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Abstract. We determine sufficient criteria for the prime spectrum of an ambiskew
polynomial algebra R over an algebraically closed field � to be akin to those of two
of the principal examples of such an algebra, namely the universal enveloping algebra
U(sl2) (in characteristic 0) and its quantization Uq(sl2) (when q is not a root of unity).
More precisely, we determine sufficient criteria for the prime spectrum of R to consist
of 0, the ideals (z − λ)R for some central element z of R and all λ ∈ �, and, for some
positive integer d and each positive integer m, d height two prime ideals P for which
R/P has Goldie rank m.

2010 Mathematics Subject Classification. Primary 16S36, Secondary 16D25,
16D30, 16N60, 16W20, 16W25, 16U20.

1. Introduction. The results of this paper are applicable to the determination
of the prime ideals of certain ambiskew polynomial algebras and generalized Weyl
algebras. For readers unfamiliar with these algebras, details appear at the end of
this introduction. The main results of [12] are simplicity criteria for an ambiskew
polynomial algebra R over a field � and, in cases where R is not itself simple, certain
localizations and factors of R including generalized Weyl algebras. Such results are
applicable to the analysis of the prime spectrum of an ambiskew polynomial ring or
of any ring, which has an ambiskew polynomial ring as a localization. Our aim is to
prove results that can be applied together to show that, under appropriate conditions,
the prime spectrum of a given algebra R over an algebraically closed field � meets the
following description (∗):
� 0 is a prime ideal,
� there exists z ∈ Z(R) (the centre of R) such that the height one prime ideals have the

form (z − λ)R, λ ∈ �,
� (z − λ)R is maximal for all but countably many values of λ and
� there is a positive integer d such that, for each m ≥ 1, R has d height two prime

ideals P for which R/P has Goldie rank m.

It is well-known that the prime spectra of the universal enveloping algebra U(sl2)
(in characteristic 0) and the universal quantized enveloping algebra Uq(sl2) (when q
is not a root of unity) fit the description (∗) with d = 1 and 2, respectively. These
two algebras are among the main examples of ambiskew polynomial rings. They are
well-understood and will serve to illustrate our results. The new application will be to
certain ambiskew polynomial rings over coordinate rings of quantum tori that arise,
as localizations, in our analysis of connected quantized Weyl algebras [6]. For these
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algebras, which will be introduced in Example 2.8, we shall see that the prime spectrum
fits the description (∗) with d = 2. This is applied in [6] to the determination of the
prime spectra of connected quantized Weyl algebras.

The first step in establishing (∗) for a domain is to identify an appropriate central
element z for which the localization of R at �[z]\{0} is simple. This will be done in
Section 2 using the notion of a Casimir element for an ambiskew polynomial ring.
When such elements exist, they are normal but not necessarily central. [12, Theorem
4.7] is a simplicity criterion for the localization of R at the powers of z. If z is central,
then this localization is never simple and the appropriate localization for which to
consider simplicity is at �[z]\{0}. In Proposition 2.2, we give sufficient conditions for
this localization to be simple. As the localization is central, all ideals of R extend to
ideals of the localization and simplicity of the localization is equivalent to the property
that every non-zero ideal R has non-zero intersection with �[z]. Proposition 2.9
generalizes Proposition 2.2 to a situation where there is a central polynomial subalgebra
�[z, c1, . . . , ct] of R for some t ≥ 0. This general result will be applied, with t = 1 to
show that the augmented down-up algebras of [16] have the property that every non-
zero ideal has non-zero intersection with the centre which, for these algebras, is a
polynomial algebra in two indeterminates.

Having completed the first step, we proceed, in Section 3, to analyse prime spectra
of the factors R/(z − λ)R for λ ∈ �. For description (∗) to hold, we need all but
countably many of these to be simple. These factors are generalized Weyl algebras
W (A, α, u) in the sense of [1] and we apply known simplicity criteria [2, 12] for
W (A, α, u) to give, in Corollary 3.2, sufficient conditions, involving a positive integer
parameter m, for R/(z − λ)R to be simple. We then proceed to give, in Corollary 3.14,
sufficient conditions for R/(z − λ)R to have a unique non-zero prime ideal P/(z − λ)R.
In Section 4, under mild extra conditions, we show that the parameter m is the right
Goldie rank of R/P for the unique prime ideal P/(z − λ)R of R/(z − λ)R when it exists.

In the motivating examples arising from quantum tori, it turns out that for each
m ≥ 1, there are precisely two values of λ for which R/(z − λ)R is not simple and,
for each of these values of λ, R/(z − λ)R has a unique non-zero prime ideal. For
U(sl2) and the quantized enveloping algebra Uq(sl2), the exceptional maximal ideals
are annihilators of finite-dimensional simple modules but this is not the case for the
examples over quantum tori, where the factors are infinite-dimensional.

In the remainder of the introduction, we give some reminders of the construction
and properties of ambiskew polynomial rings and generalized Weyl algebras.

DEFINITION 1.1. Let � be a field, and let A be a �-algebra. For convenience, we
shall assume that � is algebraically closed. Let ρ ∈ �\{0} and let v be a central element
of A. Let α ∈ Aut� A and let β = α−1. Extend β to a �-automorphism of A[y; α] by
setting β(y) = ρy. There is a β-derivation δ of A[y; α] such that δ(A) = 0 and δ(y) = v.
The ambiskew polynomial algebra R(A, α, v, ρ) is the iterated skew polynomial algebra
A[y; α][x; β, δ]. Thus, ya = α(a)y and xa = β(a)x for all a ∈ A and xy = ρyx + v.

More general versions of ambiskew polynomial algebras are considered in [12],
where v need not be central and β need not be α−1, and [10], where α need not be
bijective, but here we consider only the case specified above.

If there is a central element u ∈ A such that v = u − ρα(u), then the element
z = xy − u = ρ(yx − α(u)) is such that zy = ρyz, zx = ρ−1xz and za = az for all a ∈ A.
Hence, z is normal in R, i.e., zR = Rz, and it is central if and only if ρ = 1. If such an
element u exists, then it is called a splitting element, and we say that R is a conformal
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ambiskew polynomial algebra. We then refer to the element z as the Casimir element of
R. If ρ = 1, then u and z are not unique and, for any λ ∈ �, can be replaced by u + λ

and z − λ, respectively.
Let v(0) = 0 and v(m) = ∑m−1

l=0 ρ lαl(v) for m ∈ �. In particular v(1) = v. Each v(m)

is central and it is easily checked, by induction, that, for m ≥ 0,

xym − ρmymx = v(m)ym−1 and (1)

xmy − ρmyxm = xm−1v(m) = α1−m(v(m))xm−1. (2)

If u is a splitting element, then v(m) = u − ρmαm(u).

DEFINITION 1.2 [1]. Let A be a ring, α be an automorphism of A, with inverse β,
and u be a central element of A. The generalized Weyl algebra W (A, α, u) is generated,
as a ring extension of A, by X and Y subject to the relations YX = α(u), XY = u
and, for all a ∈ A, Ya = α(a)Y and Xa = β(a)X . Here, A and α will be a �-algebra
and a �-automorphism, respectively. If R is the conformal ambiskew polynomial ring
R(A, α, u − α(u), 1), with Casimir element z, then we may identify W (A, α, u) with
R/zR, X with x + zR and Y with y + zR.

The algebra W = W (A, α, u) has a �-grading in which W0 = A and, for i > 0,
Wi = AY i and W−i = AXi. If A is a domain, then, by the �-grading, so too, for
each λ ∈ �, is W (A, α, u + λ) � R/(z − λ)R. Hence, if A is a domain, (z − λ)R is a
completely prime ideal of R for all λ ∈ �.

It is easy to check inductively that, for all m ≥ 1,

XmY m =
m−1∏
i=0

α−i(u) and Y mXm =
m∏

i=1

αi(u).

As observed in [12, Notation 5.3], the isomorphic skew Laurent polynomial rings
A[Y±1; α] and A[X±1; α−1] are the localizations of W at the Ore sets {Y i : i ≥ 1} and
{Xi : i ≥ 1}, respectively.

REMARK 1.3. The numbering of results in this version is different to that in the
previous version cited in [6]. The references in [6] to Example 3.12 and Corollary 4.7
would, in the current numbering, be to Example 3.17 and Corollary 4.10, respectively.

2. Simple central localizations. The following lemma, which in the Noetherian
case is an immediate consequence of [14, Proposition 2.1.16(vi)], is a generalization of
[12, Lemma 3.1].

LEMMA 2.1. Let B be a ring, let y be a regular element of B such that Y := {yi}i≥1 is
a right and left Ore set and let Z be a multiplicatively closed set of central elements of
B. Let W = {yiz : i ≥ 1, z ∈ Z}, which a right and left Ore set, and let C = BW be the
localization of B at W . If C is simple and I is a non-zero ideal of B, then ysz ∈ I for some
s ≥ 0 and some z ∈ Z.

Proof. Note that C = (BZ )Y . It follows easily from the centrality of Z that IBZ
is an ideal of BZ . By [12, Lemma 3.1], ys ∈ IBZ for some s ≥ 0. By [14, Proposition
2.1.16(iv)], ysz ∈ I for some z ∈ Z. �

PROPOSITION 2.2. Let R be a conformal ambiskew polynomial ring of the form
R(A, α, v, 1), where A is a �-algebra and v ∈ A is central. Let u be a splitting element,
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with corresponding Casimir element z = xy − u, and let Z be the multiplicatively closed
set of central elements �[z]\{0}. Suppose that A[y±1; α] is simple and that Z(A[y±1; α]) =
�. Then, RZ is simple if and only if, for all m ≥ 1, there exists a non-zero polynomial
pm(X) ∈ �[X ] such that pm(u) ∈ v(m)A.

Proof. Assume that for all m ≥ 1, there exists a non-zero polynomial pm(X) ∈ �[X ]
such that pm(u) ∈ v(m)A. Let Y = {yi}i≥0 and let W := {ymq(z) : m ≥ 1, q(z) ∈ Z}. By
the centrality of Z, W is a right and left Ore set in R and RW = (RY )Z = (RZ )Y .
We first show that RW is simple. The argument in [7, Subsection 1.5], where A is
commutative, is valid more generally and shows that Y is a right and left Ore set in
R and RY = A[y±1; α][z]. As A[y±1; α] is simple and Z(A[y±1; α]) = �, it follows from
[14, Lemma 9.6.9], with V = �[z], that RW is simple.

Now, suppose that RZ is not simple, let M �= 0 be a maximal ideal of RZ and let
P = M ∩ R. Then, Z ∩ P = ∅ and P �= 0. Using the centrality of Z, it is easy to check
that P is a prime ideal of R and that q(z) is regular modulo P for all q(z) ∈ Z. By
Lemma 2.1 and the simplicity of RW , yjq(z) ∈ P for some j ≥ 0 and some q(z) ∈ Z.
Hence, yj ∈ P and there exists a minimal m ≥ 0 such that ym ∈ P.

Suppose that m ≥ 1. By assumption, there exists a non-zero polynomial pm(X) ∈
�[X ] such that pm(u) ∈ v(m)A. By (1), v(m)ym−1 ∈ P whence v(m)Aym−1 ⊂ P and
pm(u)ym−1 ∈ P. As u and xy commute, (−z)i = (u − xy)i ≡ ui mod Ry for i ≥ 0, and
hence pm(−z) ≡ pm(u) mod Ry. Therefore, pm(−z)ym−1 ≡ pm(u)ym−1 mod Rym and so,
as pm(u)ym−1 ∈ P and ym ∈ P, we see that pm(−z)ym−1 ∈ P. The regularity of pm(−z)
modulo P then gives that ym−1 ∈ P, contradicting the minimality of m. Thus, m = 0,
1 ∈ P and M = W . This contradiction shows that RZ is simple.

Conversely, suppose that RZ is simple. Let m ≥ 1. As in the proof of [12, Lemma
4.1], let J be the �-subspace of R spanned by the elements of the form xiayj, where
i > 0 or j ≥ m or a ∈ v(m)A. Then, J is a right ideal of R and I := annR(R/J) is an ideal
of R contained in J and containing ym. Note that J ∩ A = v(m)A. As Z is central, IRZ
is a non-zero ideal of the simple ring RZ so, by [14, Proposition 2.1.16(iv)], it follows
that pm(−z) ∈ I for some non-zero polynomial pm(X) ∈ �[X ]. Thus, pm(u − xy) ∈ J
and, as x ∈ J and uxy = xyu ∈ J, it follows that pm(u) ∈ J ∩ A = v(m)A. �

REMARK 2.3. In Proposition 2.2, the hypotheses that Z(A[y±1; α]) = � and
A[y±1; α] is simple can be rephrased in terms of the base ring A. Using [14, Theorem
1.8.5], it is easy to check that these conditions are equivalent to the following three
conditions:

(i) A is α-simple;
(ii) αn is outer for all positive integers n;

(iii) {a ∈ Z(A) : α(a) = a} = �.

COROLLARY 2.4. Let R be a conformal ambiskew polynomial ring of the form
R(A, α, u − α(u), 1), where u is central and the �-algebra A is a domain such that
A[y±1, α] is simple, Z(A[y±1; α]) = � and for all m ≥ 1, there exists a non-zero
polynomial pm(X) ∈ �[X ] such that pm(u) ∈ v(m)A. Then, the height one prime ideals
of R are the ideals of the form (z − λ)R, λ ∈ �, where z is the Casimir element xy − u.
Consequently, if A is Noetherian then R is a Noetherian unique factorization domain
(UFD) (in the sense of [4]).

Proof. By Proposition 2.2, the localization of R at �[z]\{0} is simple. As z is central
and � is algebraically closed, it follows from Lemma 2.1, with y = 1, that every non-
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zero prime ideal of R contains (z − λ)R for some λ ∈ �. As observed in Definition 1.2,
(z − λ)R is completely prime for each λ ∈ � so the result follows. �

We can apply Proposition 2.2 to obtain alternative proofs of known results,
including [7, Theorem 4.6] and [15, Theorem 3.2].

COROLLARY 2.5. Let A be either (i) �[t] where α(t) = t + μ for some μ ∈ �∗ and
char(�) = 0 or (ii) �[t±1] where α(t) = qt for some q ∈ �∗ that is not a root of unity.
Let u ∈ A\� and let R = R(A, α, u − α(u), 1). Then, the height one prime ideals of R
are the ideals of the form (z − λ)R, λ ∈ �, where z is the Casimir element xy − u, and
every non-zero ideal of R has non-zero intersection with �[z].

Proof. It is well-known that in both cases, A is α-simple and it is clear
that Conditions (ii) and (iii) of Remark 2.3 hold. Hence, A[y±1, α] is simple and
Z(A[y±1; α]) = �. For m ≥ 1, v(m) = u − αm(u) �= 0 so the �-algebra A/v(m)A is finite-
dimensional, u + v(m)A is algebraic over � and there exists a non-zero polynomial
pm(X) ∈ �[X ] such that pm(u) ∈ v(m)A. By Corollary 2.4, the height one prime ideals
of R are the ideals of the form (z − λ)R, λ ∈ �, and, R being Noetherian, it follows
that every non-zero ideal of R has non-zero intersection with �[z]. �

In the following two examples, we give details of the best known examples of
Cases (i) and (ii) of Corollary 2.5. They are included to illustrate our results rather
than to advance understanding of the examples. We shall need to know the values of
the elements v(m), m ≥ 1.

EXAMPLE 2.6. Assume that char(�) = 0. Let A be the polynomial algebra �[t]
and let α be the �-automorphism of A such that α(t) = t + 2. Let ρ = 1 and let u =
−1
4 (t − 1)2, so that v = t. Then, R(A, α, v, 1) is the enveloping algebra U(sl2), in which

x, y and t are usually written e, f and h. In the notation of Definition 1.1, the Casimir
element z is 1

4 (� + 1), where � is the usual Casimir element as, for example, in [5]. For
m ≥ 1, v(m) = m(t + m − 1). In accordance with Proposition 2.2 and Corollary 2.5, the
localization of R at �[z]\{0} is simple.

EXAMPLE 2.7. Let q ∈ � and suppose that q is not a root of unity. Let A be the
Laurent polynomial algebra �[t±1] and let α be the �-automorphism of A such that
α(t) = q2t. Again, it is well-known that A is α-simple. Let ρ = 1 and let

u = −(q−1t + qt−1)/(q − q−1)2 and that v = u − α(u) = (t − t−1)/(q − q−1).

Here, R(A, α, v, 1) is the quantum enveloping algebra Uq(sl2), for example, see [3,
Chapter I.3], where, as usual, x, y and t are written E, F and K , respectively. The
Casimir element z is

xy + (q−1t + qt−1)/(q − q−1)2

and, for m ≥ 1,

v(m) = ((q2m−1 − q−1)t + (q1−2m − q)t−1)/(q − q−1)2.

In accordance with Proposition 2.2 and Corollary 2.5, the localization of R at �[z]\{0}
is simple. Note that the version of Uq(sl2) considered in [7, Example 2.3] is different to
the now established one considered here.
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In the next example, which occurs as a localization of a connected quantized Weyl
algebra in [6], A is non-commutative (if p �= 1) and the results of [7, 8] on height one
prime ideals do not apply.

EXAMPLE 2.8. Let p be an odd positive integer and let q ∈ �∗. Suppose that q is
not a root of unity. Let A be the quantum torus with generators z±1

i , 1 ≤ i ≤ p, subject
to the relations zizj = qijzjzi for 1 ≤ j < i ≤ p, where, for i > j,

qij =
{

1 if i is odd or if i and j are both even,

q−1 if i is even and j is odd.

Note that zp is central in A. Let α be the �-automorphism of A such that, for 1 ≤ i ≤ p,
α(zi) = zi if i is even and α(zi) = q−1zi if i is odd. The skew Laurent polynomial ring
S = A[y±1; α] is a quantum torus in p + 1 generators z±1

i , 1 ≤ i ≤ p + 1, where zp+1 = y.
It follows from [13, Proposition 1.3], that S is simple and has centre �. See [6, Lemma
3.7] for more detail.

Let

v = (1 − q)
(

q
p−1

2 z−1
p − zp

)
∈ Z(A)

and observe that

v = u − α(u), where u = q
p−1

2 z−1
p + qzp.

Thus, R := R(A, α, v, 1) is conformal with Casimir element z = xy − u. Let m ≥ 1.
Then,

v(m) = u − αm(u) = (1 − qm)
(

q
p−1

2 z−1
p − q1−mzp

)
so,

z2
p ≡ q

p+2m−3
2 mod (v(m)A) and z−2

p ≡ q− p+2m−3
2 mod (v(m)A).

Hence,

u2 = qp−1z−2
p + 2q

p+1
2 + q2z2

p

≡ q
p+1

2 (q−m + 2 + qm) mod v(m)A.

Thus, pm(u) ∈ v(m)A, where pm(X) = X2 − σ and σ = q
p+1

2 (q−m + 2 + qm). By
Proposition 2.2, every non-zero prime ideal of R has non-zero intersection with �[z]
and, by Corollary 2.4, every height one prime ideal has the form (z − λ)R, λ ∈ �.

The next result is a generalization of Proposition 2.2, which is the case t = 0, and
is applicable to other algebras in which every ideal intersects the centre non-trivially.

PROPOSITION 2.9. Let B be a �-algebra with a �-automorphism α such that B[y±1; α]
is simple and Z(B[y±1; α]) = �. Let t ≥ 0 be an integer and let A be the polynomial
algebra B[c1, . . . , ct] in t algebraically independent commuting indeterminants. Extend α

to a �-automorphism of A by setting α(ci) = ci for 1 ≤ i ≤ t. Let u ∈ A, let v = u − α(u)
and, in the conformal ambiskew polynomial ring R = R(A, α, v, 1), let z be the Casimir
element xy − u.
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(i) Z(A[y±1; α]) = �[c1, . . . , ct] and Z(R) is the polynomial algebra �[z, c1, . . . , ct].
(ii) Let Z = Z(R)\0. The localization RZ is simple if and only if, for all m ≥

1, there exists a non-zero polynomial pm(X, X1, . . . , Xt) ∈ �[X, X1, . . . , Xt] such that
pm(u, c1, . . . , ct) ∈ v(m)A.

Proof. (i) is straightforward.
(ii) We adapt the proof of Proposition 2.2 with Y = {yi}i≥0, RY = A[y±1; α][z] =

B[y±1; α][z, c1, . . . , ct], W = {ymq(z, c1, . . . , ct) : m ≥ 1, q(z, c1, . . . , ct) ∈ Z} and
RW = (RY )Z = (RZ )Y , which is simple.

Assume that, for all m ≥ 1, there exists a non-zero polynomial pm(X, X1, . . . , Xt) ∈
�[X, X1, . . . , Xt] such that pm(u, c1, . . . , ct) ∈ v(m)A. Suppose that RZ is not simple,
let M �= 0 be a maximal ideal of RZ and let P = M ∩ R. Then, Z ∩ P = ∅, P �= 0
and, using the centrality of Z, it is easy to check that P is a prime ideal of
R and that q(z, c1, . . . , ct) is regular modulo P for all q(z, c1, . . . , ct) ∈ Z. By
Lemma 2.1 and the simplicity of RW , yjq(z, c1, . . . , ct) ∈ P for some j ≥ 0 and some
q(z, c1, . . . , ct) ∈ Z. Hence, yj ∈ P. Let m ≥ 0 be is minimal such that ym ∈ P. As P is
proper, m ≥ 1. By assumption, there exists a non-zero polynomial pm(X, X1, . . . , Xt) ∈
�[X, X1, . . . , Xt] such that pm(u, c1, . . . , ct) ∈ v(m)A. As in the proof of
Proposition 2.2, pm(u, c1, . . . , ct)ym−1 ∈ P, pm(−z, c1, . . . , ct) ≡ pm(u, c1, . . . , ct) mod
Ry, pm(−z, c1, . . . , ct)ym−1 ≡ pm(u, c1, . . . , ct)ym−1 mod Rym, pm(−z, c1, . . . , ct)ym−1 ∈
P and ym−1 ∈ P, contradicting the minimality of m. It follows that RZ is simple.

Conversely, suppose that RZ is simple. Let m ≥ 1. As in the proof of
Proposition 2.2, if J denotes the �-subspace of R spanned by the elements of the form
xiayj, where i > 0 or j ≥ m or a ∈ v(m)A, then J is a right ideal of R and I := annR(R/J)
is an ideal of R contained in J and containing ym. Also, J ∩ A = v(m)A. As Z is central,
IRZ is a non-zero ideal of the simple ring RZ so, by [14, Proposition 2.1.16(iv)], it
follows that pm(−z, c1, . . . , ct) ∈ I for some non-zero polynomial pm(X, X1, . . . , Xt) ∈
�[X, X1, . . . , Xt]. Thus, pm(u − xy, c1, . . . , ct) ∈ J and, as x ∈ J and uxy = xyu ∈ J, it
follows that pm(u, c1, . . . , ct) ∈ J ∩ A = v(m)A. �

We next look at a class of algebras, introduced by Terwilliger and Worawannotai
[16], to which Proposition 2.9 applies with t = 1.

EXAMPLE 2.10. Let A = �[c, k±1], let q ∈ �∗ and suppose that q is not a root of
unity. Let α be the �-automorphism such that α(k) = q2k and α(c) = c. Fix a non-zero
integer n and a Laurent polynomial f (k) = ∑

aiki ∈ �[k, k−1], such that an = 0. Let

u = ckn + f (k) and v = u − α(u) = (1 − q2n)ckn +
∑

biki,

where each bi = (1 − q2i)ai. In particular, b0 = 0. Then, R = R(A, α, v, 1) is generated
by k±1, c, x and y subject to the relations

ck = kc, xc = cx, yc = cy, (3)

kk−1 = 1 = k−1k, (4)

xk = q−2kx, yk = q2ky, (5)

xy − yx = (1 − q2n)ckn +
∑

biki. (6)

By (6),

c = (1 − q2n)−1(xy − yx −
∑

biki)k−n
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so, as a generator, c is redundant. Substituting the above expression for c in the relations
xc = cx and cy = yc gives two relations in x, y and k that are cubic in x, y. Then, R is
generated by k±1, x and y subject to these two relations and

kk−1 = 1 = k−1k, (7)

xk = q−2kx, yk = q2ky, (8)

xy − yx = (1 − q2n)ckn +
∑

biki. (9)

This corresponds to the presentation in [16, Definition 2.1], but the generators
there are e = q−tksx and f = y, where t − s = n. Following [16], we shall refer to R as
an augmented down-up algebra.

By the construction above, R is conformal with central Casimir element z = xy − u
and it is readily checked that Z(R) = �[c, z]. For m ≥ 1,

v(m) = (1 − qmn)ckn +
∑

(1 − q2im)aiki,

so A/v(m)A � �[k±1], which is an integral domain of transcendence degree 1. Hence,
there exists a non-zero polynomial p(X, Y ) ∈ �[X, Y ] such that p(u, c) ∈ v(m)A.
Applying Proposition 2.9, we obtain the following result.

PROPOSITION 2.11. If R is an augmented down-up algebra, then every non-zero ideal
of R has non-zero intersection with Z(R) and the localization of R at Z(R)\{0} is simple.

COROLLARY 2.12. An augmented down-up algebra R is a Noetherian UFD (in the
sense of [4]).

Proof. Certainly, R is a Noetherian domain. It follows from Proposition 2.2 that if
P is a height one prime ideal of R, then f ∈ P for some irreducible element f ∈ �[c, z].
It remains to show that f R is completely prime. By [11, Corollary 2.6], R is isomorphic
to the generalized Weyl algebra W = W (B, α, u), where B = �[c, k±1, z], α(c) = c,
α(k) = q2k and α(z) = z. Applying Lemma 2.13, with I = f B, we see that R/f R is a
generalized Weyl algebra over the domain B/f B and hence is a domain. �

LEMMA 2.13. Let W = W (A, α, u) be a generalized Weyl algebra and let I be an
ideal of A such that I = α(I). Then, IW is an ideal of W and W/IW � W (A/I, α, u),
where α is the automorphism of A/I induced by α and u = u + I.

Proof. It is routine to check that an isomorphism is given by

(aiY i + · · · + a0 + · · · a−jX j) + IW → (aiY i + · · · a0 + a−jX j),

where, for i ∈ �, ai = ai + I . �

3. Families of exceptional simple factors. Although the results of this section are
more widely applicable, they are aimed at the case where R satisfies the hypotheses and
the simplicity criterion of Proposition 2.2. Examples include Examples 2.6–2.8. We
continue to assume that � is algebraically closed so that every height one prime ideal P
of R has the form (z − λ)R with λ ∈ �. The factor R/(z − λ)R is then the generalized
Weyl algebra W (A, α, u + λ) and the following result from [2] is applicable. An earlier
version appeared in [9], where A is commutative, and a more general version is [12,
Theorem 5.4].
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THEOREM 3.1. Let α be a �-automorphism of an �-algebra A, let u ∈ A be central
and let W be the generalized Weyl algebra W (A, α, u). Then, W is simple if and only if

(i) A is α-simple;
(ii) αm is outer for all m ≥ 1;

(iii) u is regular;
(iv) uA + αm(u)A = A for all m ≥ 1.

COROLLARY 3.2. Let R be a conformal ambiskew polynomial ring of the form
R(A, α, u − α(u), 1), where u ∈ Z(A) and the �-algebra A is a domain such that A[y±1, α]
is simple and Z(A[y±1; α]) = �. Let λ ∈ �. The ideal (z − λ)R is maximal if and only if
(u + λ)A + αm(u + λ)A = A for all m ≥ 1.

Proof. Recall that R/(z − λ)R � W (A, α, u + λ). From Remark 2.3, we know that,
as A[y±1, α] is simple and Z(A[y±1; α]) = �, A is α-simple and αm is outer for all
m ≥ 1. If u + λ = 0, then W (A, α, u + λ) is not simple, by Theorem 3.1, and (u +
λ)A + αm(u + λ)A = 0 �= A so we can assume that u + λ �= 0 in the domain A. Thus,
Conditions (i)–(iii) in Theorem 3.1 hold for W (A, α, u + λ) and (z − λ)R is maximal if
and only if (u + λ)A + αm(u + λ)A = A for all m ≥ 1. �

EXAMPLE 3.3. Let R be as in Example 2.6. Thus, char(�) = 0, A = �[t], α(t) =
t + 2, ρ = 1, u = −1

4 (t − 1)2, v = t and R is the enveloping algebra U(sl2). Then, every
height one prime ideal of R has the form (z − λ)R for some λ ∈ � and R/(z − λ)R =
W (�[t], α, u + λ). For m ≥ 1, let Mm,λ = (u + λ)A + αm(u + λ)A which, as v(m) = u −
αm(u) = u + λ − αm(u + λ), is equal to (u + λ)A + v(m)A. We have seen in 2.6 that, for
m ≥ 1, v(m) = m(t + m − 1) so, v(m)A = (t − (1 − m))A. Also,

u + λ ≡
(

λ − 1
4

m2
)

mod v(m)A.

If λ �= 1
4 m2 for all m ∈ �, then Mm,λ = A and, by Corollary 3.2, (z − λ)R is maximal.

On the other hand, if λ = 1
4 m2 for some, necessarily unique, m ∈ �, then Mm,λ =

v(m)A = (t + m − 1)A is maximal and, by Corollary 3.2, (z − λ) is not maximal.

EXAMPLE 3.4. Let R be the quantum enveloping algebra Uq(sl2) as in Example 2.7.
Thus, q ∈ �∗ is not a root of unity, A = �[t±1], α(t) = q2t, ρ = 1 and u = −(q−1t +
qt−1)/(q − q−1)2. Every height one prime ideal of R has the form (z − λ)R = (xy − (u +
λ))R for some λ ∈ � and R/(z − λ)R = W (�[t±1], α, u + λ), where α(t) = q2t. We have
seen in 3.4 that, for m ≥ 1,

v(m) = q2m−1 − q−1

(q − q−1)2
(t − q2−2mt−1).

For m ≥ 1, let

Mm,λ = (u + λ)A + αm(u + λ)A = (u + λ)A + v(m)A.

Then, t−1 ≡ q2m−2t mod (v(m)A) from which it follows that Mm,λ contains the ideal
(t2 − q2−2m)A and the maximal ideal (t − μ)A, where

μ = λ(q − q−1)2

q−1 + q2m−1
.
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It now follows that

Mm,λ �= A ⇔ Mm,λ is maximal ⇔ μ2 = q2−2m ⇔ μ = ±q1−m ⇔ λ = ± q−m + qm

(q − q−1)2
.

By Corollary 3.2, the ideal (z − λ)R is maximal if and only if λ �= ± q−m+qm

(q−q−1)2 for all
m ∈ �.

The following lemma determines those values of λ for which R/(z − λ)R is simple
in Example 2.8.

LEMMA 3.5. Suppose that q is not a root of unity. Let A, u = q
p−1

2 z−1
p + qzp and α

be as in Example 2.8 and let λ ∈ �. Let m ∈ �. Then, the ideal (u + λ)A + αm(u + λ)A
is proper if and only if λ = ±q

p−2m+1
4 (qm + 1). If λ = ±q

p−2m+1
4 (qm + 1), then (u + λ)A +

αm(u + λ)A is a maximal (and completely prime) ideal of A and (u + λ)A + αa(u +
λ)A = A for all a ∈ �\{m}.

Proof. Suppose that (u + λ)A + αm(u + λ)A is proper. Let B be the subalgebra
of A generated by z±1

1 , z±1
2 , . . . , z±1

p−1. As for S in Example 2.8, it follows from [13,
Proposition 1.3] that B is simple and Z(B) = �. It then follows from [14, Lemma
9.6.9(i)] that the maximal ideals of A have the form (zp − μ)A, μ ∈ �∗, and are
completely prime with factors isomorphic to quantum tori in p − 1 indeterminates.
So, there exists μ ∈ �∗ such that u + λ ∈ (zp − μ)A and αm(u + λ) ∈ (zp − μ)A, and
hence such that

q
p−1

2 μ−1 + λ + qμ = 0 = qmq
p−1

2 μ−1 + λ + q1−mμ.

Eliminating the terms that involve μ−1,

λ(qm − 1) + (qm+1 − q1−m)μ = 0,

and dividing through by qm − 1, which is necessarily non-zero, λ = −q1−m(qm + 1)μ.
Hence, λ �= 0. Also,

0 = q
p−1

2 q1−m(qm + 1)λ−1 − λ + qm(qm + 1)−1λ,

0 = q
p−1

2 q1−m(qm + 1)2 − λ2(qm + 1) + qmλ2,

0 = q
p−1

2 q1−m(qm + 1)2 − λ2 and

λ = ±q
p−2m+1

4 (qm + 1).

Conversely, suppose that λ = ±q
p−2m+1

4 (qm + 1). Then,

u + λ = (zp ± q
p+2m−3

4 )(q ± q
p−2m+1

4 z−1
p ) and

αm(u + λ) = (zp ± q
p+2m−3

4 )q1−m(1 ± q
p+6m−3

4 z−1
p ).

Thus,

(u + λ)A + αm(u + λ)A ⊆ (zp ± q
p+2m−3

4 )A �= A.

https://doi.org/10.1017/S0017089518000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000046


PRIME SPECTRA OF AMBISKEW POLYNOMIAL RINGS 59

Moreover, as q ± q
p−2m+1

4 z−1
p and 1 ± q

p+6m−3
4 z−1

p generate distinct maximal ideals,

(u + λ)A + αm(u + λ)A = (zp ± q
p+2m−3

4 )A,

which is a maximal (and completely prime) ideal of A.
Finally, if (u + λ)A + αa(u + λ)A �= A, then

q
p−2a+1

4 (qa + 1) = ±λ = ±q
p−2m+1

4 (qm + 1),

from which it follows successively that

q
−a
2 (qa + 1) = ±q

−m
2 (qm + 1),

q
a
2 + q

−a
2 = ±(q

m
2 + q

−m
2 ),

qa + q−a = (qm + q−m) and

qa − qm = (qa − qm)q−a−m.

As q is not a root of unity, this cannot happen if a ∈ �\{m}. �
COROLLARY 3.6. If R is as in Example 2.8, then (z − λ)R is maximal if and only if,

for all m ≥ 1, λ �= ±q
p−2m+1

4 (qm + 1).

Proof. This is immediate from Corollary 3.2 and Lemma 3.5. �
We now aim to establish conditions that, in the context of Corollary 3.2, will

imply that when (z − λ)R is not maximal there is a unique non-zero prime ideal in
R/(z − λ)R.

LEMMA 3.7. Let W = W (A, α, u) be a generalized Weyl algebra with u central in
A. Let j ≥ 1 be such that uA + αj(u)A = A. Let J be an ideal of W. If Y j ∈ J, then
Y j−1 ∈ J and if Xj ∈ J, then Xj−1 ∈ J. Consequently, if uA + αi(u)A = A for 1 ≤ i ≤ j
and Y j ∈ J or Xj ∈ J, then J = W.

Proof. If Y j ∈ J, then

uY j−1 = XY j ∈ J and αj(u)Y j−1 = Y j−1α(u) = Y jX ∈ J,

whence

AY j−1 = (Au + Aαj(u))Y j−1 ⊆ J

and so Y j−1 ∈ J. Similarly, if Xj ∈ J, then

α(u)Xj−1 = YXj ∈ J and α−(j−1)(u)Xj−1 = Xj−1u = XjY ∈ J,

whence

AXj−1 = (Aα−(j−1)(u) + Aα(u))Xj−1 ⊆ J

and so Xj−1 ∈ J. Repeating the argument yields the stated consequence. �
PROPOSITION 3.8. Let W = W (A, α, u) be a generalized Weyl algebra with u central

in A. Let m ≥ 1 be such that uA + αj(u)A = A for 1 ≤ j < m but uA + αm(u)A �= A. Let
I be an ideal of A containing uA + αm(u)A. There is a �-graded ideal J = J(I) of W
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such that, for i ≥ 0, Ji = IiY i and J−i = I−iX i, where if i ≥ m, then Ii = I−i = A and if
0 ≤ i ≤ m − 1, then

Ii := ∩m−1−i
	=0 α−	(I) and I−i := ∩m−1

	=i α−	(I).

Proof. Note that the two definitions of I0 coincide. With Ji as above for i ∈ �, let
J = ⊕i∈�Ji. It is clear that JiA ⊆ Ji and AJi ⊆ Ji for each i ∈ �. Let i ≥ 0. Clearly,
JiY ⊆ Ji+1 and J−iX ⊆ J−(i+1). Also,

YJi ⊆ α(Ii)Y i+1 ⊆ Ii+1Y i+1 = Ji+1

and, similarly, XJ−i ⊆ J−(i+1). Now, let i ≥ 1. As u ∈ α−m(I) and u ∈ I ,

JiX = IiY i−1α(u) = Iiα
i(u)Y i−1 ⊆ Iiα

i−m(I)Y i−1 ⊆ Ii−1Y i−1 = Ji−1

and

XJi = α−1(Ii)XY i = α−1(Ii)uY i−1 ⊆ α−1(Ii)IY i−1 ⊆ Ii−1Y i−1 = Ji−1.

Similarly, J−iY ⊆ J−(i−1) and YJ−i ⊆ J−(i−1). It follows that J is a graded ideal
of W . �

NOTATION 3.9. For i ≥ 1, let di = α(u)α2(u) . . . αi(u) and ei = α−i(di) =
uα−1(u) . . . α1−i(u). Thus, di = Y iXi and ei = XiY i, see Definition 1.2.

LEMMA 3.10. Let W and m be as in Proposition 3.8. For 0 < i < m, diA + uA =
A = diA + αm(u)A and eiA + α−i(u)A = A = eiA + αm−i(u)A.

Proof. Suppose that diA + uA �= A and let M be a maximal ideal of A containing
diA + uA. As u is central, there exists j such that 1 ≤ j ≤ i < m, αj(u) ∈ M and u ∈
M. This contradicts the conditions of Proposition 3.8, so diA + uA = A. Similarly,
diA + αm(u)A = A and, applying α−i, eiA + α−i(u)A = A = eiA + αm−i(u)A. �

LEMMA 3.11. Let W, I and J = J(I) be as in Proposition 3.8 and suppose that I is
a maximal ideal of A. Then J is a maximal ideal of W.

Proof. Recall that Xm ∈ J and Y m ∈ J. Let M be an ideal of W such that J ⊂ M.
There exist a−(m−1), . . . , a0, . . . , am−1 ∈ A such that

g := a−(m−1)Xm−1 + · · · + a0 + · · · + am−1Y m−1 ∈ M

and ai /∈ Ii for at least one i with m − 1 ≥ i ≥ −(m − 1). Suppose that ai /∈ Ii for some i
with 0 ≤ i ≤ m − 1. Then, there exists 	 such that 0 ≤ 	 ≤ i ≤ m − 1 and α	(ai) /∈ I . But
Y 	gY m−1−i−	 ∈ M and its coefficient of Y m−1 is α	(ai). Replacing g by Y 	gY m−1−i−	

and recalling that Y m ∈ J ⊆ M, we can assume that i = m − 1. Thus, am−1 /∈ Im−1 = I .
Let F denote the set of all elements f ∈ A for which there exist b−(m−1), . . . , bm−2 ∈ A
such that

b−(m−1)Xm−1 + · · · + b0 + · · · + bm−2Y m−2 + f Y m−1 ∈ M.

Then, F is an ideal of A, am−1 ∈ F\I and I ⊆ F , so F �= I and, by the maximality of I ,
F = A. Hence, we may assume that am−1 = 1 and that

g = w1−m + · · · + w0 + · · · + wm−2 + Y m−1 ∈ M,
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where, for −(m − 1) ≤ i ≤ m − 2, wi is homogeneous of degree i. Consider

Xm−1gXm−1 = Xm−1w1−mXm−1 + · · · + Xm−1w0Xm−1 + · · · + Xm−1Y m−1Xm−1 ∈ M.

The term Xm−1Y m−1Xm−1 is homogeneous of degree 1 − m and the other terms have
degree ≤ −m. As W−k = AXk for k ≥ m and Xm ∈ J ⊂ M, the other terms are in
M. Hence, Xm−1Y iXm−1 ∈ M, that is, em−1Xm−1 ∈ M, where, as in Notation 3.9,
em−1 = uα−1(u) . . . α−(m−2)(u). As I1−m = α−(m−1)(u)A, α−(m−1)(u)Xm−1 ∈ M. Hence,
(α−(m−1)(u)A + em−1A)Xm−1 ⊂ M and it follows from Lemma 3.10 that Xm−1 ∈ M.
By Lemma 3.7, M = W .

The argument if ai /∈ Ii for some i with 0 > i ≥ 1 − m is similar. We may assume
that i = 1 − m and a−(1−m) = 1 and consider Y m−1gY m−1, which belongs to M, giving
that Y m−1Xm−1Y m−1 = dm−1Y m−1 ∈ M, which leads us to conclude, using Lemma 3.10
and the fact that uXm−1 ∈ J ⊆ M, that M = W . This completes the proof that J is
maximal. �

LEMMA 3.12. Let W be as in Proposition 3.8, let I = uA + αm(u)A and let J = J(I)
be as in Proposition 3.8. Any prime ideal P of W containing Xm and Y m must contain J.

Proof. For i ≥ 0, let di = Y iXi = α(u)α2(u) . . . αi(u). Let K be an ideal of W that
contains Xm and Y m.

We claim that dm−1J ⊆ K . For this it suffices to show that dm−1Ji ⊆ K for all
i ∈ �. As Y m ∈ K and Xm ∈ K , Ji ⊆ K and J−i ⊆ K for i ≥ m. Let 1 ≤ i < m. Then,
J−i ⊆ XiA, so

dm−1J−i ⊆ dm−1XiA = Y m−1Xm−1XiA = Y m−1XmXi−1A ⊆ K.

Also, for 0 ≤ i ≤ m, Ji ⊆ IY i, so

dm−1Ji ⊆ dm−1IY i = udm−1Y iA + αm(u)dm−1Y iA = udm−1Y iA + dmY iA.

Here, dm = Y mXm ∈ K and udm−1 = XYY m−1Xm−1 = XY mXm−1 ∈ K so, dm−1Ji ⊆
K . This completes the proof of the claim that dm−1J ⊆ K .

Now, suppose that K is prime and that J �⊆ K . Then, as J is an ideal and dm−1J ⊆ K ,
dm−1 ∈ K . Note that Xm−1u = Xm−1XY = XmY ∈ K , so Xm−1(uA + dm−1A) ⊆ K .
It follows, by Lemma 3.10, that Xm−1 ∈ K . By Lemma 3.7, K = W . This is a
contradiction, so J ⊆ K . �

THEOREM 3.13. Let W (A, α, u) be a generalized Weyl algebra, with u central and
regular in A, such that, for some fixed m ∈ �

(i) Au + Aαi(u) = A for all i ∈ �\{m};
(ii) M := Au + Aαm(u) is a maximal ideal in A.

Then, the ideal J(M) is a maximal ideal of W containing both Xm and Y m and is the
unique prime ideal P in W for which there exists r ∈ � such that Xr ∈ P and Y r ∈ P.
Moreover, if A is α-simple and no power of α is inner, then J(M) is the unique non-zero
prime ideal in W.

Proof. By Lemmas 3.11 and 3.12, respectively, J(M) is maximal and is the unique
prime ideal in W containing Xm and Y m.

Let K be an ideal of W containing Xr and Y r for some r ∈ �. By Lemma 3.7, if
0 < r < m, then K = W , and if r > m, then Xm ∈ K and Y m ∈ K . Hence, J(M) is the
unique prime ideal P in W for which there exists r ∈ � such that Xr ∈ P and Y r ∈ P.
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Now, suppose that A is α-simple and that no power of α is inner. Let P be a
non-zero prime ideal of W . Recall from Definition 1.2 that A[Y±1; α] and A[X±1; α−1]
are the localizations of W at the Ore sets {Y i : i ≥ 1} and {Xi : i ≥ 1}, respectively.
These rings are simple, by [14, Theorem 1.8.5], so, by [12, Lemma 3.1], there exist r, s
such that Xr ∈ P and Y s ∈ P. Replacing r and s by their maximum, we can assume
that r = s. By the above, P = J(M). �

COROLLARY 3.14. Let R be a conformal ambiskew polynomial ring of the form
R(A, α, u − α(u), 1), where u ∈ Z(A) and the �-algebra A is such that A[y±1; α] is simple.
Let λ ∈ � be such that (u + λ)A + αm(u + λ)A �= A for some m ≥ 1. If the ideal (u +
λ)A + αm(u + λ)A is maximal and (u + λ)A + αn(u + λ)A = A for all n ∈ �\{m}, then
R/(z − λ)R has a unique non-zero prime ideal.

Proof. This is immediate from Theorem 3.13 using the isomorphism between
R/(z − λ)R and W (A, α, u + λ). �

In the case of U(sl2) and Uq(sl2), the maximal ideals that arise in the form J(M) are
the annihilators of the finite-dimensional simple modules. These are well understood
and provide nice illustrations of the theory developed above.

EXAMPLE 3.15. Let R be the enveloping algebra U(sl2) as in Examples 2.6 and 3.3.
Thus, char(�) = 0, A = �[t], α(t) = t + 2, ρ = 1, u = −1

4 (t − 1)2 and v = t. We have
seen that each v(m) = m(t + m − 1), whence v(m)A is maximal in A, and that if (z − λ)R
is not maximal in R, then λ = 1

4 m2 for some m ∈ �. In this case,

(u + λ)A + αm(u + λ)A = v(m)A

and

(u + λ)A + αn(u + λ)A = A for all n ∈ �\{m}.

By Corollary 3.14, R/(z − λ)R has a unique non-zero prime ideal.

EXAMPLE 3.16. Let R be the quantum enveloping algebra Uq(sl2) as in Examples 2.7
and 3.4. Thus, q ∈ �∗ is not a root of unity, A = �[t±1], α(t) = q2t, ρ = 1 and u =
−(q−1t + qt−1)/(q − q−1)2. Every height one prime ideal of R has the form (z − λ)R
and R/(z − λ)R can be identified with W (�[t±1], α, u + λ). Let λ ∈ �, m ∈ � and
Mm,λ = (u + λ)A + αm(u + λ)A. We have seen in Example 3.4 that Mm,λ �= A if and
only if is maximal if and only if λ = ± q−m+qm

(q−q−1)2 . Let λ = ± q−m+qm

(q−q−1)2 . For n ∈ �\{m},

q−n + qn = ±(q−m + qm) ⇒ (qm ∓ qn)(1 ∓ q−(m+n)) = 0,

so, as q is not a root of unity, Mn,λ = A. It now follows from Corollary 3.14 that
R/(z − λ)R has a unique non-zero prime ideal J(Mm,λ).

In the next example, the exceptional maximal ideals J(M) have infinite
codimension over � and so are not annihilators of finite-dimensional simple modules.

EXAMPLE 3.17. Let p ≥ 1 be odd, let q ∈ �∗ and suppose that q is not a root of
unity. Let R = R(A, α, v, 1) and its Casimir element z be as in Example 2.8. We have
seen that the height one prime ideals of R are the ideals (z − λ)R and, in Corollary 3.6,
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that (z − λ)R is maximal unless

λ = ±q
p−2m+1

4 (qm + 1) for some m ∈ �.

To complete the analysis of the spectrum of R, let m ∈ � and let

λ = ±q
p−2m+1

4 (qm + 1).

It follows from Theorem 3.13, together with Lemma 3.5 and its proof, that in this case
R/(z − λ)R, which we identify with W (A, α, u + λ), has a unique non-zero prime ideal
J((zp ± q

p+2m−3
4 )A). Therefore, the prime spectrum of R consists of 0, the height one

prime ideals (z − λ)R, λ ∈ �, and countably many height two prime ideals

Fm,1 = π−1(J((zp − q
p+2m−3

4 )A)) and Fm,−1 = π−1(J((zp + q
p+2m−3

4 )A)),

where m ∈ � and each π : R → R/(z − λ)R is the appropriate canonical epimorphism.

4. Goldie rank. In Examples 3.3, 3.4 and 3.17, the height one prime ideals are
principal, generated by translates of the Casimir element, all but countably many
of these are maximal and the other maximal ideals have height two. For U(sl2) in
Example 3.3 and Uq(sl2) in Example 3.4, the height two maximals are annihilators
of finite-dimensional simple modules and so the factor rings are matrix rings over �.
For U(sl2), there is one simple module of each dimension d ∈ �, and so there is a
unique height two maximal ideal of Goldie rank d. For Uq(sl2), there are two height
two maximal ideals of Goldie rank d. In Example 3.17, the simple factor rings R/Fm,1

and R/Fm,−1 are infinite-dimensional and hence not isomorphic to matrix rings over
�. It is the purpose of this section to show that, in the situation of Theorem 3.13, but
with the further condition that A/M is a right Ore domain, the factor W/J(M) has
Goldie rank m.

NOTATION 4.1. For the remainder of the paper, let W = W (A, α, u) be a generalized
Weyl algebra, with u central and regular in A, such that, for some fixed m ∈ �, M :=
Au + Aαm(u) is such that A/M is a simple right Ore domain and Au + Aαi(u) = A for
i ∈ �\{m}.

NOTATION 4.2. In the notation of 4.1 and for 0 ≤ i ≤ m − 1, let Mi =
α−i(M) = Aα−i(u) + Aαm−i(u) = α−i(u)A + αm−i(u)A. Thus, each Mi is a maximal
ideal. As the generators αs(u) are central, MiMj = MjMi for 0 ≤ i, j ≤ m − 1. Also,
M0, M1, . . . , Mm−1 are distinct for if 0 ≤ i < j < m and α−i(M) = Mi = Mj = α−j(M),
then αj−i(u) ∈ αj−i(M) = M, which is impossible as Au + Aαj−i(u) = A. So, the
following result applies.

LEMMA 4.3. Let R be a ring with m commuting distinct maximal ideals
M0, M1, . . . , Mm−1. Let 0 ≤ i1, . . . , ir, j1, . . . , js, k1, . . . , kt < m be distinct integers.

(i) Mi1 . . . Mir + Mj1 . . . Mjs = R.
(ii) Mk1 . . . Mkt Mi1 . . . Mir + Mk1 . . . Mkt Mj1 . . . Mjs = Mk1 . . . Mkt .

(iii) For 0 ≤ i ≤ m − 1, M0 ∩ M1 ∩ · · · ∩ Mi = M0M1 . . . Mi.

Proof. (i) Suppose not. Then, there exists a maximal ideal M such that Mi1 . . . Mir +
Mj1 . . . Mjs ⊆ M. As M is prime, there exist 1 ≤ a ≤ r and 1 ≤ b ≤ s such that Mia ⊆ M
and Mjb ⊆ M. But then, by maximality, Mia = M = Mjb , contrary to the hypotheses.
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(ii) This is immediate from (i) and the law I(J + K) = IJ + IK .
(iii) We proceed by induction on i. The statement is certainly true when i = 0 so we

may assume that i > 0 and that M0 . . . Mi−1 = M0 ∩ · · · ∩ Mi−1. Let J = M0 ∩ · · · ∩
Mi−1 = M0 . . . Mi−1. Then, J + Mi = R, by (i), so, as the Mj’s commute,

J ∩ Mi = (J ∩ Mi)(J + Mi) ⊆ JMi + MiJ = JMi ⊆ J ∩ Mi,

whence M0 ∩ M1 ∩ · · · ∩ Mi = M0M1, . . . Mi. �
Our aim now is to find m uniform right ideals of the �-graded ring W/J(M) whose

sum is direct and equal to W/J(M).

NOTATION 4.4. In the notations of 4.1 and 4.2 and for 0 ≤ i < j ≤ m − 1 and
i ≤ r ≤ j, we shall denote the product MiMi+1 . . . Mr−1Mr+1 . . . Mj by �(M, i, r̂, j) and
the product MiMi+1 . . . Mj by �(M, i, j).

The components (W/J(M))d and (W/J(M))−d are 0 if d ≥ m. If 0 ≤ d < m, then,
by Lemma 4.3(iii),

(W/J(M))d = AY d/�(M, 0, m − 1 − d)Y d and

(W/J(M))−d = AXd/�(M, d, m − 1)Xd .

Each (W/J(M))d is an A − A-bimodule, while, in accordance with the proof of
Proposition 3.8, right and left multiplication by Y , respectively X , give well-defined
maps (W/J(M))d → (W/J(M))d+1, respectively (W/J(M))d → (W/J(M))d−1.

NOTATION 4.5. In the notations of 4.1, 4.2 and 4.4 and for 0 ≤ r ≤ m − 1, let J (r)

be the graded right ideal

(�(M, 0, r̂, m − 1)W + J(M))/J(M)

of W/J(M). The 0-component of J (r) is

�(M, 0, r̂, m − 1)/�(M, 0, m − 1)).

If d > m − r − 1, then J (r)
d = 0, and if 1 ≤ d ≤ m − r − 1, then

J (r)
d = �(M, 0, r̂, m − 1 − d)Y d/�(M, 0, m − 1 − d)Y d .

If r < d, then J (r)
−d = 0, and if 1 < d ≤ r, then

J (r)
−d = �(M, d, r̂, m − 1)Xd/�(M, d, m − 1)Xd .

LEMMA 4.6. In the notation of 4.5, the sum J (0) + J (1) + · · · + J (m−1) is direct and
equal to W/J(M).

Proof. It suffices to show that, for −m < d < m, J (0)
d + J (1)

d + · · · + J (m−1)
d =

W/J(M)d and that the sum is direct.
Let 0 < s < m. Then, by repeated use of Lemma 4.3(ii),

J (0)
0 + J (1)

0 + · · · + J (s)
0

= (�s
j=0�(M, 0,̂ j, m − 1))/�(M, 0, m − 1)

= �(M, s + 1, m − 1)/�(M, 0, m − 1).
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Similar calculations show that if 0 < d < m, then

J (0)
d + · · · + J (s)

d

= (�s
j=0�(M, 0,̂ j, m − d − 1))Y d/�(M, 0, m − 1)Y d

= �(M, s + 1, m − d − 1)Y d/�(M, 0, m − d − 1)Y d

and

J (0)
−d + · · · + J (s)

−d

= (�s
j=d�(M, d ,̂ j, m − 1))Xd/�(M, d, m − 1)Xd

= �(M, s + 1, m − 1)Xd/�(M, d, m − 1)Xd .

Taking s = m − 1 above,

J (0)
0 + J (1)

0 + · · · + J (m−1)
0 = A/�(M, 0, m − 1) = (W/J(M))0

and, for 0 < d < m,

J (0)
d + J (1)

d + · · · + J (m−1)
d = AY d/�(M, 0, m − d − 1)Y d = (W/J(M))d

and

J (0)
−d + J (1)

−d + · · · + J (m−1)
−d = AXd/�(M, d, m − 1)Xd = (W/J(M))−d .

It follows that J (0) + J (1) + · · · + J (m−1) = W/J(M).
Also, if s < m − 1, then

J (s+1)
0 = �(M, 0, ̂s + 1, m − 1)/�(M, 0, m − 1)),

and if 0 < d < m, then

J (s+1)
d = �(M, 0, ̂s + 1, m − d − 1)Y d/�(M, 0, m − 1)Y d

and

J (s+1)
−d = �(M, d, ̂s + 1, m − 1)Xd/�(M, d, m − 1)Xd .

Thus, using Lemma 4.3(iii),

(J (0)
d + J (1)

d + · · · + J (s)
d ) ∩ J (s+1)

d = 0

for all d and so

(J (0) + J (1) + · · · + J (s)) ∩ J (s+1) = 0,

whence the sum J (0) + J (1) + · · · + J (m−1) is direct. �

https://doi.org/10.1017/S0017089518000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000046


66 CHRISTOPHER D. FISH AND DAVID A. JORDAN

LEMMA 4.7. For 0 ≤ r ≤ m − 1, the right ideal J (r) of W is uniform.

Proof. First consider the A-module J (r)
0 . Using Lemma 4.3,

J (r)
0 = �(M, 0, r̂, m − 1)/�(M, 0, m − 1)

= �(M, 0, r̂, m − 1)/Mr ∩ �(M, 0, r̂, m − 1)

� (Mr + �(M, 0, r̂, m − 1))/Mr

= A/Mr.

As A/M and A/Mr are isomorphic rings, A/Mr is a right Ore domain, and hence J (r)
0

is a uniform right A-module.
We next show that if 0 �= j ∈ J (r), then there exists w ∈ W such that jw has non-zero

component in degree 0.
Let d > 0 be such that J (r)

d �= 0. Thus, d ≤ m − r − 1. Let

h = aY d + �(M, 0, m − d − 1)Y d ∈ J (r)
d ,

where a ∈ �(M, 0, r̂, m − d − 1), and suppose that, in J (r)
d−1, hX = 0. As aY dX =

aY d−1α(u) = aαd (u)Y d−1,

0 = hX = aαd (u)Y d−1 + �(M, 0, m − d)Y d−1 = 0.

Hence, aαd (u) ∈ Mr, so either a ∈ Mr or αd (u) ∈ Mr. But 0 < d + r < m and αi(u) /∈ M
for 0 < i < m, so αd (u) /∈ Mr = α−r(M). Therefore, a ∈ Mr, so

a ∈ Mr ∩ �(M, 0, r̂, m − d − 1) = �(M, 0, m − d − 1),

by Lemma 4.3(iii), and h = 0. It follows that if 0 �= h ∈ J (r)
d , then 0 �= hXd ∈ J (r)

0 . A

similar argument shows that if 0 �= h ∈ J (r)
−d , then 0 �= hY d ∈ J (r)

0 . Therefore, if 0 �= j ∈
J (r), then there exists w ∈ W such that jw has non-zero component in degree 0.

Now, let

t = α−(r+m−1)(u) . . . α−(r+1)(u)α−(r−1)(u) . . . α−(r−m+1)(u).

We shall see that, with j and w as above, 0 �= jwt ∈ J (r)
0 . Let d > 0 and, as above, let

h = aY d + �(M, 0, m − d − 1)Y d ∈ J (r)
d ,

where a ∈ �(M, 0, r̂, m − d − 1). Then,

hα−(r+d)(u) = aα−r(u)Y d + �(M, 0, m − d − 1)Y d = 0,

as α−r(u) ∈ Mr, whence

aα−r(u) ∈ Mr ∩ �(M, 0, r̂, m − d − 1) = �(M, 0, m − d − 1).

Thus, J (r)
d α−(r+d)(u) = 0. Similarly, J (r)

−dα
d−r(u) = 0. It follows that J (r)t ⊆ J (r)

0 .

Let h = a + �(M, 0, m − 1) ∈ J (r)
0 , where a ∈ �(M, 0, r̂, m − 1). Suppose that

ht = 0. Then, at ∈ Mr so Mr contains one of a, α−(r+m−1)(u),. . ., α−(r+1)(u), α−(r−1)(u),
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. . ., α−(r−m+1)(u). But the only integers 	 such that α−	(u) ∈ Mr are r and m + r so,
a ∈ Mr and h = 0.

Combining the previous three paragraphs, if 0 �= j ∈ J (r), then there exists w ∈ W
such that jw has non-zero component in degree 0, jwt is homogeneous of degree 0 and
jwt �= 0.

Finally, let j1, j2 ∈ J (r)\{0}. By the above, there exists v1, v2 ∈ W such that j1v1 and
j2v2 are non-zero and homogeneous of degree 0. As J (r)

0 is a uniform right A-module,
it follows that j1W ∩ j2W �= 0, and hence that J (r) is a uniform right W -module. �

PROPOSITION 4.8. Let W = W (A, α, u) be a generalized Weyl algebra, with u central
and regular in A, such that, for some fixed m ∈ �, M := Au + Aαm(u) is such that A/M is
a simple right Ore domain and Au + Aαi(u) = A for i ∈ �\{m}. Then, the ring W/J(M)
has right Goldie rank m.

Proof. This is immediate from Lemmas 4.6 and 4.7. �
The next result amends Corollary 3.14 to include the information on Goldie rank

given by Proposition 4.8.

COROLLARY 4.9. Let R be a conformal ambiskew polynomial ring of the form
R(A, α, u − α(u), 1), where u ∈ Z(A) and the �-algebra A is such that A[y±1; α] is simple.
Let λ ∈ � be such that the ideal (z − λ)R is not maximal and (u + λ)A + αm(u + λ)A �= A
for some m ≥ 1. If the factor A/(u + λ)A + αm(u + λ)A is a simple right Ore domain and
(u + λ)A + αn(u + λ)A = A for all n ∈ �\{m}, then R/(z − λ)R has a unique non-zero
prime ideal P/(z − λ)R and R/P has right Goldie rank m.

Proof. This is immediate from Theorem 3.13 using the isomorphism between
R/(z − λ)R and W (A, α, u + λ). �

COROLLARY 4.10. Suppose that q is not a root of unity. Let R = R(A, α, v, 1) be as
in Examples 2.8 and 3.17. Let m ∈ �. The prime ideals Fm,1 and Fm,−1 of R specified in
Example 3.17 have right Goldie rank m.

Proof. The conditions of Corollary 4.9 are satisfied by Lemma 3.5 and the fact
that A is right Noetherian. �
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