Network Science 9 (4): 443-477, 2022 CAMBRIDGE

doi:10.1017/nws.2021.20 UNIVERSITY PRESS

RESEARCH ARTICLE

Toward a generalized notion of discrete time for modeling
temporal networks

Konstantin Kueffner? and Mark Strembeck"***

1Vienna University of Economics and Business, WU, Vienna, Austria; 2Secure Business Austria Research Center (SBA),
Vienna, Austria; and >Complexity Science Hub Vienna (CSH), Vienna, Austria
*Corresponding author. Email: mark.strembeck@wu.ac.at

Action Editor: Ulrik Brandes

Abstract

Many real-world networks, including social networks and computer networks for example, are temporal
networks. This means that the vertices and edges change over time. However, most approaches for mod-
eling and analyzing temporal networks do not explicitly discuss the underlying notion of time. In this
paper, we therefore introduce a generalized notion of discrete time for modeling temporal networks. Our
approach also allows for considering nondeterministic time and incomplete data, two issues that are often
found when analyzing datasets extracted from online social networks, for example. In order to demonstrate
the consequences of our generalized notion of time, we also discuss the implications for the computation
of (shortest) temporal paths in temporal networks. In addition, we implemented an R-package that pro-
vides programming support for all concepts discussed in this paper. The R-package is publicly available for
download.
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1. Introduction

Temporal networks are a means for modeling and analyzing the temporal dimension of com-
plex (networked) systems. However, most of the literature on temporal networks either does not
explicitly discuss the underlying notion of time or uses a rather restrictive conception of time, for
example, linear time. In this paper, we discuss a more general form of temporal networks, designed
for modeling nonlinear flows of time. Thereby, our approach allows for considering nondetermin-
istic and incomplete data when analyzing temporal networks—two issues that often appear when
dealing with real-world data, such as data extracted from online social networks. This paper is a
corrected and significantly extended version of Kueffner & Strembeck (2019).

We use multilayer networks to construct temporal networks alongside some generalized flow
of time. In particular, we consider a temporal network, as a (temporal) sequence of networks, a
notion that can easily be expressed via the well-known multilayer network concept. This approach
allows to clearly separate time from other (temporally varying) attributes that are attached to
the edges or vertices in a network. This strict separation, however, also requires to consider
multivalued path lengths, the implications of which will be discussed as well.

Furthermore, some areas of application for our formalization of discrete time will be discussed
in Section 4. Those areas range from its possible connection to modal logic, its application to
planning problems, as well as its ability to encode inconsistent data.
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In order to provide programming support for the concepts introduced in this paper, we also
implemented a corresponding R-package.! Our R-package provides an extension to the igraph-
package (Csardi & Nepusz, 2006) and thereby allows for the modeling and analysis of discrete
temporal networks (for details see Appendix B).

1.1 Basic definitions

For the purposes this paper, we use the notion of multilayer networks as specified in Definition 1.1,
which understands multilayer networks as a family of graphs with their vertices being connected
by inter-layer edges.

For the sake of readability, we mostly provide informal (or semi-formal), but intuitive defini-
tions to introduce the different concepts. However, the corresponding formal definitions can be
found in Appendix A.

Definition 1.1. A weighted multilayer network is a triple M := (G, R, w) such that for some arbi-
trary set of labels I, G:=(Gy)aer is a family of weighted graphs, R = (Rug)a,per is a family of
relations, and w : E(M) — R assigns weights to the edges of the network.

Example 1.1. Consider the weighted multi-layer network M := (G, R, »).

The figure above corresponds to the following formal description. We have G, which is a fam-
ily containing the weighted graphs Gy := ({u1, vi, w1 }, {(vi, u1), (vi, w1) }, 1), Go:= ({ua }, @, w2),
and Gz = ({us,v3}, D, w3) where {(vi,u1)~ 1, (v, w1)~ 3}. We have R which is a family of
relations such that only Ry :={(v1,u2), (w1, u2)}, Ri3:={(u1,u3), (w1,v3)}, Raz:={(12,v3)},
and Rz, :={(u3,uy)} are non-empty And we have w which is defined by combining Ry, :=
{(Vl, uz) g 2, (Wl, uz) = 5}, R1’3 = {(ul, u3) — 1, (Wl, V3) = 4}, R2,3 = {(uz, V3) = 7}, andR3,2 =
{(u3, up) =4}, as well as w1, @, and ws.

This is not the only possible notion of multilayer networks though. For example, one other
formalism defines tuples for representing the layer membership of different vertices, while yet
another represents a multilayer network solely as a tensor to be understood as an analog to the
adjacency matrix of ordinary graphs. For further details, see, for example, De Domenico et al.
(2013), Boccaletti et al. (2014), and Kivela et al. (2014).

A multiplex is commonly understood as a multilayer network where all layers share the same
set of vertices, that is, VU, We V(G) U =W (Boccaletti et al., 2014; Kiveld et al., 2014). For the
purposes of this paper, we relax the strong equality implied by those characterizations, as apart
from some technical issues with respect to path properties, strong equality seems to be inappro-
priate for our purposes. For example, an object (vertex or edge) x at time ¢ may not share the same
properties as the same object (vertex or edge) x at time ¢’ # ¢.

Definition 1.2. A multilayer network with equivalence M := (G, R, =) is one where the vertices are
partitioned into equivalence classes such that each equivalence class contains at most one vertex per
graph. Such a multilayer network with equivalence is called a multiplex iff each equivalence class
contains exactly one vertex per graph.
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Example 1.2. Below we can see a multiplex with the equivalence classes are u, v, and w (the edge
weights are suppressed for clarity):
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Note that the multiplex requirement enforces that each graph has the same number of vertices.

Moreover, the edges between network layers will be called inter-layer edges, while those within
a single layer will be called intra-layer edges. Similarly, those edges between equivalence classes
will be called inter-class edges and those within will be called intra-class edges.

Unfortunately, when modeling the progression of time, equivalence is necessary but not suffi-
cient. For achieving the required expressiveness, we have to impose an additional order onto our
structure. That is, if a graph G, precedes a graph Gg according to some order <, then the vertex
Ve should precede vg.

Definition 1.3. A multilayer network with equivalence and order M :=(G, R, =, <) is a multilayer
network with equivalence such that the relations permit an ordering of the graphs in G.

Example 1.3. Consider the multiplex
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Here, we can order the graphs such that G; < Gy < G3 without conflicting with the intra-graph edges,
for example, the multiplex in Example 1.2 does not permit such an ordering due to the edge (w3, wy).
Note that this ordering can also be used to construct an ordering over the vertices, for example, under
such an ordering vy a predecessor of v.

Having defined the fundamental language of multilayer networks used in this paper, Section 2
now discusses the semantics and structure of time. Subsequently, Section 3 will use this notion of
time for the definition of discrete temporal networks.

2. Generalized flow of time

We abstract from the notion of a temporal graph to discuss some more general observations
regarding objects in a temporal dimension. When studying the notion of time, we distinguish
between two classes of properties. Informally, the properties concerned with the density of time
and the ones determining the structure of time. Many concepts mentioned in this section can
be found in and/or build on the ideas presented by Venema (2017), Markosian et al. (2016), and
Goranko & Galton (2015) and are heavily based on Kripke semantics (Van Ditmarsch et al., 2007).
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Definition 2.1. Let @ :=(T,R,t) be a structure representing the flow of time, where T is a set of
points, R is a relation over T, and ¢: T — £(L) is a function assigning each point in time a set of
properties P described in some language L.

Example 2.1. The following graph depicts a flow of time where the properties are specified using
propositional logic:
with ((t1) := {-a, =b}, () :={a, ~b}, and 1(t3) := {-a, b}, where

o a means “Alice is home” and
o b means “Bob is home.”

There are some interesting conceptions of how points in time may relate, for example, cyclic
or bidirectional notions of time. Both of which would allow, in one form or another, for the
possibility of time travel. However, while theoretically possible (Godel, 1949) and sometimes
assumed within network theory, for example, in Taylor et al. (2017), such peculiarities shall not
be considered in this paper. Hence, rather than allowing for an arbitrary relation R, we restrict
ourself for all subsequent discussions to the set of structures building upon a directed notion
of time.

Definition 2.2. Let @ := (T, <) be a structure representing the flow of time, where T is a set of points
and < is a (strict) partial order over T, see Venema (2017).

By imposing further restriction onto <, we can develop certain notions of time (see also
Venema, 2017), for example:

Example 2.2. A flow of time is linear if its underlying order is total, for example,

A flow of time is backward branching if for a point t| representing the present there are two
incomparable points in the past, for example,

ON
B OO,
@

A flow of time is forward branching if for a point t; representing the present there are two
incomparable points in the future, for example,

A flow of time is backward-serial if there is always another point in the past, for example,

DO OO
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A flow of time is forward-serial if there is always another point in the future, for example,

OB OO

The concept of linear time is highly intuitive: time flows within a straight line, there are no
alternative time lines, no branching and no cycles, allowing us to work in a deterministic fashion.
For example, one encounters this notion of time when dealing with normal time series. Moreover,
a good part of the literature regarding temporal networks is concerned with linear time. However,
one can easily find scenarios, where we deal with some kind of uncertainty or nondetermin-
ism. Here, the notion of possible worlds can guide our reasoning. Kripke models, which provide
the foundation for the semantics of modal logic, heavily rely on the concept of possible worlds
(Venema, 2017; Van Ditmarsch et al., 2007).

In our case, branches can represent possible futures, thereby expressing the nondeterminism
of the future. For example, having a linear flow of time in the past that branches into the future,
expresses that we are certain what happened in the past, but we cannot predict the future with
certainty, that is, there are multiple conceivable scenarios to account for. How those variants of
the future are obtained precisely, may it be through statistical inference, by consulting experts
with domain knowledge, or being a product of a simulation with randomness is currently not of
our concern.

Considering possible worlds is especially useful when dealing with discrete objects such as
graphs. That is, rather than introducing fuzzy edges (Sunitha & Mathew, 2013), we can, at least
for our purposes, consider alternative worlds where an edge exists and some in which it does not.
Similarly, backward branching could introduce the notion of unreliable data into our models. For
example, if there two contradicting measurements of the same phenomenon at the same instance,
one models those measurements as two incomparable elements within the flow of time (e.g., see
Sections 3 and 4). Moreover, regardless of forward or backward branching, we do allow for col-
lapsing flows of time. That is, two branches could meet at some point in time. Recall the unreliable
data example mentioned above as an example for the applicability of such a structure which will
be expanded upon in Example 4.5.

2.1 Paths in time

When discussing the density of time, three general notions are common: a flow of time can be
discrete, dense, or continuous, thus existing in analogy to N, Q, and R, respectively. However, since
most measurements of real-world phenomena are processed by inherently discrete machines and
this paper focuses on the analysis of discrete sequences of discrete objects, we will limit ourself
to a discrete conception of time. Nevertheless, for analytical and predictive purposes, the other
two models of time, especially the continuous one, should be investigated further in the context
of temporal graphs (Venema, 2017).

In this paper, the restriction to discrete notions of time allows for a concrete conception of
successors (i.e., we can formalize steps in time). Let succ(t) € T therefore be the set of direct suc-
cessors of the point in time ¢ € T Similarly, let pred(t) be the set of its direct predecessors. Clearly,
if we have a linear flow of time, both sets contain at most one element. Using both the successor
and the predecessor function, we can define the notion of a path in time. Namely, a forward path
is simply a sequence of points in time such the next element in the sequence must be a successor
of the previous one, that is, . . ., t, t',... such thatt' e succ(t). A backward path in time is defined
in analog w.r.t. the predecessor function.

In general, if we refer to a path in time, it is either a forward or a backward path in time,
and this prevents reachability between incomparable elements. We write x~* y to indicate that
there exists a forward path in time from the point x to the point y. Similarly, we write x~~ y for
backward path and x~ y for general paths.
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The size of a path in time is determined by the elements in the path and can be understood as
the amount of steps in time between two points. However, for our purposes, we require a more
refined notion of distance. To accomplish this, we need to expand the flow in time.

Definition 2.3. Let ®:=(T,<,w) be a flow of time with spacing, with the function @ being a
function that assigns weights to the successor relations of the flow of time.

Intuitively, w stretches time, that is, it indicates the duration between two neighboring points
in time. Using w, we can define the length by summing up its weights. However, while the length
of a path in time is a useful concept, it cannot serve as a measure of temporal distance.

Example 2.3. Consider the flow of time ® := (T, £, w):

A ‘,”3”’@1\

- oS O,
OO ONER OSSO

What is the distance & between a and b and between b and c? If constructed based on the notion
of a path, we can observe the following. For | - |, we have §(a,b) =2 or §(a,b) =4 and for | - |, we
have 84, (a,b) =4 or 8,(a, b) =4. Analogously, we have §(b,c) =3 or §(b,c) =3 and 8,(b,c) =5 or
Sw(byc) =42

To resolve this ambiguity, we make use of a quasi-metric with infinity (Schroeder, 2006). A
fairly natural choice for modeling noncyclic, directed flows of time. As one can easily travel into
the future one instant at a time, while traveling into the past is, at least for the common man,
impossible. Moreover, by assigning an infinite distance to backtracking within our flow of time,
the distance between two branches also becomes infinite. One can easily check that this holds for
paths with and without a join. More information about quasi-metrics can be found in Matthews
(1994), Schroeder (2006).

For the remainder of this paper, we use the following quasi-metric.

Definition 2.4. Let @ := (T, <, w) be a flow of time with spacing. We call

min(|a~ bly) a<b
3y (a,b):={a~b
00 otw.

the distance between a and b (with respect to w). Moreover, we call §1, where w is the constant
function 1, the step distance between a and b.

However, while this may allow us to speak about distance, in one form or another. It cre-
ates some semantic inconveniences or inconsistencies (see Example 2.4). Many of which can be
reduced to the fact that, in their general form, flows in time can easily be used to express time as
having varying density, that is, the spacing between points may vary within a single path or across
branches. While sometimes useful, for example, consider relativity of time, a characterization of
time without such properties is desirable as well.

Example 2.4. Consider the flow of time as in Example 2.3. We can find two paths from a to b and
two paths from b to c. For the latter, our notion of step distance causes no issues, as all paths between
b and c have the same size, that is, | - |. However, in the case a to b, two paths of different size can
be found. Hence, if one wants to consider all points at a certain step distance from b, one obtains
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81(a,b) <81(a, pa3) but pr3<b. That is, the successor is closer than its predecessor. This can be
resolved by adjusting the density of the flow of time across branches, for example,. by manipulating
the spacing between two points.

A flow of time, in which this issue cannot arise is a flow where every path between a join and a
meet has the same length. Leading us to the definition of global homogeneousness.

Definition 2.5. Let @ := (T, <, w) be a quasi-metric flow of time. Then ® is a globally homogeneous
flow of time iff
8w (%, ¥) +80(1,2) =00 V3,(x,2) =8,(x,¥) + 80 (¥, 2)

If a flow of time satisfies this property, we can be sure that every path between two points has
the same length according to §,. However, it should be mentioned that the interpretation above
is not the only possible notion of homogeneity (see, e.g., Venema, 2017).

3. Temporal networks

The notion of a temporal network, intuitively to be understood as a graph with an additional struc-
ture encoding the dimension of time, has been captured by multiple formalisms and is known
under various names across different fields (Holme & Saramaiki, 2012; Casteigts et al., 2012). The
general approach of multilayer networks was introduced to unify formalisms that extend the ordi-
nary notion of a graph, and this includes several formalisms concerned with capturing the notion
of a temporal network.

In Holme & Saramiki (2012), an important distinction is made between instant-based temporal
graphs (also called contact sequences) and interval-based temporal graphs. The prior understands
time as a sequence of instants, where, for example, an edge is labeled with a sequence of time
stamps indicating the instants at which this edge is present. This can be modeled with multilayer
networks by introducing a new graph/layer for each time stamp that contains the edges active
at that time and by connecting the corresponding vertices with inter-layer edges to simulate the
progression of time. The latter, that is, interval-based temporal graphs, allow for the modeling of
interactions with a duration. That is, rather than labeling edges with sets of time stamps, one labels
edges with sets of intervals. Each of those intervals specifies a fragment of time during which the
respective edge exists. Thereby, allowing the modeling of interactions with durations.

However, this paper is primarily concerned with discrete time; thus, one can conceive each
interval as a countable sequence of instants. Meaning that while operating under a discrete notion
of time, it suffices to discuss instant-based contact sequences only. To that extend, building on
Definition 1.3, consider the following definition.

Definition 3.1. Let T := (G, R, =, <, w) be a weighted multilayer network with equivalence, we call
it an instant-based temporal network iff

o G:={G;|teT} for some labeling T.

e R is a collection of all successor relations with respect to <, that is, R := {Rt,-tj | Gy, th NN
Ry = {(v,w) |ve Gy, Awe Gy Succ(Gy, Gy) ANv=wl}.

o w is defined such that it respects the intra-layer relation weights, that is, ife € E(Gy,) then w(e) :=
wy,(e), while assigning positive weights to every inter-layer relation, that is, if e E(R) then
w(e) :=k for some k> 0.

Moreover, we observe that a temporal graph can be understood as a flow of time with additional
structure. That is, consider the flow in time 7 := (G, <, ¢, w). Now for all G; € G, we fix ((G;) = G,
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where Gy is some weighted graph Gy := (V;, Er, w¢). By fixing the world at a certain point in time
to being the same as its label, ¢ becomes redundant. Let = be in Definition 1.2 and let < extend to
the vertices such that VGy,, Gy € GYveGyVwe Gy, (G, = Gy = (v=w < v=<w)). Then, R is
just the set of successors with respect to our extended flow relation, where w carries over.

3.1 Paths in temporal networks

The notion of a path in a static, non-weighted graph is a fairly simple concept, with its length
being defined as its size, that is, its number of edges. In this case, a shortest path can be com-
puted efficiently and has an fairly unambiguous semantics (Tang et al., 2009; Wu et al., 2014).
Unfortunately, this property is already lost when considering weighted graphs in general. For
example, allowing for negative weights can make the computation of the shortest path more
expensive even without the presence of negative cycles (Cormen et al., 2009, pp. 646-658). If such
cycles exist, the notion of shortest path already breaks down, that is, in a strongly connected graph
the weight of every shortest path would be —oo.

Moreover, even if one restricts the problem to simple graphs only, one is already faced with an
NP-complete problem, a fact that can be shown by means of reduction from and to the longest
simple path problem (Cormen et al., 2009, p. 1048). Additionally, as weights allow for the dis-
tinction between similarity and dissimilarity measures, the semantics of those weights has to be
accounted for as well (Runkler, 2012; Segarra & Ribeiro, 2016). This is due to the fact that some
measures only provide sensible results when they are similarity measures, for example, degree
centrality, while others require dissimilarity measures, for example, closeness centrality (see, e.g.,
Goshtasby, 2012). Fortunately, it is possible to invert the semantic interpretation of the respective
measure. One example of this would be d;(x,y) = m, with d and d; being some measure

of similarity and dissimilarity, respectively. Now consider a multilayer network, each layer hav-
ing (possibly) different semantics. The same holds true for temporal networks, where we have
a dissimilarity measure on inter-layer edges and another measure with different semantic on
intra-layer edges. Hence, making the notion of a shortest path even more difficult (Runkler, 2012;
Segarra & Ribeiro, 2016; Goshtasby, 2012).

Within the context of temporal networks, Wu et al. (2014) introduces a set of minimum
temporal paths, consisting of

« the earliest arrival path, that is, starting from ag find the path ending in the smallest b € b;

« the latest departure path, that is, what is the largest a € @, while still being able to reach b;

« the fastest path, that is, what is the shortest path between @ and b minimizing the difference
between ending time and starting time;

« the shortest path, that is, the path that is the shortest with respect to traversal time.

In Tang et al. (2009), a temporal graph is conceptualized as a sequence of graphs. However,
by limiting the amount of hops within each static graph, they manage to encode some notion of
time into each static graph. Moreover, it is not uncommon to make the distinction between the
size of a path and its duration explicit (Holme & Saramdki, 2012; Casteigts et al., 2012; Michail,
2016). Analogously to flows in time, this distinction roughly corresponds to | - |; and | - |, (see
Definitions 2.3 and 2.4). As already mentioned, when dealing with weighted temporal graphs,
an additional dimension is introduced. Namely, we distinguish not only between temporal steps
and temporal distance, but also between intra-layer steps and intra-layer distance. One approach
would be to use some norm to collapse those two dimensions. However, motivated by the defi-
nitions found in Wu et al. (2014) and the issue of similarity and dissimilarity, we instead use the
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concept of a path in time together with its notion of distance, as well the notion of a path in a
regular graph.

Definition 3.2. Let T :=(G, R, =, %, w) be a instant-based temporal network and let ve Gy, and
w € Gy;. Then the alternating sequence of regular paths and forward paths in time T 2 (v~ w) =
(Vi ~7 Wyy) =y, o Vi o We o g Uy~ Wy, is called the temporal path from vy, towy,. We write
ro (x~7 y) to address all temporal edges in x ~»1 y and Ag(x~+7 y) to address all in-graph edges
inx~>7y.

By distinguishing between the types of paths in temporal graphs, we allow for a separation of
measures, that is, inter- and intra-length and size.

Definition 3.3. Let T :=(G, R, =, <, w) be an instant-based temporal network, let p:=v~>1 w be
the temporal path from v to w with v, w € V(T ). Then, we define

|p|w:=( > o0 ¥ w<e>)

eeho (p) eerg (p)

as the length of p with respect to w and |p|, as its size.

Example 3.1. Consider the following path p, where dashed edges represent the temporal edges (i.e.,
inter-layer edges) and where solid edges represent normal edges (i.e., intra-layer edges):

U3
050020205050
- - -
Given this one obtains
)WI)(P) = {Vla V2, V3, V4, 24, 25, U5, Ug, Ve, V7}
Ag(P) = {va, us, wy, 24, 5, Vs, Us, U, Ve, V7, 27 }
as well as |p|,, := (10, 27).
By allowing for two dimensions with respect to path length and size, we have to define a
specific order on those values. A natural choice for this is the so-called product order, that
is, (x5, yi) <(xj,y;) <= xi<xjAyi<y; (Dickson, 1913). However, one issue that immediately

arises when using a product ordering is the issue of partiality (see Example 3.2). Moreover,
there can be various natural interpretations of shortest path problems. For example, the prob-

lem @~ b addresses the desire to compute the set of overall shortest distances between two
equivalence classes, while the problem a;, ~ b restricts the same question to a certain starting
pointand g~ Etj to a specific arrival date. Lastly, a;, ~7 Etj is de facto an ordinary shortest path
problem.*

Example 3.2. The temporal graph T:
@) -Gy -G

where Gy,,Gy,, and Gy, are respectively
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Table 1. Compute all possible shortest paths between @ and b and all elements within
those equivalence classes

[~ | b, by, b, b
B ey @y 1
a (o) e &Y (0 4, (1, 2> |
Gy (=) () @Y 0y
a (0,1) (1,1),(0,4) (2 1) (0 2) (0,1)

47444/

In this example, one can observe that each shortest path problem may lead to different and even
multiple results.

Another significant observation is that from the shortest path between X and y, X~ z~> ¥, it is
not possible to conclude that X~z is the shortest path between X and z (see also Example 3.3).
Thereby, prohibiting the safe use of Dijkstra’s algorithm for some of the specified shortest temporal
path problems.

Example 3.3. The temporal graph T:
OROSD

where Gy,,Gy,, and Gy, are respectively

\

Consider, a~» W and @~ b. Clearly, the shortest path from @to b is ar, — us, — wy, — by,. Moreover, it
is also easy to see that one of the shortest paths between a and W is a;, — wy,. Thereby, demonstrating
that the latter is not a subpath of the prior.

While, in general, the multi-objective shortest path problem may need exponential runtime,
we can do better due to its unique structure (Tarapata, 2007).

Proposition 3.4. Let T := (G, R, =, <, ) be a globally homogeneous, instant-based temporal mul-
tiplex then for v,we V(T) the length (and size) of all shortest path is comparable and thus the

same.

Proof. We know there exists exactly one Gy, and Gy, in G such that ve G, Awe Gy If there does
not exits a path between v and w, we are done. Otherwise, by global homogeneity and due to <
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being directed, we obtain Vv~~7 w|v~7 Wl = (35(Gy» Gy ), X). As they only differ in x, all of
them are comparable and by minimality all shortest paths have the same length. O

Proposition 3.5. Let T := (G, R, =, <, ) be a globally homogeneous, instant-based temporal multi-
plex. The problem of finding the shortest path with respect to | - |, over T fromvtow forv,we V(T)
can be reduced in polynomial time to the problem of finding the shortest path between v and w in
the weighted directed graph.

Proof. Consider the construction D:={V(T), E(T),w). This transformation is linear. Show for
pri:=(v~7w)c T, we have |[v~7 w|, is minimal <= for pp:=(v~pw) S D we have |[v~p
W|e is minimal. We observe |Ag (pr)|w = 8w (v, ). Moreover, every path between v and w only dif-
fersin |Ag (P1)|w- Since, |pplw = 8w (v, w) + |Ae (P1)|w> We obtain |pr|, minimal must be equivalent
with |pple, minimal. O

Hence, finding the shortest path between two distinct vertices in a temporal graph can be solved
by applying a variant of Dijkstra’s algorithm and it is thus O((n +m) -log(n)), where |G|<n=
|V (T)|and m = |E(T)| (Barbehenn, 1998). By using this knowledge, we can implement algorithms
for computing the other shortest path problems. Even a naive implementation, that is, one that
computes all distances between vy and every member of w is in O((m +n)-n-log(n)). Hence,
searching for all minimal paths with respect to| - |, is bounded by the same complexity, as finding
minimal elements is at most O(n?). By applying the same algorithm for all ¥; € ¥, we obtain at most
O((m +n) - n*-log(n)). This serves only as a rough estimate to show polynomial membership and
to justify this approach from a computational complexity point of view.

4. Discussion

For the purposes of this paper, we decided against using the classical notion of multiplex net-
work as a basis for our approach and instead defined a tailored variant that explicitly considers
our generalized notion of time. This allows us to model a temporal path as a subnetwork of the
main temporal network, with the temporal path retaining the properties of being a temporal net-
work itself. Moreover, as discussed in Taylor et al. (2017), one can add isolated “ghost vertices”
to each graph G; to obtain the (classical) multiplex property. Unfortunately, this implies that for
certain measures, the existence of such ghost vertices must be accounted for. While the relation
which is used for modeling time is transitive, the corresponding inter-layer edges are neither tran-
sitive nor symmetric. Intuitively, they reflect the movement of a vertex through time. Therefore,
by accepting the multiplex property, vertex persistence is ensured, allowing for a more simple
semantics of movement through time, that is, a vertex cannot pop in and out of existence as it
pleases.

Furthermore, allowing for partial orders, and thus deviating from the conceptions of time com-
mon in temporal logic (e.g., linear and branching flows of time), has several benefits. Firstly,
from an applicative point of view, it allows for the modeling of inconsistent data, as presented
in Example 4.5 (see below). Secondly, by allowing for a partial ordering, it is (to some extent)
possible to extend the class of problems that can be modeled by this stricter notion of tempo-
ral networks, to those that can be modeled by a more general form of a temporal network, that
is, a network where the conditions on the inter-layer edges R are relaxed. Those more general
temporal networks allow for edges that connect vertices that are neither in the same graph nor
in the same equivalence class, for example, edges such as e:= (v;, ;) where t;i<tj and V+w
(Michail, 2016). Semantically those kinds of edges can be understood as the modeling of choice,
that is, there are multiple ways to enter a subsequent point in time. Unfortunately, this does
not map onto the framework presented above, as such additional edges do not adhere to the
clean separation of the temporal and the graph internal semantics. In some cases, such general
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temporal networks can be encoded as a temporal network as defined in this paper. As an exam-
ple, an encoding that preserves distance with respect to a weight function w will be presented
below.

Let 71:=(G,R*, =%, w) be a relaxed version of a globally homogeneous temporal network.
Meaning that R :=RUR* where R is the usual collection of intra-class edge relations and
R* is the collection of inter-class, inter-layer edge relations. Let 7 be a transformation from
TH:=(G,R", s, 5,w)to T":=(G", R',=', </, ') such that for all edges in (v, wy,) € E(R*) a new
graph, that is, a new time step, between Gy, and Gy; will be added. Let this grapil be called Gtvin'
This graph must contain the required amount of vertices as to satisfy the multiplex criteria, that is,
exactly one vertex in the graph has to intersect with exactly one of the existing equivalence classes.
Therefore, each equivalence class can be expanded by a single vertex from GtviWJ' Additionally, the
graph Gtvin contains only a single edge, that is, the edge between T/tVin and WtVin, and this single
edge simulates the inter-class component of the respective inter-layer, inter-class edge. Hence, its
weight corresponds to the inter-class weight of the edge (V;;, ;). Moreover, the predecessor rela-
tion is extended to account for Gtviwj- such that G, < Gtv,wj <! Gy;, while being incomparable with
any other graph in G’. Adding Gtv,-wj implies that R’ contains a set of inter-layer edges between Gy,
and Gtviw]-’ as well as between Gtv,-wj and Gy,. The edges within those sets are drawn according to the
updated equivalence classes. This requires the extension of the function @’. Meaning, it preforms
identical to w over R and for each newly added inter-layer edge the ' positions Gtviw]' simply on
the halfway point between Gy, and th.

This roughly sketched transformation can be observed in Example 4.1.

Example 4.1. Consider the following general temporal network. The inter-layer, intra-class edges,

that is, E(R) are dashed, while the inter-layer, inter-class edges, that is, E(R*) are dotted and the
normal intra-layer, intra-class edges, that is, E(G) are solid:

Hololo)

For example, we assume w(vy,uz) = (4,2), w(vy, ws) :=(8,1) (remember that for the inter-class,
inter-layer edges the weights have to be multivalued) and all other edges are assigned the weight 4.
After the transformation, one obtains the following temporal network:
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* a)/(vvluz’ uvluz) =2and w,(VVIWS’ WV1W3) =1

o for all xe{u,v,w} it holds that o'(x1,%u,)=0" (Xpu»x2):=2 and o' (x1,%yw,)=
w,(xV1W3) x3) = 4)

« all other edges are assigned the weight 4.

The transformation sketched above preserves distances between existing vertices. Consider a
path p in 7. If p does not contain an edge (v, wy;) € E(R*), the same path exists in 7" as well.
Otherwise, let t, := by, NOW for an edge (¥, wy;) in p that is also in E(R*), p will have the
form p=py, (v, Wy;), p2, where p; and p, are the (possibly empty) paths before and after the
edge (71, Wy;). The edge (v, W) can now be replaced by (v, 7; ), 7, (V1. Wy, ), Wy, (Tv{n,ij),
resulting in the path:

=1 (Vi V1, ) Vi (V1 W, )s W, (W1, 997), 02

After exhaustive application of this substitution, one obtains a path in 7. Let the temporal com-
ponent of w(vy, W) be de and the intra-layer component be dg. By definition, de =5 + 5 =

o' (v, V) + @ (th> wtj) and dg = ' (v; ,w; ). Lastly, each newly added graph contains only a
single edge. Hence, all paths p’ in 7" that contain a sequence (v, 7; ), V; , (V , T/;j) have a length
equivalent path in 7 that only uses intra-class edges from ¥, to ;. To conclude, one can use
this procedure to transform this general form of temporal networks into the one presented in this
paper, without distorting the distances between vertices.

Future work may discuss possible ramifications with respect to common network measures.
For example, by only considering the multivalued notion of distance on linear time, one can
already detect different behaviors of some network measures. That is, consider the path-based
centrality measures closeness and betweenness. As betweenness relies on counts of shortest paths,
its extension to a multivalued path length is straightforward. Even in linear time, the various short-
est path problems result in analogous betweenness measures, that is, with and without restriction
on the start and end time. In contrast, while closeness centrality has a similar relationship with
respect to time, any ranking of vertices will be a partial ordering. That is, since the length of a
path is incorporated into this measure, its multivalued nature will be carried over. Lastly, while
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interesting, a discussion of network measures on nonlinear models of time is, unfortunately, far
beyond the scope of this paper.

4.1 Areas of application

In this section, we briefly discuss possible areas of application for our approach, as well as possible
advantages that may emerge when reasoning about temporal networks in a more abstract manner.

4.1.1 Connections to modal logic

Firstly, we present an example of how this more abstracted perspective toward temporal networks
allows for the use of temporal logic to reason about temporal networks. This particular case is con-
cerned with centrality measures. One utility provided by those measures is that they can be used to
impose an ordering onto vertices based on their perceived importance. In the subsequent exam-
ple, we use temporal logic to construct an ordering of vertices based on their orderings imposed
by multiple centrality measures at multiple points in time. That is, we use propositional logic to
encode information about the structure of the finite network at each point in time. The struc-
tural information, in this case the ordering of vertices based on centrality measures, is used in a
temporal logic sentence to formally and unambiguously compose a new ordering of vertices that
explicitly engages with the temporal dimension.

Example 4.2. Consider the following flow of time ® := (T, R, 1), where finite graphs are encoded in

propositional logic at each point in time:
Moreover, let Cg,, be the a predicate indicating that the eigenvector centrality Cg of vertex x is smaller

than the eigenvector centrality of vertex y, that is, Cp(x) < Cg(y). Similarly, Ck,, indicates the same
for the Katz centrality Cx. Furthermore, those predicates evaluate to true at the following states:

®,Gy, FCg, x€{2,3,4,6,8,9,10,11,12}
@, Gy, FCk,, x€{2,3,4,7,9,12}
Consider the subsequent sentence in propositional temporal logic:
Cn,, <> (AO(ADO Cg, ) NAO Ck,, AEO(Ck,, — CE,,))
The right part of the equivalence expresses the following:

« AC(AO Cg,, ) requires that on all branches at some point in the future (A<), it must be the case
that on all branches in all subsequent points in the future (AQ) the inequality Cg(a) < Cg(b) is
satisfied.

» AO Ck,, requires that on all branches in the next point in time (AO), it must be the case that
CK(Q) < CK(b).

« EO(Ck,, — Cg,,) requires that in all subsequent points on some branch (EQ), it must be the
case that Ck (a) < Cx(b) implies Cg(a) < Ce(b).
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AC(AD CEub) is satisfied, because Cg,, holds in 3,8,9,10,11, and 12. AO Ck,, is satisfied, because
Ck,, holds in 2,3, and 4. And EO(Ck,, — Cg,, ) is satisfied, because Cx , holds in 2 and 9, and Cg,
holds in 2 and 9 as well. Given this ®, G;, = Cy,, holds. Hence, according to the “new” centrality
measure Cy vertex a is less important than the vertex b, see also Kroger (2012).

There are two apparent applications of logic in temporal networks. Namely, as a specifica-
tion and as a query language. To illustrate this, consider a trace in a communication network
consisting of client, router, and backup router. From a monitoring perspective, desirable prop-
erties of that trace could be “It must always be true that a backup router can only receive
messages, if the corresponding (main) router is down.” or “If the router shuts down, the
backup router has to be active in the next time step.” Second, temporal logic as a query-
ing language. Here, we might be interested in the points in time where a critical server
is operating at maximum capacity, for example, such a question would amount to check-
ing whether the server has a high betweenness centrality and a degree centrality equal to its
capacity.

Both examples are restricted to a linear flow of time. However, if we would be aware of the
protocol applied in the communication network, we would be able to model the development
of the network by utilizing branching, that is, from each state there are several possible future
states due to potential nondeterministic properties of the protocol. Hence, to verify whether a
particular network satisfies a desirable property specified using temporal logic, we simply con-
struct the temporal network given the rules of the protocol and check whether the property
holds.

Another example for the use of temporal logic in network verification is Panda et al. (2015);
here, they use logic to specify reachability invariants such as “It must always be true that a send
message is always received.” Moreover, a nice example for utilizing temporal logic as a query
language is provided in Monteiro et al. (2008) , where it is applied to query dynamic cellular inter-
action networks. Lastly, it should be mentioned that the intersections between logic and network
science are not restricted to temporal networks of course, for example, Plotkin et al. (2016) apply
verification techniques to switching networks, or Seligman et al. (2011) who use a modal logic to
reason about knowledge in social networks.

4.1.2 Planning problems

Given the task of finding an optimal strategy for some planning problem, it is possible to map
choices and their consequences onto a tree-like structure. That is, by fixing ones move, the set of
possible subsequent decisions will be restricted accordingly, with each of those decisions being
represented as a branch in the decision tree (see, e.g., Van Benthem, 2014). Within the context
of temporal networks, this is mirrored by future branching flows in time. Additionally, if there is
the desire to express that two strategies have identical outcomes after a certain point, one can use
flows in time with joins. That is, one can use branching to model historic dependencies, and the
joining of branches to weaken those historic dependencies.

Example 4.3. A group of people P:={a,b,c,d,e,f,g, h} have to pass a token t from person a to
person b such that the duration and the risk, for example, the risk of being detected or the risk of
damaging the token is minimized. Both, time and risk are encoded by the weight function. Moreover,
the set of possible moves is limited and context-dependent. We can model the set of possible transac-
tions via weighted graphs and express context dependency by arranging the graphs within a suitable
nonlinear flow of time around which a corresponding weighted, instant-based temporal multiplex is
build. Moreover, using this encoding, a possible optimal strategy corresponds to a minimal temporal
path problem.
Consider the following weighted, instant-based temporal multiplex T := (G, R, =, %, w):
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O

CHO 2O

with the respective graphs being (note that the graphs depicted here do not represent the actual
flow of time, because the description of the world is incomplete, that is, the token position is not
encoded.):

IOLO8

Moreover, for the purpose of this example, let w(ay,,c,) =2, w(cy,»ds,) =8, w(ay,dsy):=8,
w(de> fry) =6, @(ar, 81) =3, @(dis> 815) =2, 0(brs, g15) =4 0 (bygs erg) =4 (b 1) =4 and
1 for all remaining edges.

As mentioned above, if one accepts this temporal network as is, one will encounter an issue
with respect to computational complexity. That is, we now have two paths with different durations
between two points in time. In particular, one can reach Gy, from Gy, through Gy, — Gy, — Gy, — Gy,
through Gt, — Gy, — Gy — Gy, and through Gy, — Gy, — Gy,. Meaning that, if one leaves the weight of
the temporal edges uniform, global homogeneity is lost. Hence, the property required for an efficient
computation of the shortest path is no longer satisfied. We can restore global homogeneity by simply
setting w(Gy,, Gy ) = 2.

Having resolved this issue, one can now move on toward computing the multiple minimal paths
within this temporal network. This, however, requires additional thought, as within a temporal
dimension there are multiple minimal path problems to choose from. Since the entry point of the
token game is fixed, we can reject the minimal path problem:

min min  [@a~7 ble
(ja~7blw)o (Ja~7blw)g

Moreover, since the problem at hand requires flexibility with respect to the end point, we have to
settle for

min min @ ~7 bl
(lag, ~70blw) e (Jag~7blw)g
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To compute the solution to this problem, one first has to compute all shortest path from ay, to each
element in b, that is,

1l =[, — @, - di, —f, — brs|w = (1,15)

|p2lw =[ar, —ar, -3, -8y, ~bislw = (2,7)

|p3lo =lan, -2, -, - dy, &, 8 ~ bl = (2,7)

|palo =[ar, -, -, -8, — 3, ~btelw = (3,5)

|Ps|w =[ar, — G, — €, — &5 — €1, — brgw = (3,5)

|pelw =[ar, —ar, -3, — &, bty by, | = (3,7)

7l =la, — ¢, — 1, —dy, ~ 81, 8 b, by, | =(3,7)
|psl =[ar, = as, — @, —a, —dy, . —J_fts —bigly = (4,3)
|polw =las, — @y, — @1, —ar, —di, - f, —]?tg ~biylw = (4,3)

Now, since (3,5)<(3,7), we can reject the paths ps and p;. Hence, with the remaining being
minimal paths, we have found the set of optimal paths, which reflect the set of optimal strate-
gies for passing the token from a to b. There are two important things to consider. Firstly, we
can observe that p, and p3 enter Gy, on the same position. That is, those two paths represent two
different strategies leading to exactly the same outcome, as both of them end in the same world.
Hence, rather than just obtaining the same minimal distance, one actually reaches the exact same
state of the world. This is reflected by the fact that ps and p; are merely p, and p3 with iden-
tical extensions. By contrast, py and ps do not produce the same outcome. Meaning that, while
those two path share the same temporal distance and risk, they do not end in precisely the same
world (note that it merely seems as such, because the token positions are not encoded in our
image).

4.1.3 Modeling of belief

By considering nonlinear flows in time, one can reconcile uncertainty and discrete objects. One
of such objects in question are logical formulas. Such formulas may be used to model and express
the belief of agents. Such nondeterminism is especially important, if one approximates human
reasoning by relying on nonclassical forms of logic, such as non-monotonic reasoning. For more
on non-monotonic reasoning, see, for example, Bochman (2011). Within some non-monotonic
formalisms, for example, default logic, one can obtain multiple different maximal consistent sets of
conclusions from the same description of the world (Gottlob, 1992). Hence, one can use branches
to encode the mutually exclusive sets of beliefs of an agent into a temporal graph.

Example 4.4. Let P:={a, b, c} be a set of people. Consider the following flow of time:

Within each point in time, we are going to embed the following graphs (note that this merely repre-
sents a fragment of the actual network, as the internal beliefs of each agent are not encoded within
the representations below):
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,,,,,,,,

Firstly, we limit ourself to two mutually exclusive beliefs Q and R, that is, QAR+ 1, as well as the
belief S, where R — S holds with our theory. For example, Q could be the belief that there have been
humans on the moon, whereas R would be the belief in the conspiracy that there have never been
humans on the moon. Clearly, if one beliefs in the conspiracy R, one must also accept the conspiracy
that the moon lading was fake, that is, R — S.

Secondly, the expression of a belief is represented by an edge. Thirdly, an assumption underlying
this model is that, if an agent advocates for a belief, this belief must have been accepted as true by the
respective agent. By contrast, the recipient may or may not adopt the communicated belief. Fourthly,
every agent starts with a consistent sets of beliefs. Lastly, a belief can be obtained externally through
communication, that is, another agent has to communicate this belief to the agent in question,
and internally through deductive reasoning. In this case, if an agent beliefs R, the agent must also
accept S.

In this example, we want to decide whether agent ¢ adopted the belief Q at t1. Assume that the
initial sets of beliefs are {@} for a, {{Q}} for b and {{R}} for c. Hence, after closing each set of
beliefs deductively, one obtains at point t| that S must be held by c as well. From there, beliefs are
communicated, resulting in a; = a3 = {CI({Q}), CI(@) }, by = b3 = {CI({Q})}, 2 = {CI({Q}) }, and
c3={CI({R,S})} at t, and t3, respectively.” Hence, one step away from the origin, we know that
agent c has either of two consistent sets of belief, that is, CI({R, S}) and CI({Q}), which are separated
into two possible worlds. That is, we have encoded all possible consistent set of beliefs of the agent
¢ into the structure of the network. Lastly, in ts, we observe that agent a communicates belief S.
Knowing that S was never communicated and was not previously held by a, the only possible method
of acquisition would be internal reasoning, which requires the assumption of R. However, there exists
only one possible point in time, explaining the adoption of the belief R by agent a and that is ts.
Hence, we have to accept t3 as reality and discard t,. If this example would not focus solely on ¢, a
similar encoding and elimination ought to be done for agent a as well. Moreovet, as Q and R are
mutually exclusive, the only possible way for ¢ to communicate R is, if it rejected Q at t,. Thereby,
answering the problem stated above.

This example tries to highlight the benefits of encoding a temporal network in such a manner
that it can easily be translated into various logical formalisms, here, in particular for the modeling
of agents and beliefs in a network setting using non-monotonic inference mechanisms such as
answer set programming. In fact, there have been several investigations into the utility of such
inference mechanisms for the modeling of social behavior. For example, De Vos & Vermeir (2003)
used logic programming to model the development of beliefs in a network; Costantini & Tocchio
(2004) introduced DALI a specific language for the modeling of agents and their reaction to events
in a rudimentary temporal context, that is, all events that occur to an agent are time-stamped,
which allows an agent to remember whether it reacted to an incoming event. However, a number
of other publications exist that use non-monotonic logic for the study of multi-agent systems, for
example, Buccafurri & Caminiti (2005) and Cliffe et al. (2005).

The approach presented in Lopes et al. (2015) is remotely related to the idea sketched in
the example above. That is, they introduce Network Optimized Datalog to allow for a system
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administrator to verify his/her own beliefs over a dynamic network structure, for example, “is it
true that that internal controllers cannot be accessed from the Internet?.”

4.1.4 Inconsistent data

Lastly, we discuss a formal approach for dealing with inconsistent data. That is, we use branch-
ing in the flow of time to model different measurements of the same reality at the same point
in time, while the joining of branches can be used to model agreement of those measurements.
Moreover, by encoding inconsistencies of the data into our formal framework, we can use for-
malisms such as temporal logic to identify inconsistent measurement sequences in an automated
manner.

Example 4.5. A group of people P:={a, b, c,d, e,f, g, h} have to pass a token t from person to per-
son. There are three data sources. Each data point containing the position of the token, as well as
the interactions between people through which the token may be passed. Moreover, we know that the
following rules apply

(1) A token can only be passed over an edge.
(2) A token cannot be passed to the same person twice.
(3) After each token exchange, time moves forward by one step.

Consider the following weighted, instant-based temporal multiplex T := (G, R, =, <, w1) repre-
senting the measurements, where joined points in time represent agreement among the respective
data sources, while branching encodes disagreements between sources:

of6}
@@

with the corresponding graphs being (note the underline is representing the respective position of the
token):
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If we now consider each data source separately, we recognize that, given the rules of the system,
neither is sufficient to explain the phenomena of transferring the token from person a to person
h. That is, source A reports that in step Ga,, to Gap,, the token was transferred from person c to
person g without a connecting edge. Similarly, according to source B, the token jumped from g to c
in step Gap,, to Gpc,,. By contrast, source C reported that person c received the token twice. How
to resolve those issues is highly case-specific. Considering probabilities, or methods to fuzzify the
underlying problem, even though possible, would compromise the inherently discrete nature of the
token. Another line of thought would be to select the edges from all data sources in such a manner
that the resulting model explains the behavior of the system, for example, by taking the union of all
edges at a given point in time. Another method could be to find all possible paths from the first point
in time to the last point in time, such that the laws of the system are satisfied. The underlying idea
being, that if two data sources agree at one instant, both possible futures can be considered as future
steps. Hence, in this case, we would obtain the valid sequence:

At this point, it is important to note that we are not interested in arguing for a particular
method of aggregation. The main objective of the previous example is to demonstrate some ben-
efits of thinking about temporal networks in a more abstract manner. Moreover, as mentioned
above, it may serve as a small step towards logic-based methods of consolidating data sources
with in the realm of temporal networks.

4.2 Tool support

In addition to the theoretical work presented above, we implemented a corresponding R-package®
(Wickham, 2015). The primary purpose of this package is to provide a data structure that allows
for convenient storage and manipulation of flows of time and temporal networks based on such
flows of time (as discussed in Sections 2 and 3). The package, called tempnetwork, is mostly com-
prised of two S3-classes (Wickham, 2014, sec. 1, ch. 7). The first, called tempflow, is concerned
with the storage and manipulation of flows of time. The second, called tempnetwork, builds upon
the tempflow-class in a similar manner as the presented temporal networks build upon flows of
time. Meaning, it uses the structure provided by the tempflow-object to construct a temporal
network from a suitable family of graphs and a suitable equivalence relation. The tempnetwork-
package was implemented as an extension of the igraph-package (Csardi & Nepusz, 2006).
However, particular care was given to limit the dependencies to the igraph-package only. A brief
documentation and some examples are given in Appendix B.

5. Related work

The concept of a temporal network was developed in parallel across various fields, resulting in
multiple formalisms expressing the same or a similar idea (see, for example, Tang et al., 2009;
Michail, 2016; Kempe et al., 2002, and Kostakos, 2009). To obtain an overview over such a diverse
body of literature, the reader is referred to Holme & Saramiki (2012), which provides an extensive
summary of the concepts related to temporal networks. Moreover, Casteigts et al. (2012) not only
provides an overview for some formalisms but also attempts to unify those formalisms.

Another attempt of unifying this diverse ecosystem of formalisms is the notion of a multilayer
network. In this context, Kivela et al. (2014) and Boccaletti et al. (2014) can be recommended,
if one is interested in two comprehensive surveys of the field. However, for a quick introduc-
tion into the topic, Aleta & Moreno (2018) and Tomasini (2015) seem to be more convenient.
Naturally, even if the notion of a multilayer network is an attempt at unification, there still exist
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several formalizations of the same concept, see, for example, Sola et al. (2013), Wang et al. (2017),
Spatocco et al. (2018), Fenu & Higham (2017) and Kiveld & Porter (2018), Tomasini (2015) and
Cozzo et al. (2016). Particularly interesting are De Domenico et al. (2013), Solé-Ribalta et al.
(2016), as well as Wang et al. (2017) and Aleta & Moreno (2018) who discuss the tensor notation
of multilayer networks.

The notion of a path is central not only in graph theory, but also in multilayer networks and
thus also in temporal networks. Two insightful papers that specifically discuss paths in temporal
networks are Tang et al. (2009) and Wu et al. (2014). In particular, Wu et al. (2014) presents vari-
ous possible conceptions of what a minimal temporal path may be, and Tang et al. (2009) discusses
what kinds of metrics could be used for measuring distances in temporal graphs. Moreover, as the
notion of path is integral for the computation of some centrality measures, the discussion of what
a minimal path in a temporal network may be, thus projects forward and influences the defini-
tions of some common centrality measures. For example, Taylor et al. (2017) tries to define an
eigenvector centrality that differentiates between inter- and intra-graph edges. For a more com-
putational perspective on temporal paths and temporal networks in general (Michail, 2016) can
be recommended.

While some definitions of temporal networks neglect to study the temporal dimension in a
rigorous and explicit manner, there are two definitions that do study the temporal dimension
explicitly. Namely, temporal even graphs (Mellor, 2018) and stream graphs (Latapy et al., 2018).
The prior is a statical encoding of a temporal graph, that is well suited for computing reachabil-
ity. This property was exploited in Badie-Modiri et al. (2020) to estimate in- or out-reachability
with limited waiting times. A temporal event graph is computed by transforming the events in
the temporal graph (i.e., interactions between two vertices at some point in time) into vertices
and connecting them based on temporal adjacency, that is, two events are connected if they share
at least one vertex and they occur within A time of each other. Hence, the connectivity of the
event graph correlates positively with A. The event graph framework was extended to weighted
temporal event graphs in Kiveld et al. (2018). The latter cleanly separates both the temporal and
the structural aspects of a temporal network. This is accomplished by essentially generalizing
important graph theoretical concepts such that they can accommodate temporal aspects.

A stream graph (Latapy et al., 2018) can be understood as a graph where vertices as well as edges
are annotated with time stamps. If the set of time stamps is continuous, both edges and vertices
now are able to persist over time intervals. Moreover, stream graphs are used to to investigate the
behavior of multi-valued paths, for example, Latapy et al. (2018) introduce interesting concepts
such as the shortest fastest path and the fastest shortest path.

In particular, the link graphs introduced in Latapy et al. (2018), which are stream graphs with
temporally invariant vertices, share similarities with our approach. In fact, it is easy to see that if
we restrict the flow of time to be linear, our approach is subsumed by link graphs, in particular,
because we do not allow continuous time. However, to the best of our knowledge, the stream graph
approach does not account for the nondeterminism as discussed in this paper. Hence, despite the
similarities, such as a clean separation of the temporal and structural components of the temporal
network and the investigations into multi-valued paths, our work remains noticeable distinct and
both approaches complement each other.

As our approach also makes a (small) step toward the combined study of networks, logic, and
temporal logic (see Section 4), the reader may be interested in Seligman et al. (2011), Ahuja &
Malhi (2016), and Pardo et al. (2018) all of which discuss possible uses of logic in the study of
networks. Furthermore, for a quick introduction into temporal logic, the reader is referred to
Venema (2017), Burgess (1979), and Goranko & Galton (2015). Moreover, for a detailed review
of some of the many variants of temporal logic, see Kroger (2012). As temporal logic is intimately
intertwined with modal logic, the reader may also be interested in Van Benthem et al. (2010) which
provides an introduction into modal logic, as well as a good overview over its areas of application.
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6. Conclusion

Most approaches for the analysis of temporal networks do not explicitly discuss the underlying
conception of time. Moreover, weighted temporal networks are still uncommon in the literature,
and a direct discussion about how to reconcile the two semantic dimensions seems to be even
more rare. In order to tackle those issues, this paper discussed time as a formal structure, thereby
explicitly engaging with some of the underlying assumptions of time on which a temporal net-
work may operate. The utility of which was investigated by presenting a variety of examples,
each reflecting a possible area of application. Furthermore, we implemented a corresponding
R-package (for details, see Appendix B) which provides tool support for the concepts introduced
in this paper and thereby enables the modeling and analysis of discrete temporal network.

Together with our approach, we discussed some of the pitfalls that arise when dealing with non-
deterministic time. Moreover, our generalized abstraction of time promotes a clean separation of
the semantics of time and the semantic interpretation of the network itself (i.e., the semantics of
the vertices and edges in the corresponding network). To retain a clean separation of dimensions,
we introduced the notion of multivalued (temporal) paths, a variant of paths that, on the one
hand, enables a more in-depth understanding of temporal networks without sacrificing semantic
integrity, while on the other hand introducing several new and interesting technical challenges,
such as the computation of multivalued centrality measures for temporal networks. In addi-
tion, investigations into the connections between stream graphs (Latapy et al., 2018) and interval
temporal logic (Cau et al., 2006) could further strengthen the ties between logic and temporal
graphs.

Competing interests. None

Notes

1 The R-package is publicly available from https://nm.wu.ac.at/nm/strembeck/RTempNet/tempnetwork.zip.
2 | - | is shorthand for |x~ y| for some path x~ y.

3 a~~x bisshorthand fora~ bc X.

4 For a definition of ay;, see Definition 1.2.

5 CI(X) :={¢| X = ¢} is the deductive closure of X.

6 The source code is publicly available at https://nm.wu.ac.at/nm/strembeck/RTempNet/tempnetwork.zip.
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Appendix A. Formal definitions

A.1 Basic definitions
Definition A.1. A weighted multilayer network is a triple M := (G, R, w) such that for some arbitrary set of labels I:

o G:=(Gy)aer is a family of weighted graphs Gy := (Va, Eo, wq ) such that the respective vertex sets are pairwise distinct;
o R :=(Rup)a.gel is a family of relations, such that Vo, B € I a # B we have Ryg € V(Gy) x V(Gg);
o w:E(M) — R assigns weights to the edges of the network, such that w(e) := wq (€) if e € E(Gg).

We define V(G):={V(G)|GeG} and V(G) =Uyey(g) V. As well as £(G) = {E(G) |Ge G} and E(G) = Upeg(g) E-
Moreover, let E(R) := Uger R. Lastly, V(M) = V(G) and E(M) := E(R) UE(G).

Definition A.2. Let M :=(G, R, =) be a multilayer network with equivalence such that Vo e INv,we V(Gy) v=w=v=w.
Moreover, the equivalence classes generated by = are denoted as v:={w|we V(G) v=w} and we write Vo :=v€ Vo NV. Such a
multilayer network with equivalence is called a multiplex iff Vv e V(G) [v| = |G|. Lastly, we write V(M) to reference the set of
all equivalence classes®.

Definition A.3. Let M :=(G, R, =, <) be a multilayer network with equivalence and order. If < is a partial ordering on G.
Moreover, Gy < Gg <= (VveGyVweGg(v=w=v=w)A(vEw=v{w)).

A.2 Generalized flow of time

Definition A.4. Let @ := (T, R, () be a structure representing the flow of time, where T is a set of points, R is a relation over T,
thatis, Rc T x T and ¢: T — R(L) is a function assigning each point in time a set of properties P described in some language L.
If the properties at a point in time are not relevant, we write ® := (T, R).

Definition A.5. Let @ := (T, <) be a structure representing the flow of time, where T is a set of points and < is a (strict) partial
order over T (see Venema, 2017).
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For more on partial orders see, for example, Matthews (1994). Moreover, we write x < y :=x <y A x # y as a shorthand.
By imposing further restriction onto <, we can develop certain notions of time, for example, a flow of time is (see Venema,
2017):

o linear if its underlying order is total, that is Vx,ye Tx<yvy<x;

o backward branching if for a point a representing the present there are two incomparable points in the past, that is,
Ix,yeTx<any<anxiy;

o forward branching if for a point a representing the present, there are two incomparable points in the future, that is,
Ix,yeTa<xnazyrxiy;

o backward-serial if there is always another point in the past, thatis, Vxe T3ye Ty <x;

o forward-serial if there is always another point in the future, thatis, Vxe TIye Tx < y.

A.3 Paths in time
Definition A.6. Let @ := (T, <) be a flow of time, then t + 1 := succ(t) is called the (direct) successor function iff

succ: T—P(T)  succ(t) = {t'|t' € T ASucc(t,t')}

for the successor predicate Succ(a,b):=a<bAVxeTx=<aVvb=x. Moreover, t —1=pred(t):={t'|t' €T Asucc(t') =t} is
called the (direct) predecessor function

Definition A.7. Let @ := (T, <) be a flow of time, then

« a forward path in time a~" b between a and b is a sequence a~>t b=t~ t,:=11,b,...,ty_1, tn where Vi€
{1,...n=1} tiy1 € succ(t;);

o a backward path in time a~~" b is defined in analog to a~~* b with respect to the predecessor function pred;

e ifaxb, apathintimeisa~-b:=a~~" b;and ifb < a, a path in time is a~> b:=a~>"b.

The size of a path in time is determined by the elements in the path and denoted as |a~ b| and can be understood as the amount
of steps in time between a and b in a~ b.

Definition A.8. Let @ := (T, <, ) be a flow of time with spacing, with the function:

®:S(®) - R, x> w(x)
where S(®) :={(x,y) | x,y € T A Succ(x,y)} contains all steps in time. The length of a path in time a~> b with respect to w is
thus |a’\’) b|w = Zees(u«ab) w(e)'

Intuitively,  stretches time, that is, it assigns a duration onto a step in time. However, while the length of a path in time
is a useful concept, it cannot serve as a measure of temporal distance.

Definition A.9. Let @ := (T, <, w) be a flow of time with spacing. We call

min(|a~ blw) a<b
(Sm(a, h) i={a~b
oo otw.

the distance between a and b (with respect to w). Moreover, we call §1, where w is the constant function 1, the step distance
between a and b.

Proposition A.10. @ :=(T, <) and ® := (T, <, w) are quasi-metric flows of time.

Proof. Since 8 is a special case of §,,, we only consider the latter. Firstly, 8, (x, y) >0 holds as V(x,y) € S(®) w(x,y) e R*.
Secondly, 8, (x,y) =0=8(y,x) <= x=y holds because x =y <= |x~ y| =0, especially with respect to w, and the empty
sum is always 0. Finally, 8, (X, 2) < 84 (%, ¥) + 8w (3, 2). If z < x, then 8, (x, z) = co. Since there are no circles, it must be that
either 8, (x,y) = 0o or 8, (y,z) = co. For y <x or z <y, we have that in either case backtracking would be required, leading
to a shift in direction, which by definition is not a valid path in time. If x < y <z, assume the contrary. Thus, 8, (x,z) >
8w (%, y) + 80 (y, 2). Hence, Ix~> y, y~> z, resulting in x ~» y~> z such that |x~ 2|, > |x~> y~ 2|,,. However, by definition,
|x~ 2| is minimal, thus arriving at the desired contradiction. O
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A.4 Linear and homogeneous flows of time

Definition A.11. Let ®:=(T,<,w) be a quasi-metric flow of time. Then ® is a globally-homogeneous flow of time iff
Vx,y,zeT:

80 (%, ¥) + 8w (), 2) = 00 Vu(x,2) =8u(x, ¥) + 8w (), 2)

Notice, that every linear flow of time satisfies this property. Lastly, we have to check whether global homogeneousness
resolves the issue.

Proposition A.12. Let @ := (T, <, w) be a flow of time, then Vx,y,z€ T (x<y<z = 8,(x,y) <8u(x,2)) iff it is globally
homogeneous

Proof. 1f8,(x,y) + 8w (3, 2) = 00, Vx~> z (y ¢ x~ z). Hence, we only consider x < y < z. If either of < are equal, we are done.
Otherwise, we have x < y < z. Since, 8, (X, 2) = 80 (%, ¥) + 80 () 2), thus 84, (%, 2) — 80 (¥, 2) = 8, (x, y) and since 0 < 8, (y, z),
3w (%, ¥) < 8w (x, z) follows O

Definition A.13. @ :=(T, <, w) is a local homogeneous flow of time iff w is the constant function x with x e R*.
Definition A.14. @ := (T, <, w) is a homogeneous flow of time iff ® is locally and globally homogeneous.

Definition A.15. Let @ := (T, <, w) be a globally-homogeneous flow of time, then for some point of origin a € T and some x € R
we have

B(ax)y = | PV ET NG (@y) = I} 0<x
T OlyeTasu(na) =x}  0>x

Appendix B. An R-package for discrete temporal networks

The source code is publicly available at https://nm.wu.ac.at/nm/strembeck/RTempNet/tempnetwork.zip Before delving
deeper into the respective classes, a precursory remark. Across most functions it is often the case that multiple parame-
ters expect vectors of equal length as input. In such a case, the respective entries from each vector form a tuple that is further
used to specify objects in the respective structures and/or to assign values to those objects. That is, for a provided family of

could be read as the tuple (vy, . . ., v4;). To demonstrate the sketched behavior, consider the following example.

Example B.1. Consider the simple, undirected graph G := ({a, b, ¢}, {(a, b), (b, ¢), (¢, a) }). Let f be a function that can be used
to assign numeric values to individual edges from the graph G. That is, f takes as input a graph, two vectors containing vertex
names and a vector containing numeric values. Now consider the function call f(G, (a, ¢, b), (b, a,c), (2,3,4)) which assigns
the number 2 to the edge (a, b), the number 3 to the edge (¢, a), and the number 4 to the edge (b, c).

B.1 The tempflow-class

The primary objective of the tempflow class is to provide a simple and convenient data structure to encourage the work with
the concept of flows of time, as presented in Sections 2 and 3. Fundamentally, the class and its associated functions can be
separated into five distinct parts: the structure itself, a set of getter functions, a set of setter function, a set of functions serving
as predicates intended to check basic properties about the given tempflow-object, and a set of functions that allow for some
basic structural modifications of the given tempflow-object.

tempflow(inpGraph, setDefaultValues, safe) As previously mentioned, the S3-class tempflow is merely a
wrapper over the igraph-class. In this particular case, this can be taken literally. That is, the named list underlying the
S3-class contains only a single entry. Moreover, each entry in such a list will be called field. This field is named graph and
stores an igraph-object. Hence, the constructor of this class requires an igraph-object, which must be passed using the
parameter inpGraph. However, this particular igraph-object must adhere to certain constraints, similar to the relation of
flows of time (as discussed in this paper). Namely,

« the igraph-object has to be a directed, acyclic graph;’
« each edge in the igraph-object must have a weight greater or equal to 0;
o the name attribute of each vertex in the igraph-object must be unique string value.
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Unfortunately, checking those conditions can cause a significant computational overhead. Hence, the parameter safe was
introduced which if set to FALSE, forces the constructor to forgo those checks. Lastly, if the parameter setDefaultValues
takes on the value TRUE, invalid weight or name assignments will be replaced by a respective default assignment. Where by
default, all edges are assigned the weight 1 and the name of each vertex is a string representation of their current vertex-id (as
assigned within the igraph-object).

Before moving on toward presenting a selection tempflow-functions, a small interlude. There exists one particular
tempflow-object that is used as a running example for the rest of this section. This flow, originally taken from Example
2.3, is defined as follows.

Definition B.1. Let ® := (T, <, ) be the following flow of time encoded as a tempf low-object:

O OY ©
O O ORI O O

get_step_weights(tempFlow, srcPointList, dstPointList, safe) This function serves as a representative for
the set of getter functions, as most of them follow a similar structure. Firstly, the two primary parameters are srcPointList
and dstPointList. Any input passed through those two parameters is only considered valid if it satisfies the following
conditions:

« Either parameter must be passed a vector (or one-dimensional list) containing only strings or only integers;

o If a string vector is passed, each value must correspond with the name of a point in the provided tempflow-object (as
provided through the parameter tempFlow);

« If a vector containing only integers is provided, each value must correspond with the id of a point in the provided
tempf low-object.

Moreover, to characterize a step in time, two (not necessarily distinct) points are required. Hence, the vectors given through
srcPointList and dstPointList must be of the same length in any valid input of this function. This is necessary as
the steps addressed by any valid input are characterized as follows. If srcPointList := (p;)o<i<n and dstPointList :=
(i) o<i<n» then the steps (pi, gi )o<i<n are considered. Given this input pattern, it is also expected that the characterized steps
exists in the provided tempflow-object. Fortunately, the function will ensure that those criteria are upheld, if the param-
eter safe takes on the value TRUE. Meaning that, if one wants to reduce computational overhead, this safety mechanism
can be disabled. Given a valid input, this function will return the step weights of the characterized steps from the pro-
vided tempflow-object. Furthermore, if either srcPointList or dstPointList remain NULL, the function returns the
step weights of all steps in the provided tempflow-object.

Example B.2. Consider the tempflow-object ® from Definition B.1 and the function call set_step_weights(®,s, d) where
s:=(a, p11> P21, P31, p32) and d:= (p11, b, p22, p32, ¢). The specified function call will result in the output (2,2,1,3,1).

set_step_weights(tempFlow, srcPointList, dstPointList , weightList, safe) Due to their similar struc-
ture, this function serves as a representative for the whole setter function block. As for the required properties of the
parameters srcPointList and dstPointList, the reader may be referred to the discussion of the previous function,
leaving only the primary parameter weightList to be elaborated upon. In a similar fashion, and as implemented in the
igraph-package, a valid value for this parameter is either a vector with the same length as the vectors provided through
srcPointList or dstPointList or it is of length 1. Irrespective of the length, a valid input for the weightList param-
eter must always be comprised of nonnegative numerical values. Again, the checks ensuring the validity of the input
can be disabled via the safe parameter. Finally, the default behavior of srcPointList and dstPointList remains
equal to the get_step_weights-function. Additionally, if the parameter weightList takes on the value NULL, all spec-
ified steps will be assigned the value 1.1° For an illustrative example, depicting the behavior of the function consider the
following.

Example B.3. Consider the tempflow-object ® from Definition B.1. Moreover, consider the following function call:
set_step_weights(®,s,d,w)

where s:= (a,p11, p21> P31, P32)> d:= (P11, b, p22, P32, €), and w:= (10,20, 30,40,50). The output of which is the following
tempf low-object:
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is_branch_globally_homogeneous (tempFlow, startPoint, endPoint, considerWeights, consider-
Loops, safe) Apart from a tempflow-object, this function takes two string or integer values representing points
in the provided tempflow-object. Then, it reduces this tempflow-object to a flow containing all points in between the
points specified through startPoint and endPoint, finally checking whether the resulting tempflow-object is globally
homogeneous. Moreover, if considerWeights is TRUE, the function will account for weights when calculating the distances
between points. Furthermore, if considerLoops is FALSE, all paths that contain loops will be neglected in the calculation.

Example B.4. Consider the tempflow-object ® from Definition B.1. Hence, the function call:
is_branch_globally_homogeneous(®,q,b)
returns TRUE, while
is_branch_globally_homogeneous(®,q, b, FALSE)
returns FALSE. By contrast,
is_branch_globally_homogeneous(®,b,c)
returns FALSE and
is_branch_globally_homogeneous(®, b, c, FALSE)

returns TRUE (see also Section 2).

is_branch_locally_homogeneous(tempFlow, startPoint, endPoint, safe) Apart from a tempflow-
object, this function takes two string or integer values representing points in the provided tempflow-object. Then, it reduces
this tempflow-object to a flow only containing the points in between startPoint and endPoint, finally checking whether
the resulting tempflow-object is locally homogeneous.
Example B.5. Consider the tempflow-object ® from Definition B.1. Hence, the function call:

is_branch_locally_homogeneous(®,a, pa3)
returns TRUE, while

is_branch_locally_homogeneous(®,q,b)

returns FALSE (see also Section 2).
slice_flow(tempFlow, startPointList, endPointList, safe) The purpose of this function is to ease the pro-
cess of restricting the flow of time to relevant slices of time. For this function to behave properly, the validity conditions of
the input must be ensured. That is, the parameter startPointList and endPointList must be given vectors containing
either string or integer values only. If a string vector is passed, each entry must correspond with the point name of a point
in the provided tempflow-object. Otherwise, it must correspond with the point id of a point in the tempflow-object. If the
parameter safe takes on the value TRUE, it will be ensured that the provided input is valid. Finally, given a valid input, the

tempf low-object will be restricted to any points that lie in between any start-end point pair. That is, given a flow in time
@ := (T, R), the output of the function is a flow ®’, which is the flow  restricted to the point set P, where P is defined as:

P:={p|V(s,e)eSxEAnpeTs<p<e}

for §:= startPointList and E:= endPointList. To illustrate this, consider the following example.

Example B.6. Consider the tempflow-object ® from Definition B.1. Now consider the following function call:

slice_flow(®, (p11,p22)> (P32, Pa1))

The output of which is the following:
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compute_tempdistance(tempFlow, startPoint, endPoint, considerWeights, assumeReflexivity, safe)
This function returns the distance between two points in the tempflow-object. Firstly, if the parameter safe takes on the
value TRUE, the validity of the input will be ensured. In this particular case, validity means that the parameter startPoint
and endPoint are either strings representing the point names of existing points or integers representing the point ids
of existing points. As discussed in Section 2, the distance between two points is determined by the shortest path in time.
Whether the length of a path is determined by taking the sum of the weights of its steps, or merely by counting the number
of its steps, depends on the parameter considerWeights. Furthermore, if there is no path connecting the start point and
the end point, the distance is considered to be infinite. For an illustrative example, depicting the behavior of the function
consider the following.

Example B.7. Consider the tempflow-object ® from Definition B.1 and the function call:
compute_tempdistance(®, a, ¢, TRUE),
which produces the output 8. Moreover, the function call:
compute_tempdistance(®, a, ¢, FALSE)

produces the output 5.

remove_point (tempFlow, removePoint, safe) This function allows for the removal of a point from the provided
tempflow-object, while ensuring that the tempflow-object remains connected.!! Again the validity of its input, that is,
the value of removePoint is either a string or an integer corresponding to the point name or point id of a point in the
tempf low-object, will be checked if the parameter safe is set to TRUE. In an initial step, the point will be removed from the
given tempflow-object. The main purpose of this function, however, is not the removal of points, but the reconnecting of
its predecessor and successors. This occurs in the subsequent step and is accomplished by connecting all predecessors of the
removed point to its successors while at the same time aggregating the weights of the corresponding steps through addition.
That is, let t := removePoint and let pred(t) be the set of 's predecessors and succ(t) the set of its successors and let w be
a weight function reflecting the weight attributes of the tempflow-object, then the set of newly added steps is going to be
pred(t) x succ(t) with weight attributes being assigned as follows V (a, b) € pred(t) x succ(t) w((a,t)) + w((t, b)). Lastly, in
the case of either pred(t) or succ(t) being empty, this function behaves as virtually identical to the function delete_points.

Example B.8. Consider the tempflow-object ® from Definition B.1 and the function call remove_point(®,b), which
produces the following output:

o ke

By contrast, the function call remove_point(®, a) produces the following as output:

@*\\\z\ 12@773”’1
O S Al o S o

insert_point (tempFlow, newPoint, predPointList, sucPointList, weightList, pointAttrList, step-
AttrList, removeEdges, safe) This function allows for the insertion of a point in between two sets of points.'? Starting
with the parameter newPoint, the value passed to this parameter will become the name of the newly inserted point. Hence, it
must be unique and a string. As for the parameter predPointList and sucPointList, the usual conditions hold. That is,
they must contain string or integer values corresponding with the point names or point ids of points in the tempf low-object.
The parameter weightList, which provides the possibility of determining the weights of the newly inserted steps, has
familiar validity conditions. Namely, it can only take a vector that contains nonnegative numeric values and is either of
length 1 or is equal to the sum of the lengths of the vectors passed through predPointList and sucPointList. Similar
length restrictions are also enforced with respect to vectors contained in the parameter stepAttrList, which should be
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structured as required by the function igraph: :add.edges. By contrast, while similarly expecting a structure as required
by the function igraph: :add.vertices, the vectors passed through the parameter pointAttrList should only be of
length 1. Finally, all those conditions will be checked as long as safe is TRUE.

As implied by its name, this function inserts a point, named after the value passed through newPoint, such that it
predecessors will be the points specified by the parameter predPointList and such that is successors are those spec-
ified in sucPointList. Furthermore, if the parameter removeEdges is set to TRUE, any step intersecting with the set
predPointList x sucPointList will be removed. Moreover, the weights are assigned as follows. Let f:=newPoint,
let P:=predPointList = (pi)ie{l,m,n}’ let S:= sucPointList = (Si)ie{l,.“,m}’ and let W:=weightList = (Wi)ie{l,m,n+m}~
After executing the function, the resulting tempflow-object will contain the step (p;,t) with the weight w; for some
ie{l,...,n}, as well as the step (t,s;) with the weight w,; for some je {1,...,m}. The behavior of this function can
be observed in the following example.

Example B.9. Consider the tempflow-object ® from Definition B.1 and the function call:

insert_point(®,d, (p31, pa1), (P32, paz, ),
weightList = (10,20,30,40,50)),

which produces the following as output:

Phe =~ - N 30, ~

@ O OISt O
RO OEE DSOS DX

By contrast, the function call:

insert_point(®,d, (p31,pa1), (P32, Pa2> €)»
weightList = (10, 20, 30, 40, 50),
removeEdges = FALSE),

produces the following output:

L > 2 o8
o O O C)
AOSEOSE DA OES S O8

B.2 The tempnetwork-class

This class builds upon the tempflow-class. While the tempflow-class’es primary objective was to provide a data structure
for encoding flows of time, the tempnetwork-class intends to do the same for the temporal networks presented in this paper.
Not only does it support the same (or similar) operations as the tempflow-class, but its functions can again be divided into a
set of getter functions, a set of setter functions and a set of functions that allow for some basic structural modifications of the
given tempnetwork-object.

tempnetwork (tempFlow, graphlList, equivalenceRelation, setDefaultGraphNames, setDefaultFlowVal-
ues, storeTempGraph,safe) This function returns an S3-class tempnetwork-object, containing five fields, that is,
entries in the named list underlying the S3-class:

o The field tempFlow, accessible through the function tF, stores a non-empty tempflow-object;
o The field graphList, accessible through the function gL, stores a non-empty, named list of igraph-objects, where
- the indices are identical to the names of the points in the provided tempflow-object;
- every vertex must have a string as a name (which must be unique with respect to its own graph);
- all vertex sets have the same size;
- all vertex sets must be identical, if no equivalence relation is provided.
o The field equivRel, accessible through the function eR, stores a named list of named lists, which should approximate
an equivalence relation composed out of equivalence classes, where
- the indices of the whole equivalence relation must be unique;
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- the number of equivalence classes must be equal to the number of vertices in any graph of the provided graph
list;

- the indices of each equivalence class are identical to the names of the points from the provided tempflow-object;

- for every vertex v in the graph at point t from the given graph list, there must exist an equivalence class in the
equivalence relation that has the value v at index f;

- for every point ¢ in the given tempflow-object, if one aggregates all entries indexed by point t over all equivalence
classes, one obtains the vertex set of the graph at point f;

- for every point t in the given tempflow-object, there can not be two different equivalence classes that have the same
entry at point £.

The field tempGraph, accessible through the function tG, stores a graph encoding of the tempnetwork-object as an

igraph-object. However, this graph is computed lazily, that is, it will be computed only, if one explicitly calls for it.

The field storeTempGraph, accessible through the function stG, is used to specify whether the graph encoding of the

tempnetwork-object is stored in the tempGraph-parameter after it is computed. However, the moment some function

changes the underlying tempnetwork-object the graph is discarded, even if this flag is set to TRUE.

Most of the fields correspond to an input parameter of the constructor. However, some small differences exist. Firstly,
it is possible to pass an igraph-object through the tempFlow-parameter, as long as it satisfies all relevant conditions
for the construction of a tempflow-object. That is, the required tempflow-object will be constructed from the given
igraph-object, which is precisely the reason why the parameter setDefaultFlowValues exits. Secondly, if the parameter
equivalenceRelation remains NULL, it will be assumed that no equivalence relation was given, thereby requiring from
the graph list that all vertex sets must be identical. Thirdly, if the parameter setDefaultGraphNames is TRUE, any graph
in the given graph list containing a vertex without a name will be replaced by an isomorphic graph where the name of each
vertex is a string corresponding to its index in the respective igraph-object. Moreover, any graph containing a vertex with a
name that is not a string will be coerced into a string. Lastly, the parameter safe can be used to enable or disable the checks
that ensure that all input conditions are satisfied.

The following tempnetwork-object will be used as a running example throughout the remainder of this section.

Definition B.2. Consider the following tempnetwork-object T where tF(T ) is

® @ -®

gL(T) (already aligned in accordance with tF(T)) is

@ @ @

and where eR(T) is

{am{ti—=a, h-a, ts a3},
b {ti~ by, by, t3 b3},

co{tima, oo, tsmal)

insert_point (tempNetwork, newPoint, predPointList, sucPointList, graphList, equivRelation, we-
ightList, pointAttrList, stepAttrList, removeEdges, safe) This function is an example of a function that
is already defined for a tempflow-object but requires a slight alteration in order to remain viable for tempnetwork-objects.
That is, its purpose is identical to its tempflow counterpart. However, rather that returning a tempflow-object, this
function returns a tempnetwork-object. Furthermore, since this function adds a point to the tempflow-object of the given
tempnetwork-object, both the graph list and the equivalence relation must be updated as well, hence, requiring one to
provide an igraph-object for the newly added point. Moreover, each equivalence class must be extended by the vertices of
the newly added graph.

To be more precise, consider the following. Firstly, the parameter graphList requires either a single igraph-object
or a named list containing a single igraph-object indexed by the name of the new point. Secondly, the parameter
equivRelation requires a named list of named lists:
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o where the outer-level names must be identical to the outer-level names of the already existing equivalence relation;
« where the inner-level names must equal the name of the newly added point;
o where the values must correspond to the vertex names of the newly added graph.

Moreover, if both the existing equivalence class and the parameter equivRelation are NULL, then it is required that the
names of the vertices must be identical across all graphs (including the given one). Otherwise, the given equivalence relation
will be merged with the already existing one (which may or may not have to be constructed). Using those two parameters, the
existing graph list and equivalence classes are extended. Consider the following as an example.

Example B.10. Consider some tempnetwork-object T such that
gl(T)={t1~ Gy, 2~ Gy, t3>G3}
and
eR(T)={a={tima;, hay, a3},
h'—> {tl Ld bl, [2 = hz, t3 l=d hg},
co{tima, o, i)
Moreover, assume the new point to be ty, the new graph to be Gy := ({ay, b, c4 }, E) and the provided equivalence class fragment
tobe {ar {ty > as}, b {ts > bs},c> {ts — ca} }. Resulting in the new graph list {t; — Gi, t, = Gz, t3 > G3 ty > G4} and
the new equivalence relation:
{am{tima, hoay, a3ty as),
b {tl = bl, )~ hz, t3 —~ hS, ty — b4})
cH {tl = C1, b0, B3> 03, 14 > C4}}

after the function call (see also Section 2).

set_vertex_names (tempNetwork, pointNameList, tVertexNameList, newVertexNameList, changeEquivRel,
safe) This function changes the names of vertices in a graph from the graph list of the given tempnetwork-object. Apart
from the tempnetwork-object, this function has the parameter pointNameList, which takes a vector containing
strings that represent points in the tempflow-object of the given tempnetwork-object. Moreover, the vector passed
to tVertexNameList contains strings representing the names of the equivalence classes. Those two input vectors are
sufficient to identify the graph and the name of the vertex that ought to be changed. Hence, the last major parameter is
newVertexNameList, which takes a vector containing the new names for each of the specified vertices. If NULL, a vector
containing the string encoding of the indices of the specified vertices in their respective igraph-objects will be computed.
Lastly, the parameter changeEquivRel specifies whether the names of the given vertices should also be changed in the
equivalence relation of the tempnetwork-object.

Example B.11. Consider T to be the tempnetwork-object from Definition B.2. Now consider the following function call:
T’ :=set_vertex_names(7, (t1,3, ), (a b, a), (x,5,2))
resulting in gL(T")

@) B @

[
I I
I I
.

@

N e m - o

and where eR(T") is

{a»—> {t1 =X, 2z, I3 >—>tl3},
b {ti b1, by, 3y},

ce{timc, ho, )}

add_tvertices(tempNetwork, tVertexNameList, gVertexNameList, pointNameList, safe) This func-
tion adds a series of vertices to every graph in the graph list of the given tempnetwork-object and creates corresponding
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equivalence classes and adds them to the equivalence relation of the given tempnetwork-object. To accomplish this, the
following parameters are required.

Firstly, apart from the obligatory tempnetwork-object passed through the parameter tempNetwork, this function has the
parameter tVertexNameList, which takes a vector of strings representing the names of the new equivalence classes. It must
be either of the same length as the vector gVertexNameList or its length must be the length of the vector gVertexNameList
divided by n, where n is the number of points in the tempflow-object of the given tempnetwork-object. If the latter is the
case, it will be assumed that the first entry of this vector corresponds to the first # entries in the gVertexNameList-vector.

Secondly, the parameter gVertexNameList takes a vector of strings representing the vertices to be added to the graphs
in gL (tempNetwork). As every graph must have the same number of vertices, the length of this vector must be a multiple
of the number of points in tF (tempNetwork). By default, it is assumed that those have the same name as the equivalence
classes specified in the tVertexNameList-vector.

Thirdly, the parameter pointNameList takes a vector of strings representing the names of the points in
tF (tempNetwork). The length of this vector must be identical to the length of the gVertexNameList-vector, as this vector
is used to place the new vertex in the appropriate graph. By default, the points as ordered by the underlying igraph-object
are selected and replicated until the resulting vector has the same length as the vector gVertexNameList.

Example B.12. Consider T to be the tempnetwork-object from Definition B.2. Now consider the following function call:

T’ :=add_tvertices(T, (v, w),
(Vl, V2, V3, W3, Wi, Wz),

(ti,t2t3, 13,11, 1))
which is equivalent to

T':=add_tvertices(7,
(v, v, w,w,w),
(v1, v2, v3, w3, wi, wa),

(ti,t2t3, 13, 11, 1))
resulting in gL(T"):

®
® O
® ® O 6 0 6

!
!
!
N - - — N - - — LN /

and where eR(T") is

{am{tima, a3 a3},
b {1 b1, by, 13 b3},
c{timc, o, )

v {ti vy, v, 3 s}

wis{t1 > wi, > wy, B3> ws )}

remove_tvertices(tempNetwork, tVertexNameList, safe) This function takes a list of equivalence class names
and creates a new tempnetwork-object by removing the specified equivalence classes from the equivalence relation of the
given tempnetwork-object and by removing all vertices contained in in the specified equivalence classes from their respective
graphs in the graph list of the given tempnetwork-object.

Apart from the parameter tempNetwork, which takes a tempnetwork-object, this function requires a vector of strings
representing the names of equivalence classes which is passed through the parameter tVertexNameList.

Example B.13. Consider the following tempnetwork-object T where gL(T) (already aligned in accordance with tF(T") ) is
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@@@ '@@@k'o‘p

@ @ ® 0 ®)

and where eR(T) is

{am{tima, a3 a3},
b {t1 by, > by, 3 b3},
c{ti—c, b, i)
v {tim vy, vy, B33}

wis {ty > wi, ty > wy, 3> w3t}
Now consider the following function call:
T’ :=remove_tvertices(T, (v,w))

where T is identical to the tempnetwork-object T, as defined in Definition B.2:

and where eR(T") is

{am{ti=a, h~a, ts>as},
b {t1 = by, t, > by, t3 > b3},

co{timc, o, 3 h)

construct_underlying_graph(tempNetwork, connectGraphs, forceIGraph) This function constructs a
graph representation of the given tempnetwork-object. This is accomplished by renaming all vertices, where the new name
for each vertex is constructed by concatenating the name of the point, the name of the equivalence class, and the name of
the vertex into a single string. Additionally, the vertex attributes vertexName and pointNametempVertexName are added
to each vertex and filled according to its indices in the equivalence relation. After this, all edited graphs are merged (using
igraph::disjoint_union).

Moreover, if connectGraphs is TRUE, for each equivalence class, all contained vertices are connected in the exact same
manner as the points in the tempflow-object of the given tempnetwork-object. Furthermore, if the field storeTempGraph
in the given tempnetwork is TRUE and the parameter forceIGraph is FALSE, the function will return a new tempnetwork-
object, where the computed graph is stored in the field tempGraph. Otherwise, the computed igraph-object will be returned
directly.

Example B.14. Consider the following tempnetwork-object T where gL(T ) (already aligned in accordance with tF(T') ) is

56—0
@
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and where eR(T) is
{a={ti—~a, h—>ay) t3—>as ty—>ay, t5>as},
b {t1— by, t, > by, t3 > b3, 4> by, 5 bs},
co{fimc, b, 3, i o, ts>C5 ) )
Now consider the following function call:

construct_underlying_graph(7, forceIGraph = TRUE)

resulting in

with the following vertex attributes (here only a small sample is depicted):

{t1aa; — {vertexName — ay,
pointName ~ t1,
temp VertexName — a},
tbb, — {vertexName — b,
pointName — t;,
tempVertexName — b}
tsccs — {vertexName — cs,
pointName + ts,
tempVertexName — c}}.

compute_distance(tempNetwork, startTVertex, endTVertex, startPoint, endPoint, considerWeights,
cutGraph, safe) This function computes the multi-valued distance (or distances), see Section 3.1, between two vertices in
the graph constructed by construct_underlying_graph. To address those vertices, one is required to provide the name
of their equivalence classes, as well as their associated points in the given tempflow-object. If it is the case that the start and
end vertex are both completely specified, then this function will return a vector with its first entry representing the distance
traveled on inter-layer edges and its second representing the distance traveled on intra-layer edges.

If a vertex is not completely specified, that is, startPoint or endPoint is not given, then this function computes
the multi-valued distances with respect to every vertex in the given equivalence class. That is, the function assumes that
startPoint == NULL implies startPoint == tP(tempNetwork), analog for endPoint. Given this assumption, it will
call itself recursively compute the base case for each of those entries and aggregate the results into a list.

Example B.15. Consider Example 3.2. The following equivalences hold
compute_distance(7,a,b) = [a~ b|
compute_distance(T,a, b, t;) = [dr, ~ b|
compute_distance (T, a, b, endPoint=t;) = [a~ by,

compute_distance(7,a,b,t1,13) = [a, ~ Et3|
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