) - ( m i ' + 1 ) ) , (4.6)
t = 1 ft—1, i

where the constants implied by the 0-terms are of the form ptB, where B
depends only on q and, for 1 g J ̂  k— 1,

For fixed A:, we can neglect many of the terms in (4.6) and, in fact, obtain

£ = £ O ( m i m t q
m ' ( m i + l ) " 1 ( " k + 1 K m k + 1 ) ) , (4.7)

i = 1

where nk is given by (3.4) and the implied constants depend only on q and k.
Accordingly, by (4.2) and (4.7),

N{mu...,mk)= J q""<-r*L(m1,...,mk_1,rk)+ £ O(Ci), (4.8)
rk = 0 i = 1

where, for 1 ^ i ^ k — \,

and the constants implied by the O-terms depend only on q and A:. It follows
from (4.8) that, if mk ^ 2,

N(mu ..., mk)-qN(mu ..., mfc-l) = LCmlf .... mt)+ £ O(q). (4.9)
i = 1

Comparing (3.3) and (4.9) we obtain

L(mu ..., mk) = ( 1 - ? - ' ) % , , ..., mk)+ *£ O(c .̂ (4.10)
i = 0

Now, if (TM1, ..., mfc) = 1, i.e. if w ^ ..., mfc are relatively prime, it follows
from (4.1) that

M(mu ..., mk) = L(mu ..., mk). (4.11)

In particular (4.11) holds when nij = 1 for some j , 1 ^ j ^ f c . If m} ^ 2,
j = 1, ..., &, we have from (4.1) and (3.6)

M(rnlt ..., mk) = Umu ..., mt)+0(g^'+2>-(-»+«/2k)

= L(mlf .... mt) + 0(<T •""<). (4.12)
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Thus, combining (4.11) and (4.12), (4.12) holds for all totally positive (mu...,mk).
Here again the implied constant depends only on q.

From (4.10) and (4.12), we obtain an expression for M(mu ..., mk) which
is the main result of the following theorem.

Theorem 1. Let mu ..., mk be positive integers with k ^ 2. Then the number
M(mi, ..., mk) of normalised irreducible polynomials of degree (ml, ..., mk) in
k indeterminates with coefficients in GF[q] satisfies

M(mu ..., mk) = (\-q-n*)N(mx, ..., mk)

+ *£ 0(mI.;n^""(m'+1)-'('"'+1)<mfc+1)), (4.13)
i = 1

where N(mu ..., mk) is the total number of normalised polynomials of degree
(mu ..., mk), nk is given by (3.4) and the constants implied by the O-terms depend
only on the field (i.e. on q) and on k.

In particular, for fixed mlt ..., mk-l, numbered so that

mfc_! = max mh

M(m,, ..., mk) = ( 1 - ^ M m , , ..., mk)+0(mkq<mi + 1)•••<"*->+1>«*->"*), (4.14)

where the implied constant is independent of mk; and

M(my, ..., mk)~(l-q~"")N(m1, ..., mk) as mk-+co. (4.15)

Further, for k ^ 3 and fixed mx, ..., mk_2,

Mim^, ..., mk)~N(ml, ..., mk) as rat.,, mk->co. (4.16)

Proof. We have already proved (4.13). Statements (4.14) and (4.15) are
immediate from (4.13). Also (4.16) follows from (4.15) on observing that, for
fixed m,, ..., /wfc_2,

<7~"l'Ar(m1, ..., mk) = o(N(ml, ..., mk)) as mk_u mk-*co.

This completes the proof.
We note that, by (4.16), we can say that, \f2£j£k,

M(mu ..., mk)~N(mu ..., mk) (k ^ 2)
holds as any j of m1, ..., wfc-»oo.

We investigate (4.14) and (4.16) in more detail in § 5 below.

5. Improvement of (4.14) and (4.16)
We consider first the estimation of M(ml, ..., mk) in which mu ..., wt_t

are fixed. In this case we can improve (4.14) except when k = 2 and my = 2
and when k = 3 and ml = m2 = 1.

We can calculate M(2, n) and M{\, 1, «), where n ^ 1, directly using
Lemma 1 and (4.1) (see § 6). When expressed in the form of (4.14), we obtain

M(2, n) = (1-<T2)JV(2, n)-Wtt-q-2)2nq 2
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and
M(l, h n) = (l-9-3)JV(l, 1, n)-q2a-q-2)2nq2n+O(q2n),

both expressions being valid for large n. We see that in these cases (4.14) is
" best possible ".

Define the positive integer R by

= l,ifk = 2, )
(5.1)

), if A: ^ 3 . J
Then apart from the cases already considered we may replace (4.14) by the
improvement contained in the following theorem.

Theorem 2. Let m,, ..., mk^i(k ^ 2) be fixed positive integers numbered
so that /«! ^ w2 g . . . ^ mfc_j. Then, in the notation oj Theorem 1,
M(/Mj, ..., mk) satisfies, with the exceptions oj M(2, m2) and M(l, 1, m3),

M{mu ..., mk) = ( 1 - ^ ) % , , ..., mk) + O(qRn'k-'mk), (5.2)

for large mk, where R is given by (5.1) and the implied constant is independent
of mk. Further, (5.2) is the " best possible " estimate for M(mly ..., mk), i.e.,
there exists a positive number K, independent of mk, such that, for fixed

| M{mu ..., mk)-(X-q-'*)N(m1, ..., mk \>KqRm-^ (5.3)

holds.

Proof. In this proof let A denote the difference

N(mu ..., m^-qNim^, ..., mk-\).

We require the following consequences of (3.1), valid for large mk. We have

N(mu ..., mk.2, mfc_! —1, mk) = (q-iy\qRn"'-'-l)qRn"-""k

and

+ 0 -q'i)~l(l-q~R)(i-q~Rm-t)qRmk-in"'+o(,qRmk-imk). (5.5)

We verify (5.4) and (5.5) as follows. Firstly, by (3.1), we have

+ 1 ) _ j \ aR(mk- , + 1 )mk _j_Q(nRm^- imk\

This gives (5.4) (on replacing mk_l by mk-l — \). To prove (5.5), consider
the expression Eu where

Then
£, = q~"kN(mu ..., mk)-qN{mx, ..., mk-l).
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Thus, by (3.1),

_ ^ r ^ R C m f c - l + l ) " " f c _ ^ R ( m f c _ i + l ) ( m t - 1 ) _ R m f c - i m k _ j _ - R m i c - i ( m f c -

The first two terms in the first large bracket cancel with the corresponding
terms in the second large bracket as in the proof of Lemma 2. Hence, ignoring
the o-terms, we have

which yields (5.5) on division by q—\.
Now, from (4.2), A is also given by

A = L(mu ..., mk)

+ *E Z' I ( 0 £ [ { — Uru, ..., rJt, m,,+1, ..., mjk.lt rk)\]
i= 1 *- l , f rt = o l_[m 1 JJ

x{N(mJl-rJl mJt-rJt, 0, ..., 0, mk-rk)

-qNim^-rj^ ..., mu-r}i, 0, ..., 0, mk-rk-l)}

+ "l Z' Z ( O f { — Urh, ..., ru, m,,+ 1, ..., mJk_t, mk)\
i= 1 * - l , i L ( . m l J

x {N(mh-rh, ..., mh-rh, 0, ..., 0)} 1. (5.6)

Let a be the number of m,, 1 ^ t ^ k—l, such that m, = mk^t. Also
define the integer tk by

'* = iJw/i - i - l .

Then a fairly long, complicated argument, which we shall omit, shows that,
except when k = 2 and wx = 2 and when k = 3 and mt = m2 = 1, from
(5.6), it follows that

= L(m1; ...,
m t - l

(m1; ..., mk_2, mk-i~l, rk)N(0, ..., 0, 1, mk-rk)

5 L(0, ..., 0, 1, mk-rk)N{mu ..., mk_2, m^-1, rk)
= 0

- 1 , mft)iV(0, ...,0, 1, 0)

, ..., 0, 1, 0)N(mu ..., m . ^ - l , mt)+0(gRm"-»*), (5.7)
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where

« = (a , if a = / t - l
) mi

a, otherwise.

By (4.10), (2.14), (5.5) and (5.7) we have, with the same exceptions,

..., mk) = (l-q-n")N(mu ..., mk)

-a( l -«- 1 ) ( l -q~" ' ) m i N(mlt .... mt-2, m*-i-l , rk)N(0, ...,0, 1, mk-rk)
Tk = 0

- aC l -^ -^WCm! , ..., mfc_2, m ^ - l , mfc)JV(0, ..., 0, 1, 0)

+ (l-q~1)~1(l-q~R)0.-q'Rmk-l)qRmk-i""'+o(qRmk-in"'). (5.8)
For the proof of (5.2), we use (5.8) in the weaker form

M(mu .... mk)-(l-q-nk)N(mu ..., mk)
mk-l

_ V O(flT(mi n>k-2,mic-i-l,rk)\ +()(nRmk'imk)
rk = 0

= O(q2mk)""fd ^(R""-'-2>+O(gR m k-'"*), (5.9)
rk = 0

where the implied constants are independent of mk. Now Rmk_1 — 2 = 0
if and only if either R = 1, A: = 2 and m4_! = 2 o r J ? = 2, fe = 3 and
ml = w2 = 1. These are the special cases already considered and excluded
from this discussion. Otherwise, R.H.S. of (5.9) is

0/_2mfc + (mt-l)(Rmfc- 1 - 2)\ _^ Q( Rmk- imk\

= O(qRmk-mk),

where the implied constant is independent of mk. This proves (5.2).
To prove (5.3), we again consider (5.8). By (5.4), we have

, ...,0, 1 , 0 ) % , ..., mk_2, m ^ - 1 , mk) = ( l -g" 1 )"
+ o(qRmk-imk). (5.10)

Thus, if Ai is given by

At = M(mu ..., mk)-(l-q-"k)N(ml, ..., mk),
it follows from (5.8) and (5.10) that

A, ^ [(i-<r1r1(i-<rRxi-<r(*t+1))
-<x(l~q-1y\l-q-"<)(q"' + 1 -iy]qRmk-im* +o(qRm"-imk)

= -KqRmk-xmk+o(qRmk-imk), say.

Now, — K is negative except when tk = 0, i.e., when k = 2 and n^ = 1.
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14 S. D. COHEN

Hence, except in the case M{\, m2), we have, for large mk,

where A îs positive and independent of mk. Thus (5.3) is proved except, possibly,
for M{\, m2). However, in this case, (5.3) can be verified directly. In fact,

M(l, n) = (l-q-l)N(l, n) + {\-q-l)qn.

This completes the proof of Theorem 2.
From the results of § 5, it also follows that

M(mu ..., mk)<(l-q-'"')N(m1, ..., mk), (5.11)

for large mk, except when k = 2 and m1 = 1.
Suppose now that k ^ 3 and that mu ..., mk_2 are fixed, positive integers.

In this case, Theorem 1 yields, for large mk-l and mk,

M{mu ...,mk) = N(mu ..., ^ - [ ( l - g " 1 ) " 1 +0(l)]<?«<""<-' + '>'"<<

8 ( + 1 ) ) , (5.12)
since, by (3.1),

q-"kN{mu ..., mk) = (l-q-1)-lqR("«'-^ + 1^+o(qR^-^ + 1^). (5.13)

Considerations of symmetry suggest that (5.12) can be improved to give the
result of our final theorem.

Theorem 3. Let ml, ..., mk-2, where k^.3, be fixed, positive integers.
Then, in the notation of Theorem 1,

M{mu ..., mk) = N(mu ..., ^ - [ ( l - g " 1 ) " 1

/_R(mk_, + l)mk_|_ Rmt_,(mf c+1)\

holds for large mk_l and mk, where R is determined by (5.1). In particular
(4.16) holds.

Proof. The result follows on letting mk-1 become large in (5.8) and using
(5.13) and Lemma 2. By the choice of mk_x in Theorem 2 as max»z;,
1 ^ j g f c - 1 , we can see that (5.8) is valid for large mk_l and mk (i.e., provided
mk_1>mi, 1 g i S k — 2). Also, we can take a = 1 in (5.8). In the right
hand side of (5.8), apart from the first term, the only term which is not

is, by Lemma 2,

( l - 5 " " ) % i , •••, mk_2, m ^ i - l , mk)N(0, ...,0, 1,0),

which equals
n _ q~ l\~ igR'ik- i(mk+ 1) _|_oj-_Rmt- ,(mk+ 1 )\

as wifc-i and mfc->oo. The proof is complete.

Note. Theorem 3 has been given for k ^ 3 to make its statement easier.
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In fact, the same proof for k = 2 shows that

M(m, n) = N(m, ^-[(l-q-1)'1 +o(Y)](qm +q")qmn

holds as m and n tend to infinity.

6. Examples
We now list explicit values of M(mx, ..., mk) for the simplest cases in which

k = 2 or 3. They are obtained by calculating L(mu ..., mk) from (5.6), using
previously calculated values of the /.-function and (3.1), and then applying
(4.1).

We obtain, in turn, for n ^ 1,

(6.1a)
1},
(6.1b)

where 5 is 1 or 0 according as n is even or odd,

qT-1},
(6.1c)

where e = 1 or 0 according as 3 does or does not divide n;

and

Thus, we have, for large n,

M{\, n) = (l-q-l)N(i, n)+(q-l)q"~l, (6.2a)

M(2, «) = (l-q~2)N(2, n)-ttq
2-l)2nq2"-2+O(q2n), (6.2b)

M(3, ri) = (l-q~3)N(3, n)-(q2 +2q+2)(q3-I)q3n~2 +O(n2q2n), (6.2c)

M(l, 1, n) = (l-q~3)N(l, 1, n)-(q2-l)2nq2-2+O(q2"), (6.2d)

and

l, 2, n) = (l-q-5)N(l, 2, n)-(q*-l)(q3+2q2+q + l)q4"-4+O(q3n).

The above expressions illustrate Theorem 2 (and its exceptions) and also
(5.11).
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16 S. D. COHEN

The derivation of the above results is increasingly complicated. Each
further computation, using this method, would require considerable calculation.

Finally, to illustrate Theorem 3, we estimate M{\, n, 2M) for large n. For
integers i, r, s with s ^ 1, let N'(i, r, s) denote the difference

Then from (4.1) and (5.6) we have

M(l, n, 2fi) = L(l, n, 2/i) = N'(l, n, 2ri)-"^ L(l, r, 2«)JV(O, n-r, 0)
r = 0

- "£ 2 £ ' L(l, r, s)JV'(O, n-r , 2n-s). (6.3)
r = 0 s = 0

Now, using an estimate for N(l, n, 2M — 1), we have, for large n,

JV'(1, n, 2/i) =

With the convention that N'(0, n—r,0) is taken to mean N(0, n—r, 0), it follows
from (3.7) that, if 0 ^ r ^ n-1 and 0 ^ 5 g 2n,

l, r, s)N'(0, n - r , 2»-s) ^ L(l, r, s)iV(0, n - r , 2«-s) =

We show that if 0 ^ r ^ n-1 and 0 ^ s1 ̂  2« then

T(l, r, s) ^ 4n2 +0(1) (6.4)

for large n, except when r = n— 1 and J = 2n. If

1 ^ r ^ « - l and 1 ^s ^ 2 n - l ,

(6.4) follows from Lemma 3. Also, from the proof of Lemma 3, it is evident
that, if 2 g r ^ n-2 and 0 ^ 5 ^ In, then

T(l, r, s) S T{\, n-2, In) = 4«2-2«+l

so that (6.4) holds in this case too. Again, if 0 :g r :g 1 and 0 ^ s ^ 2n,
we have

T(l, r,s) = 2(r+l)(j+l) + (n- r+l ) (2«- j+l )

^ 2(r+l) + («-r+l)(2n+l), if R ^ 4

since the function is decreasing with respect to s for n ^ 4. To complete the
proof of (6.4), we observe that

T(l, « - 1 , 0) = 2n + 2(2n+l) ^ An2,

for large n. Finally, from (4.10) and (3.1), we see that, for large n,

0, 1, 0) = ^ - ^ "
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Hence, (6.3) yields, for large n,

l, n, In) = AT(1, n, 2 « ) - ( l - g - 1 ) - 1 q 4 n ( n + 1 ) 2 ( 2 + 1 ) 1

in accordance with Theorem 3.

I wish to thank Dr. John Hunter for the invaluable assistance he has given
me at all stages in the preparation of this paper.
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