MODELS FOR JOINT ISOMETRIES

by K. R. M. ATTELE and A. R. LUBIN

(Received 7 November, 1994)

An N-tuple $\mathcal{T} = (T_1, \ldots, T_N)$ of commuting contractions on a Hilbert space **H** is said to be a joint isometry if $\sum_n ||T_n x||^2 = ||x||^2$ for all x in **H**, or, equivalently, if $\sum_n T_n^* T_n = I$. Athavale in [1] characterized the joint isometries as subnormal N-tuples whose minimal normal extensions have joint spectra in the unit sphere S^{2N-1} ; a geometric perspective of this is given in [4]. Subsequently, V. Müller and F.-H. Vasilescu proved that commuting N-tuples which are joint contractions, i.e. $T_1^*T_1 + \ldots + T_N^*T_N \leq I$, can be represented as restrictions of certain weighted shifts direct sum a joint isometry. In this paper we adapt the canonical models of [3], and also construct a new canonical model, which completes the previous descriptions by showing joint isometries are indeed restrictions of specific multivariable weighted shifts [2].

We use the notation $z = (z_1, \ldots, z_N)$ and $J = (j_1, \ldots, j_N)$ for a multi-index of non-negative integers. We let ϵ_k denote the multi-index J having $j_k = 1$ and $j_l = 0$ otherwise; $(J \pm \epsilon_k)$ has the obvious meaning, but by using $(J - \epsilon_k)$ we imply $j_k \ge 1$. We let $|J| = j_1 + \ldots + j_N$, $J! = j_1! \ldots j_N!$, $z^J = z_1^{j_1} \ldots z_N^{j_N}$, and $\mathcal{T} = T^J = T_1^{j_1} \ldots T_N^{j_N}$. We let $H^2 = H^2_H(U^N) = \{f = \sum f_j z^J : \sum \|f_j\|_H^2 < \infty\}$ be the standard Hardy space of

We let $H^2 = H^2_H(U^N) = \{f = \sum f_J z^J : \sum ||f_J||_H^2 < \infty\}$ be the standard Hardy space of square-summable H-valued analytic functions on the polydisc. Given a bounded net $\{w_{J,k}: k = 1, ..., N\}$ such that $w_{J,k}w_{J+\epsilon_k,l} = w_{J,l}w_{J+\epsilon_1,k}$, we define $L_k, k = 1, ..., N$ to be the unique bounded linear map on H such that

$$L_k(xz^J) = w_{J,k}xz^{J+\epsilon_k},$$

for all x in **H** and all J. We call $\mathscr{L} = (L_1, \ldots, L_N)$ a family of commuting N-variable weighted shifts and it is easy to see that $L_k^*(xz^J) = w_{J-\epsilon_k,k}xz^{J-\epsilon_k}$ if $j_k \ge 1$ and 0 otherwise. Furthermore, we can define a net $\{\beta_J\}$ by $\mathscr{L}^J 1 = \beta_J z^J$ and let

$$H^{2}(\beta) = H^{2}_{\beta,\mathbf{H}}(U^{N}) = \left\{ f = \sum f_{J} z^{J} : \sum \|f_{J}\|^{2}_{\mathbf{H}} \beta_{J}^{2} < \infty \right\}$$

be a weighted H^2 space. We then define \tilde{L}_k , k = 1, ..., N on $H^2(\beta)$ by $\tilde{L}_k f = z_k f$ and have the N-tuples \mathcal{L} and $\tilde{\mathcal{L}}$ unitarily equivalent. These results and the basic theory of N-variable weighted shifts can be found in [2].

The construction of our model relies on the following lemma.

PROPOSITION 1. Let $\mathcal{T} = (T_1, \ldots, T_N)$ be jointly isometric and let $M_J = (|J|!/J!)$ be the J-th multinomial coefficient. Then, for $n = 1, 2, \ldots$, we have

$$\sum_{|J|=n} M_J T^{*J} T^J = I;$$

that is, the family $\{M_J^{1/2}T^J: |J| = n\}$ is jointly isometric.

Glasgow Math. J. 38 (1996) 191-194.

Proof. We note that for |J| = n + 1, we have the generalized Pascal triangle equation $M_J = \sum_{k=1}^{N} M_{(J-\varepsilon_k)}$. If we assume the proposition holds for all |J| = n, we have

$$\sum_{|J|=n+1} M_J T^{*J} T^J = \sum_{|J|=n+1} \sum_{k=1}^N M_{(J-\varepsilon_k)} T^{*J} T^J$$
$$= \sum_{k=1}^N T_k^* \left(\sum_{|J|=n+1} M_{J-\varepsilon_k} T^{*(J-\varepsilon_k)} T^{J-\varepsilon_k} \right) T_k$$
$$= \sum_{k=1}^N T_k^* \left(\sum_{J=n} M_J T^{*J} T^J \right) T_k$$
$$= \sum_{k=1}^N T_k^* I T_k = I.$$

To construct our model we let

$$w_{J,k} = \left(\frac{j_k+1}{|J|+1}\right)^{1/2} \sqrt{2}, \qquad k = 1, \ldots, N$$

and let $\mathcal{L} = (L_1 \dots, L_N)$ be the corresponding family of weighted shifts on H^2 .

THEOREM 3. Let $\mathcal{T} = (T_1, \ldots, T_N)$ be jointly isometric. There exists a closed subspace $M \subset H^2$ invariant under L_1, \ldots, L_N and a unitary $W : \mathbf{H} \to M^{\perp} \subset H^2$ such that

$$WT_kW^* = L_k^*|_{M^\perp}, \qquad k = 1, \ldots, N.$$

Thus, the restriction $\mathcal{L}^*|_{M^{\perp}}$ forms a canonical model for T.

Proof. For x in **H**, let

$$Wx = \sum_{J} (\sqrt{2})^{-(J_{J}+1)} M_{J}^{1/2} (T^{J}x) z^{J}.$$

Then

$$\|Wx\|_{H^{2}}^{2} = \sum_{J} 2^{-(|J|+1)} M_{J} \|T^{J}x\|^{2}$$
$$= \sum_{n=0}^{\infty} 2^{-(n+1)} \left(\sum_{|J|=n} M^{J} \|T^{J}x\|^{2}\right)$$
$$= \sum_{n=0}^{\infty} 2^{-(n+1)} \|x\|^{2}$$
$$= \|x\|^{2}$$

so W is isometric. Further,

$$L_{k}^{*}Wx = \sum_{J} (\sqrt{2})^{-(|J|+1)} M_{J}^{1/2} L_{k}^{*} (T^{J}x) z^{J}$$

=
$$\sum_{j_{k} \ge 1} (\sqrt{2})^{-(|J|+1)} (|J|!/J!)^{1/2} (\sqrt{2} j_{k}/|J|)^{1/2} (T^{J}x) z^{J-\varepsilon_{k}}$$

=
$$\sum_{J} (\sqrt{2})^{-(|J|+1)} (|J|!/J!)^{1/2} (T^{J+\varepsilon_{k}}x) z^{J}$$

=
$$WT_{k}x.$$

Hence, $L_k^*W = WT_k$, so the range of W, which is closed since W is isometric, is invariant under $\{L_k^*\}$. Hence, W maps **H** unitarily onto M^{\perp} for some M invariant under the weighted shifts $\{L_k\}$ and the theorem follows.

We note that more generally, we can define

$$w'_{J,k} = (\alpha_{|J|} / \alpha_{(|J|+1)}) \left(\frac{j_k + 1}{|J| + 1}\right)^{1/2}$$

for any $\{\alpha_n\}$ such that $\sum_{n=1}^{\infty} \alpha_n^2 = 1$ and have $W'x = \sum \alpha_{|J|} M_J^{1/2} (T^J x) z^J$ define a unitary equivalence between \mathcal{T} and \mathcal{L}'^*/M^{\perp} where \mathcal{L}' is the N-tuple of weighted shifts corresponding to $\{w'_{J,k}\}$.

Also, for $\beta_J = \sqrt{2}^{|J|} (J!/|J|!)^{1/2}$, the weighted shifts \tilde{L}_k on H_β^2 are unitarily equivalent to the L_k above. Hence, $\tilde{\mathscr{L}}^* = (\tilde{L}_1^*, \ldots, \tilde{L}_N^*)$ restricted to $\tilde{M}^{\perp} \subset H^2(\beta)$ can alternatively be used for the canonical model.

In this context, we note [2] that if $w = (w_1, \ldots, w_n) \in \mathbb{C}^N$ is a bounded point evaluation on $H^2(\beta)$, then for $f = \sum f_j z^j \in H^2(\beta)$, $f(w) = \sum f_j w^j \in \mathbb{C}$ is well defined. We can then consider f = f(z) to be a function analytic at w in \mathbb{C}^N . Further, w is a bounded point evaluation on $H^2(\beta)$ if and only if $\sum_{j} |w_1|^{2j_1} \dots |w_N|^{2j_N} / \beta_j^2 = \sum |w|^{2j} / \beta_j^2 < \infty$. In our particular case, we have

$$\sum_{J} |w|^{2J} / \beta_{J}^{2} = \sum (|w|^{2J} |J|!) / (2^{JJ} J!)$$
$$= \sum_{n=0}^{\infty} 2^{-n} \left(\sum_{|J|=n} M_{J} |w|^{2J} \right)$$
$$= \sum_{n=0}^{\infty} \frac{(|w_{1}|^{2} + \ldots + |w_{N}|^{2})}{2^{n}}$$
$$< \infty$$

if $\sum_{j=1}^{N} |w_j|^2 = ||w||^2 < 2$. Thus, we have the following theorem.

THEOREM 4. $H^2(\beta)$ consists of functions analytic on the polydisc of radius $\sqrt{2}$.

Similarly, choosing $\alpha_n = \left(\frac{1}{\sqrt{M}}\right)^n$, n = 2, 3, ..., where M > 1 is fixed and α_1 is chosen such that $\sum \alpha_n^2 = 1$, yields $\{w'_{j,k}\}$ and corresponding $\{\beta'_j\}$ with $\beta'_j = \sqrt{M}^{|J|} (J!/|J|!)^{1/2}$. We then have that $H^2(\beta')$ consists of functions analytic on the polydisc of radius \sqrt{M} . If we let $\alpha_n = (\sqrt{n})^{-n}$, we can have $H^2(\beta')$ consisting of entire functions.

A model was given in [3] for an N-tuple of commuting contractions $\mathscr{G} = (S_1, \ldots, S_N)$ such that $\sum S_k^* S_k < I$ and $\sum B_J M_J^{1/2} S^J x$ converges for all X in **H**. If \mathscr{J} is a joint isometry, then provided 0 < r < 1, $r\mathscr{J} = (rT_1, \ldots, rT_N)$ satisfies these conditions since

$$\sum_{k=1}^{N} (rT_k)^* (rT_k) = r^2 I < I,$$

and

$$\sum_{J} \|M_{J}^{1/2}(rT)^{J}x\|^{2} = \sum_{n=0}^{\infty} r^{n} \sum_{|J|=n} M_{J} \|T^{J}x\|^{2}$$
$$= \sum_{n=0}^{\infty} r^{n} \|x\|^{2}$$
$$= (1-r)^{-1} \|x\|^{2}.$$

Thus, from [3], we deduce the following result.

THEOREM 5. Let (T_1, \ldots, T_N) be jointly isometric in **H**. Then provided 0 < r < 1,

$$Wx = \sum_{J} (1 - r^2)^{1/2} M_J^{1/2} (T^J x) z^J$$

is a unitary map from **H** onto $M^{\perp} \subset H^2$, where *M* is invariant under (L''_1, \ldots, L''_N) such that $W(rT_k)W^* = L_k^{**}|_{M^{\perp}}$. Here $\mathcal{L}'' = (L''_1, \ldots, L''_N)$ is the family of weighted shifts corresponding to the net $w''_{J,k} = [(j_k + 1)/(|J| + 1)]^{1/2}$. Thus, $(\mathcal{L}'')^*$ is a canonical model for (rJ). By taking $\lim_{r \to 1} we$ have a model for T.

REFERENCES

A. Athavale, On the intertwining of joint isometries, J. Operator Theory 23 (1990), 339-350.
N. P. Jewell and A. R. Lubin, Commuting weighted shifts and analytic function theory of several variables, J. Operator Theory 1 (1979), 207-223.

3. A. R. Lubin, Models for commuting contractions, Michigan Math. J. 23 (1976), 161-165.

4. A. R. Lubin and K. R. M. Attele, Dilations and commutant lifting for jointly-isometric operators-a geometric approach, to appear in J. Func. Anal.

5. V. Müller and F.-H. Vasilescu, Standard models for some commuting multioperators, Proc. Amer. Math. Soc. 117 (1993), 979-989.

6. F.-H. Vasilescu, An operator valued Poisson kernel, J. Func. Anal. 110 (1992), 47-72.

Department of Mathematics Illinois Institute of Technology Chicago, IL 60616 U.S.A.