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SCALING LIMITS FOR SIMPLE RANDOM WALKS
ON RANDOM ORDERED GRAPH TREES

D. A. CROYDON,∗ University of Warwick

Abstract

Consider a family of random ordered graph trees (Tn)n≥1, where Tn has n vertices. It
has previously been established that if the associated search-depth processes converge
to the normalised Brownian excursion when rescaled appropriately as n → ∞, then the
simple random walks on the graph trees have the Brownian motion on the Brownian
continuum random tree as their scaling limit. Here, this result is extended to demonstrate
the existence of a diffusion scaling limit whenever the volume measure on the limiting real
tree is nonatomic, supported on the leaves of the limiting tree, and satisfies a polynomial
lower bound for the volume of balls. Furthermore, as an application of this generalisation,
it is established that the simple random walks on a family of Galton–Watson trees with
a critical infinite variance offspring distribution, conditioned on the total number of
offspring, can be rescaled to converge to the Brownian motion on a related α-stable
tree.
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1. Introduction

If (Tn)n≥1 is a family of random ordered graph trees, where Tn has n vertices for each n, and
the rescaled graph treesn−1/2Tn converge suitably to the Brownian continuum random tree, then
the associated simple random walks can be rescaled to converge to a diffusion limit, namely the
Brownian motion on the Brownian continuum random tree; see [7, Theorem 1.2]. (Note that,
in [7], the Brownian continuum random tree was referred to simply as the continuum random
tree. The ‘Brownian’ is included here to make clear the distinction between this specific random
real tree and the other random real trees that will feature in the discussion.) The collection of
random graphs to which this result applies includes the case when Tn is a Galton–Watson tree
with an offspring distribution, (pi)i≥0 say, that is, aperiodic (in particular, it is not supported
on a proper subgroup of Z), critical (mean 1), and has finite variance, conditioned on its total
progeny being equal to n. Motivated by the problem of extending the methods of [7] to deal with
the case when the finite variance assumption is dropped, in this paper we prove convergence
results for the simple random walks on a much broader class of graph trees. Although the
overall structure of the argument used here closely matches that of [7], in that paper several
rather precise properties of the Brownian continuum random tree were applied, meaning that
extensions to more general limiting trees could not be made immediately. Here, new techniques
are introduced to allow us to remove some of the restrictions of [7], and in particular prove a
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scaling limit result for the simple random walks on critical Galton–Watson trees with infinite
variance offspring distributions.

Denote the Brownian continuum random tree and its canonical measure by (T , µ) (see [1]
for background). Let ρ be a distinguished vertex of T and call it the root of T . Suppose that
T (k) is the minimal subtree of T spanning ρ and a k-sample of µ-random vertices; such sets
can be constructed so that T (k) ⊆ T (k + 1), and also we can assume that

⋃
k T (k) is dense

in T , because µ has full support, almost surely. The set T (k) consists of a finite number of
finite length line segments and, therefore, we can well define the one-dimensional Hausdorff
measure on T (k) normalised to be a probability measure, λ(k) say. In [7], the fact that λ(k)

converges weakly to µ as probability measures on T was used in a time-change argument to
show that certain Brownian motions on the subtrees T (k) converge to the Brownian motion
on the Brownian continuum random tree (see [7, Lemma 3.1]). Whilst this assumption is
known to hold for the Brownian continuum random tree, it has not been established for the
related α-stable trees, α ∈ (1, 2), which are the scaling limits of infinite variance Galton–
Watson trees (see [19, Section 4] for a brief introduction to α-stable trees and this convergence
result). By considering alternative Brownian motions on T (k), we are able to show that the
assumption that λ(k) converges to µ is redundant (Proposition 2.1 is the relevant convergence
result). To proceed as we do, however, we are required to check that the time-change additive
functionals we consider satisfy a tightness property (Lemma 2.5), and our proof of this relies
on the technical result that the local times of the Brownian motion on the limiting tree diverge
uniformly (Lemma 2.3).

A second fact about the Brownian continuum random tree applied in [7] is that it has no
vertex of degree greater than three, by which we mean that the number of connected components
of T \{σ } is no greater than three for any σ ∈ T . This property was important because it meant
that the graph trees Tn(k) constructed analogously to T (k) eventually had to have the same
‘tree shape’ as T (k) as n became large. However, α-stable trees with α ∈ (1, 2) admit infinite
branch points (see [13, Theorem 4.6]), and so the same argument does not apply in general. To
overcome this problem, in Section 3 we establish a method to demonstrate the convergence of
Brownian motions on a sequence of finite-branched trees that converge in a specific way to the
subtrees T (k) when the limiting tree T has branch points of arbitrary degree. Our argument
involves considering approximations to the processes of interest that jump over branch points,
so that the precise geometry of the trees at branch points is not seen by the approximations.

Specifically, the limit space T
∗ that we study in this paper is the collection of pairs (T , µ),

where T = (T , dT ) is a compact real tree (see [13, Definition 2.1] for example) and µ is a
nonatomic Borel probability measure on T that satisfies

lim inf
r→0

infσ∈T µ(B(σ, r))

rκ
> 0 (1.1)

for some κ > 0, where B(σ, r) is the open ball of radius r (with respect to the metric dT )
centred at σ ∈ T . Furthermore, for (T , µ) ∈ T

∗, we assume that µ is supported on the leaves
of T , where by saying that σ ∈ T is a leaf of T we mean that T \ {σ } is connected. We note
that the Brownian continuum random tree is an element of T

∗ almost surely, with (1.1) being
satisfied whenever κ > 2; see [8, Theorem 1.2]. Furthermore, we will later check that all the
above properties are also almost surely satisfied by α-stable trees for α ∈ (1, 2), with (1.1)
holding for any choice of κ > α/(α − 1).

The main result of this paper is the following theorem, which is stated within the framework
of [7], so that �1 is the Banach space of infinite sequences of real numbers equipped with
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the metric d�1 induced by the norm
∑
i≥1 |x(i)| for x ∈ �1; K(�1) is the space of compact

subsets of �1 equipped with the Hausdorff topology; M1(�
1) is the space of Borel probability

measures on �1 equipped with the topology of weak convergence; and M1(C([0, 1], �1)) is
the space of Borel probability measures on C([0, 1], �1), also equipped with the topology of
weak convergence. The set W is the collection of continuous functions w : [0, 1] → R+ such
that w(t) > 0 if and only if t ∈ (0, 1). For an excursion w ∈ W , Tw is the rooted real tree
associated with w, µw is the natural measure on Tw, and PTw,µw

ρ is the law of the Brownian
motion on (Tw,µw) started from the root ρ = ρ(Tw) (see the end of Section 2 for details).
For an ordered graph tree Tn with n vertices, we write µn to represent the uniform probability
measure on the vertices of Tn, and denote by PTnρ the law of the discrete-time simple random
walk on Tn, started from the root, ρ = ρ(Tn), of Tn. The search-depth process wn of Tn is
defined in Section 4.

Theorem 1.1. Let (αn)n≥1 be a positive divergent sequence such that αn = o(n). If (Tn)n≥1
is a sequence of ordered graph trees whose search-depth functions (wn)n≥1 satisfy

α−1
n wn → w

in C([0, 1],R+) for some w ∈ W with (Tw,µw) ∈ T
∗, then there exists, for each n, an

isometric embedding (T̃n, µ̃n, P̃
Tn
ρ ) of the triple (Tn, µn,PTnρ ) into �1 such that

(α−1
n T̃n, µ̃n(αn·),PTnρ ({f ∈ C([0, 1], �1) : (α−1

n f (tnαn))t∈[0,1] ∈ ·}))
converges to (T̃ , µ̃, P̃

T ,µ
ρ ) in the space K(�1)× M1(�

1)× M1(C([0, 1], �1)), where the law
P̃
Tn
ρ is extended to an element of M1(C([0, 1], �1)) by linear interpolation of discrete-time

processes, and (T̃ , µ̃, P̃
T ,µ
ρ ) is an isometric embedding of (Tw,µw,PTw,µw

ρ ) into �1.

As an extension to [7, Theorem 1.2], a random version of this result can be formulated
by applying the fact that the isometrically embedded triple (T̃ , µ̃, P̃

T ,µ
ρ ) can be constructed

as a measurable function of a pair (w, u), where w is the relevant excursion and u is an
element of [0, 1]N. In particular, suppose that (W,U) is a (W × [0, 1]N)-valued random
variable, built on a complete probability space with probability measure P, such that W is a
random excursion satisfying P((TW,µW) ∈ T

∗) = 1, and U = (Ui)i≥1 is an independent
sequence of independent U [0, 1] random variables. We can define a probability law Pr on
K(l1)× M1(�

1)× C([0, 1], �1) that satisfies

Pr(A× B × C) =
∫
C([0,1],R+)×[0,1]N

P((W,U) ∈ (dw, du))1{T̃ ∈A, µ̃∈B}P̃
T ,µ
ρ (C) (1.2)

for every measurable A ⊆ K(�1), B ⊆ M1(�
1), and C ⊆ C([0, 1], �1). In the discrete case,

as in [7], let (Tn)n≥1 be a sequence of random ordered graph trees with corresponding search-
depth functions (Wn)n≥1, and suppose that these are built on our underlying probability space

independently of the random variable U . We can assume that (T̃n, µ̃n, P̃
Tn
ρ ) are constructed

measurably from (Wn,U). Moreover, there exists a unique probability law Prn on K(�1) ×
M1(�

1)× C([0, 1], �1) that satisfies

Prn(A× B × C) =
∫
C([0,1],R+)×[0,1]N

P((Wn,U) ∈ (dw, du))1{T̃n∈A, µ̃n∈B}P̃
Tn
ρ (C) (1.3)

for every measurableA ⊆ K(�1),B ⊆ M1(�
1), andC ⊆ C([0, 1], �1). In the following result,
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the rescaling operator �n is defined on K(�1) × M1(�
1) × C([0, 1], �1), so that if (K̃, ν̃, f̃ )

is an element of this space then

�n(K̃, ν̃, f̃ ) := (α−1
n K̃, ν̃(αn·), (α−1

n f̃ (tnαn))t∈[0,1]).

Theorem 1.2. Let (αn)n≥1 be a positive divergent sequence such that αn = o(n). Suppose that
(Tn)n≥1 is a sequence of random ordered graph trees whose rescaled search-depth functions
(α−1
n Wn)n≥1 converge in distribution to W in C([0, 1],R+), where W is a random excursion

satisfying P((TW,µW) ∈ T
∗) = 1. If Pr and (Prn)n≥1 are the unique probability measures

satisfying (1.2) and (1.3), respectively, then

Prn ◦�−1
n → Pr

weakly as measures on the space K(�1)× M1(�
1)× C([0, 1], �1).

In addition to the above convergence results for the laws of the simple random walks on
the graph trees (Tn)n≥1, let us remark that, in the settings of Theorem 1.1 or 1.2, it is possible
to proceed as in [9, Section 7.2] to deduce related local limit theorems demonstrating that the
associated discrete transition densities can be rescaled to converge in an appropriate space to
the transition densities of the Brownian motion on the limiting space.

To prove the results stated above, we commence, in Section 2, by proving some general results
about Brownian motion and the corresponding local times on real trees. In Section 2, we also
describe the procedures we use for embedding real trees into �1, and the connection between
real trees and excursions. The heart of the paper is Section 3, which is where we establish
some key results about the convergence of Brownian motions on real trees with a finite number
of branches embedded into �1. In Section 4, which contains the proofs of Theorems 1.1 and
1.2, we explain how the argument of [7] can be reworked to apply in our more general setting.
Finally, in Section 5, we describe the application of our results to Galton–Watson trees with
infinite variance offspring distributions and the related α-stable trees.

2. Brownian motion and local times on real trees

Suppose that T = (T , dT ) is a compact real tree and that µ is a finite Borel measure on
T with full support. To avoid trivialities, assume that T contains more than one point. It is
possible (see [7, Proposition 2.2]) to construct a strong Markov process

XT ,µ = ((X
T ,µ
t )t≥0,PT ,µ

σ , σ ∈ T ),

with continuous sample paths that is reversible with respect to its invariant measure µ and
satisfies the following properties.

(i) For σ1, σ2 ∈ T , σ1 �= σ2, we have

PT ,µ
σ (h(σ1) < h(σ2)) = dT (b

T (σ, σ1, σ2), σ2)

dT (σ1, σ2)
for all σ ∈ T ,

where h(σ) := inf{t > 0 : XT ,µ
t = σ } is the hitting time of σ ∈ T , and bT (σ, σ1, σ2)

is the unique branch point of σ , σ1, and σ2 in T . In particular, if [[σ, σ1]], [[σ1, σ2]],
and [[σ2, σ ]] are the unique injective paths between the relevant pairs of vertices, then
bT (σ, σ1, σ2) is the unique point in the set [[σ, σ1]] ∩ [[σ1, σ2]] ∩ [[σ2, σ ]].
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(ii) For σ1, σ2 ∈ T , the mean occupation measure for the process started at σ1 and killed on
hitting σ2 has density 2dT (b

T (σ, σ1, σ2), σ2)µ(dσ), so that

ET ,µ
σ1

∫ h(σ2)

0
f (Xs) ds = 2

∫
T
f (σ)dT (b

T (σ, σ1, σ2), σ2)µ(dσ)

for every continuous bounded function f : T → R.

In the terminology of [1, Section 5.2], XT ,µ is Brownian motion on (T , µ), and is in fact
uniquely determined by these properties. Moreover, thatXT ,µ admits jointly measurable local
times (Lt (σ ))σ∈T , t≥0 can be checked as in the proof of [8, Lemma 8.2]. In the arguments of
subsequent sections we will require further that (Lt (σ ))σ∈T , t≥0 is jointly continuous in t and
σ , and we will demonstrate that this is the case whenever µ satisfies a polynomial lower bound
of the form of (1.1). In the proof of this result, we apply the two following properties that (1.1)
implies.

Lemma 2.1. Suppose that T is a compact real tree and that µ is a finite Borel measure on T
that satisfies (1.1) for some κ > 0.

(a) If N(T , r) is the smallest number of balls of radius r needed to cover T , then

lim sup
r→0

rκN(T , r) < ∞.

(b) The Markov processXT ,µ admits a transition density (pt (σ, σ ′))σ,σ ′∈T , t>0 that satisfies

lim sup
t→0

tκ/(κ+1) sup
σ,σ ′∈T

pt (σ, σ
′) < ∞.

Proof. The proof of part (a) is elementary. Part (b) can be obtained by applying a general
heat kernel bound of the type proved in [18, Proposition 4.1] or [6, Proposition 5] for example.

Lemma 2.2. If T is a compact real tree andµ is a finite Borel measure on T that satisfies (1.1)
for some κ > 0, then the local times (Lt (σ ))σ∈T , t≥0 of XT ,µ are jointly continuous in t and

σ , PT ,µ
σ ′ -almost surely (PT ,µ

σ ′ -a.s.), for every σ ′ ∈ T .

Proof. Given the estimates of Lemma 2.1, the proof is identical to that of [7, Lemma 2.5].
In particular, it is easily checked from Lemma 2.1(b) that the 1-potential density u(σ, σ ′) :=∫ ∞

0 e−tpt (σ, σ ′) dt is finite for all σ, σ ′ ∈ T . As a consequence, by applying [20, Theorem 1],
we see that the continuity of local times is equivalent to the continuity of the centred Gaussian
process (G(σ))σ∈T with covariances given by (u(σ, σ ′))σ,σ ′∈T . By [11, Theorem 2.1], for the

latter process to be continuous, it is enough that the integral
∫ 1

0

√
lnN(T , r) dr is finite, which

in view of Lemma 2.1(a) is clearly the case.

The local times of XT ,µ will be used in a time-change argument that depends on their
uniform divergence, which we now prove. Note that, by definition, the Brownian motion on
(T , µ) satisfies ET ,µ

σ h(σ ′) ≤ 2diam(T )µ(T ) < ∞ for every σ, σ ′ ∈ T , where diam(T ) is
the diameter of the metric space (T , dT ).

Lemma 2.3. Suppose that T is a compact real tree and that µ is a finite Borel measure on T
that satisfies (1.1) for some κ > 0. For every σ ∈ T , PT ,µ

σ -a.s., we have

lim
t→∞ inf

σ ′∈T
Lt(σ

′) = ∞.
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Proof. Fix σ, σ ′ ∈ T . By [20, Lemma 3.6] we have ET ,µ
σ ′

∫ ∞
0 e−t dtLt (σ ′) > 0. Hence,

there is a strictly positive PT ,µ
σ ′ -probability that Lt(σ ′) > 0 for large t . Applying the joint

continuity of the local times, it follows that there exist r = r(σ ′) > 0, ε = ε(σ ′) > 0, and
t0 = t0(σ

′) < ∞ such that

PT ,µ
σ ′

(
inf

σ ′′∈B(σ ′,r)
Lt0(σ

′′) > ε
)
> 0. (2.1)

Now, seth(σ ′, t0, σ ) := inf{t > t0+h(σ ′) : XT ,µ
t = σ }. Applying the observation made above

this lemma about the finite moments of hitting times, the strong Markov property, and (2.1), it
is easy to check that h(σ ′, t0, σ ) is finite, PT ,µ

σ -a.s., and also that

PT ,µ
σ

(
inf

σ ′′∈B(σ ′,r)
Lh(σ ′,t0,σ )(σ

′′) > ε
)
> 0. (2.2)

Observe that the additivity of local times and the strong Markov property implies that

lim inf
t→∞ inf

σ ′′∈B(σ ′,r)
Lt (σ

′′) ≥
∞∑
i=1

ξi,

where, under PT ,µ
σ , the (ξi)∞i=1 are independent copies of infσ ′′∈B(σ ′,r) Lh(σ ′,t0,σ )(σ

′′). The
strong law of large numbers lets it be deduced from (2.2) that the right-hand side of the above
inequality is infinite, PT ,µ

σ -a.s., which proves the uniform divergence of local times uniformly
over B(σ ′, r), PT ,µ

σ -a.s.
To extend the conclusion of the previous paragraph, note that B(σ ′, r(σ ′))σ ′∈T is an open

cover for T . Thus, by the compactness of T , it admits a finite subcover, B(σi, r(σi))Ni=1, and,
clearly,

lim
t→∞ inf

σ ′∈T
Lt(σ

′) = min
i=1,...,N

lim
t→∞ inf

σ ′∈B(σi ,r(σi ))
Lt (σ

′).

Since, by our above argument, the right-hand side of this expression is infinite, PT ,µ
σ -a.s., the

proof is complete.

Following [7], we now show how XT ,µ can be approximated by a family of Brownian
motions on subtrees of T with a finite number of branches. Henceforth, we suppose that the
real tree T has a distinguished vertex ρ ∈ T called the root and consider a dense sequence of
vertices (σi)∞i=1 in T . Without loss of generality, we assume that the (σi)∞i=1 are distinct and
that σi �= ρ for any i. For each k ≥ 1, define a subset of T by

T (k) :=
k⋃
i=1

[[ρ, σi]], (2.3)

where, as above, for σ, σ ′ ∈ T , [[σ, σ ′]] is the unique injective path in T from σ to σ ′. Clearly,
T (k) is a compact real tree when endowed with the appropriate restriction of dT , and we set its
root to be ρ, which is contained in T (k) by construction. The natural projection φT ,T (k) from
T to T (k) is obtained by setting φT ,T (k)(σ ) to be the unique point in T (k) satisfying

dT (σ, φT ,T (k)(σ )) = inf
σ ′∈T (k)

dT (σ, σ
′). (2.4)
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It is elementary to check that φT ,T (k) is continuous and supx∈T dT (x, φT ,T (k)(x)) → 0 (cf. [7,
Lemma 2.4]). Consequently, µ(k) := µ ◦ φ−1

T ,T (k) defines a Borel probability measure on T (k)
with full support for each k, and µ(k) → µ weakly as probability measures on T . Since T (k)
is a compact real tree containing more than one point andµ(k) is a Borel probability measure on
T (k) with full support, we can construct the Brownian motion XT (k),µ(k) on (T (k), µ(k)). For
these processes, we are able to deduce the following convergence result. Since it is a relatively
simple adaptation of [7, Lemma 3.1], we only sketch the proof.

Proposition 2.1. If (T , µ) and {(T (k), µ(k))}∞k=1 are as described above, then

PT (k),µ(k)
ρ → PT ,µ

ρ

weakly as probability measures on C(R+,T ).

Proof. Applying the weak convergence of µ(k) to µ and the joint continuity of the local
times of XT ,µ (see Lemma 2.2), we obtain, for every t ≥ 0, PT ,µ

ρ -a.s.,

Ã
(k)
t :=

∫
T (k)

Lt (σ )µ
(k)(dσ) → t.

Moreover, an elementary monotonocity argument yields this convergence result uniformly on
compact intervals. As a consequence of this, τ̃ (k)(t) := inf{s : Ã(k)s > t} → t uniformly on
compacts, PT ,µ

ρ -a.s. Now, the trace theorem for Dirichlet forms (see [15, Theorem 6.2.1] for

example) allows us to check that the law of (XT ,µ
τ̃ (k)(t)

)t≥0 under PT ,µ
ρ is precisely PT (k),µ(k)

ρ (cf.
[7, Lemma 2.6]), and, hence, the result follows.

We continue by presenting a characterisation of XT (k),µ(k) as a time change of another
Brownian motion on T (k). For k ≥ 1, let λ(k) be the one-dimensional Hausdorff measure on
T (k) normalised to have total mass equal to 1. Since T (k) consists of a finite number of line
segments, λ(k) is a Borel probability measure on T (k) with full support. Consequently, the
Brownian motion XT (k),λ(k) on (T (k), λ(k)) exists. Furthermore, it is elementary to check that
λ(k) satisfies (1.1) with κ = 1 and, therefore, we can apply Lemma 2.2 to deduce thatXT (k),λ(k)

admits jointly continuous local times (L(k)t (σ ))σ∈T (k), t≥0. As in [7], define a continuous
additive functional Â(k) = (Â

(k)
t )t≥0 by setting

Â
(k)
t :=

∫
T (k)

L
(k)
t (σ )µ

(k)(dσ), (2.5)

and its inverse by
τ̂ (k)(t) := inf{s : Â(k)s > t}. (2.6)

As with the time change employed in the proof of the previous result, the following lemma
is a relatively straightforward consequence of the trace theorem for Dirichlet forms (see [15,
Theorem 6.2.1] for the trace theorem and [7, Lemma 2.6] for a similar application), and so will
be stated without proof.

Lemma 2.4. Suppose that (T , µ) and {(T (k), µ(k))}∞k=1 are as described above. If the process

XT (k),λ(k) has law PT (k),λ(k)
ρ then the process

(X
T (k),λ(k)

τ̂ (k)(t)
)t≥0

has law PT (k),µ(k)
ρ .
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We now deduce some simple path properties of Â(k) that will be useful to us later.

Lemma 2.5. If (T , µ) and {(T (k), µ(k))}∞k=1 are as described above, then, for every k ≥ 1,

PT (k),λ(k)
ρ -a.s., the functions Â(k) are continuous and strictly increasing. Moreover, for every
t0 ≥ 0,

lim
t→∞ lim sup

k→∞
PT (k),λ(k)
ρ (Â

(k)
t0
> t) = 0. (2.7)

Proof. The continuity of Â(k) follows from the continuity of (L(k)t (σ ))σ∈T (k), t≥0, which
was noted above Lemma 2.4. Hence, it remains to show that Â(k)t strictly increases in t and
satisfies (2.7). We start by showing that (Â(k)t )t≥0 is strictly increasing. The following argument

holds PT (k),λ(k)
ρ -a.s. Let s < t . Then, clearly,∫

T (k)
(L
(k)
t (x)− L(k)s (x))λ

(k)(dx) = t − s > 0.

Hence, there exist an ε > 0 and a nonempty open setA ⊆ T (k) such thatL(k)t (x)− L
(k)
s (x) > ε

for x ∈ A. Since µ(k) has full support, it charges every nonempty open set and so we must
therefore have Â(k)s ≤ Â

(k)
t − εµ(k)(A) < Â

(k)
t , which proves the desired result.

We now prove the tightness result of (2.7). Use the local times ofXT ,µ to define an additive
functional A(k) = (A

(k)
t )t≥0 by setting

A
(k)
t :=

∫
T
Lt(σ )λ

(k)(dσ),

and its inverse τ (k) similarly to the definition of τ̂ (k) in (2.6). By again applying the trace
theorem for Dirichlet forms, it can be deduced that the law of the process (XT ,µ

τ (k)(t)
)t≥0 under

PT ,µ
ρ is the same as that of the processXT (k),λ(k) under PT (k),λ(k)

ρ . Similarly to [7, Lemma 3.4],
it follows that, under PT ,µ

ρ , the two-parameter process (Lτ(k)(t)(σ ))σ∈T (k), t≥0 has the same
distribution as (L(k)t (σ ))σ∈T (k), t≥0 under PT (k),λ(k)

ρ . Consequently, to complete the proof, it
will suffice to demonstrate that, for every t0 ≥ 0, PT ,µ

ρ -a.s.,

lim sup
k→∞

∫
T
Lτ(k)(t0)(σ )µ

(k)(dσ) < ∞.

Recalling thatµ(k) converges weakly toµ, we find that the left-hand side of the above expression
is bounded above by ∫

T
Lsupk τ (k)(t0)

(σ )µ(dσ) = sup
k

τ (k)(t0),

and this supremum is finite whenever infk A
(k)
t diverges as t → ∞. Applying the uniform

divergence of local times proved in Lemma 2.3 and the fact that λ(k) is by definition a probability
measure, this result holds PT ,µ

ρ -a.s., as required.

As in [7], to embed T into �1, we use the sequential embedding of [2, Section 2.2]. In
particular, given a sequence (T (k))k≥1 as above, it is possible to construct a distance-preserving
map ψ : (T , dT ) → (�1, d�1) that satisfies ψ(ρ) = 0 and

πk(ψ(σ)) = ψ(φT ,T (k)(σ )) (2.8)

for every σ ∈ T and k ≥ 1, where πk is the projection map on �1 defined by setting
πk(x(1), x(2), . . . ) = (x(1), . . . , x(k), 0, 0, . . . ). Such a map is determined uniquely by
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insisting that ψ(T ) ⊆ {(x(1), x(2), . . . ) ∈ �1 : x(i) ≥ 0, i = 1, 2, . . . }. We will denote the

�1-embedded versions of the objects T , µ,PT ,µ
ρ , . . . by T̃ , µ̃, P̃

T ,µ
ρ , . . ., respectively.

To complete this section, we present the well-known relation between continuous excursions
and real trees, and define a collection of pairs of excursions and sequences that will be of interest
later in this paper. Let W be defined as in the introduction. For w ∈ W , define a distance on
[0, 1] by setting

dw(s, t) := w(s)+ w(t)− 2 inf{w(r) : r ∈ [s ∧ t, s ∨ t]}, (2.9)

and then use the equivalence s ∼w t if and only if dw(s, t) = 0, to define Tw := [0, 1]/ ∼w.
Denoting the canonical projection (with respect to ‘∼w’) from [0, 1] to Tw by ŵ, it is possible
to check that dTw(ŵ(s), ŵ(t)) := dw(s, t) defines a metric on Tw, and also that with this metric
Tw is a compact real tree (see [13, Theorem 2.1]). The root of the tree Tw is defined to be
the equivalence class ŵ(0), and is denoted by ρw. A Borel probability measure on Tw with
full support can be constructed by setting µw := λ[0,1] ◦ ŵ−1, where λ[0,1] is the usual one-
dimensional Lebesgue measure on [0, 1]. Furthermore, given a pair (w, u), where w ∈ W and
u = (ui)i≥1 ∈ [0, 1]N, we define a sequence of vertices (σi)i≥1 by setting σi = ŵ(ui) for
each i. This allows us to construct a sequence of subtrees Tw,u(k) of Tw as in (2.3). Note that
we will usually suppress the dependence on w and u from the notation for all of these objects
when it is clear which excursion and sequence is being considered.

Definition 2.1. The set � is the collection of pairs (w, u) ∈ W × [0, 1]N such that µ satis-
fies (1.1) for some κ > 0, the sequence (ui)i≥1 is dense in [0, 1], and the vertices (σi)i≥1 are a
dense collection of leaves of T , distinct and not equal to ρ for any i.

3. �1 convergence

For x = (x(1), x(2), . . . ) ∈ �1, define [[0, x]]sp as in [2] to be the union of line segments
connecting 0 to (x(1), 0, 0, . . . ) to (x(1), x(2), 0, 0, . . . ), . . . . Fix k ≥ 1, and suppose that we
are given distinct x(1), . . . , x(k) ∈ �1\{0}. Write x = (x(1), . . . , x(k)), and set

T x :=
k⋃
i=1

[[0, x(i)]]sp, (3.1)

which is a compact real tree. We assume that every x ∈ {0, x(1), . . . , x(k)} is a leaf of T x . Define
λx to be the one-dimensional Hausdorff measure on T x ; in this section it will be convenient
not to normalise this to be a probability measure. Denote the law of the Brownian motion Xx

on (T x, λx) started from 0 by Px
0 . Given a Borel probability measure ν on T x , let Ax,ν be the

additive functional defined by

A
x,ν
t :=

∫
T x
Lx
t (x)ν(dx),

where (Lx
t (x))x∈T x , t≥0 are the local times of Xx , which exist and are jointly continuous,

Px
0 -a.s., because λx satisfies (1.1) for κ = 1 and, therefore, Lemma 2.2 applies.

The aim of this section is to show that if we have a sequence (xn)n≥1, where xn =
(x
(1)
n , . . . , x

(k)
n ) ∈ (�1)k , that satisfies xn → x, then the Brownian motions Xxn on (T xn , λxn)

started from 0 converge in distribution to the Brownian motionXx started from 0. Note that we
construct T xn from xn similarly to the definition of T x in (3.1) and λxn is the one-dimensional
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Hausdorff measure on T xn ; the assumption that xn → x means that we can define the law
Pxn

0 of the Brownian motion on (T xn , λxn) started from 0 as in the previous section, at least
for large n. Moreover, simultaneously with this convergence, we will prove that if (νn)n≥1 is
a sequence of Borel probability measures, where νn is supported on T xn , such that νn → ν

weakly as probability measures on �1, then the related additive functionals Axn,νn , defined by

A
xn,νn
t :=

∫
T xn

L
xn
t (x)νn(dx),

converge in distribution to Ax,ν in C(R+,R+). To deduce the existence and continuity of the
local times (Lxn

t (x))x∈T xn , t≥0 of Xxn , we again apply Lemma 2.2.
On line segments, the processes Xxn and Xx look like standard one-dimensional Brownian

motions. However, the structure of T xn and T x can vary at branch points, and so we must be
careful about analysing the processes close to these. In our arguments, we will approximate
Xxn and Xx by processes that avoid the branch points of the trees. Define the finite set of
‘vertices’ of T x by

Bx := {bx(x, x′, x′′) : x, x′, x′′ ∈ {0, x(1), . . . , x(k)}},
where bx(x, x′, x′′) is the branch point of x, x′, and x′′ in T x . Note that Bx contains the set
{0, x(1), . . . , x(k)}. An ε-neighbourhood of Bx in �1 is given by

Bx
ε :=

⋃
x∈Bx

B�1(x, ε),

where B�1(x, ε) is the open ball in (�1, d�1) of radius ε centred at x. Now, fix a strictly positive
constant ε1 < ε0, where

ε0 := 1
2 inf

{x,x′∈Bx : x �=x′}
d�1(x, x′). (3.2)

Set υ0 = 0 and, for i ≥ 0, let

ςi := inf{t ≥ υi : Xx
t �∈ Bx

ε1
}, υi+1 := inf{t ≥ ςi : Xx

t ∈ Bx
ε1/2

}.
Define

A
x,ε1
t :=

∫ t

0
1{s∈I } ds,

where

I := R \
∞⋃
i=0

(υi, ςi), (3.3)

and its inverse τx,ε1(t) := inf{s : Ax,ε1
s > t}. Finally, let Xx,ε1 be the process defined by

X
x,ε1
t := Xx

τx,ε1 (t),

which takes values in the space D(R+, �1) of càdlàg paths in �1. To prove that Xx,ε1 approxi-
matesXx well for small ε1, we will apply the following (rather crude) bound on the expectations
of the local times (Lx

t (x))x∈T x , t≥0.

Lemma 3.1. The local times of Xx satisfy

sup
x∈T x

Ex
0 L

x
t (x) ≤ t + 4λx(T x)et

λx(T x)
.
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Proof. By [4, Section V.3.28] we have Px
0 (|Lx

t (x) − Lx
t (x

′)| > 2δ) ≤ 2ete−δ for every
x, x′ ∈ T x . Integrating this inequality implies that Ex

0 (|Lx
t (x)− Lx

t (x
′)|) ≤ 4et . Thus,

Ex
0 (L

x
t (x))λ

x(T x) ≤ Ex
0

(∫
T x
Lx
t (x

′)λx(dx′)
)

+
∫

T x
Ex

0 (|Lx
t (x)− Lx

t (x
′)|)λx(dx′)

≤ t + 4et λx(T x).

Lemma 3.2. For t0, ε > 0,

lim
ε1→0

Px
0

(
sup

t∈[0,t0]
d�1(Xx

t , X
x,ε1
t ) > ε

)
= 0.

Proof. By construction, Xx,ε1
t = Xx

τx,ε1 (t)
. Hence, applying the continuity of Xx and the

definition of τx,ε1 as the inverse of Ax,ε1 , the result will follow if we can show that

lim
ε1→0

Px
0

(
sup

t∈[0,t0+1]
|t − A

x,ε1
t | > ε

)
= 0. (3.4)

To prove this, first note that if Xx
0 = 0 then

sup
t∈[0,t0+1]

|t − A
x,ε1
t | ≤

∫ t0+1

0
1{Xs∈Bx

ε1
} ds =

∫
Bx
ε1

Lx
t0+1(x)λ

x(dx).

Thus, applying Markov’s inequality, Fubini’s theorem, and Lemma 3.1, it follows that

Px
0

(
sup

t∈[0,t0+1]
|t − A

x,ε1
t | > ε

)
≤ ε−1

∫
Bx
ε1

Ex
0 (L

x
t0+1(x))λ

x(dx) ≤ cλx(Bx
ε1
), (3.5)

where c is a constant that does not depend on ε1. Since λx is nonatomic and Bx is a finite set,
the result follows.

We now prove a similar result for Xxn that is uniform in n. Set υn0 = 0 and, for i ≥ 0, let

ςni := inf{t ≥ υni : Xxn
t �∈ Bx

ε1
}, (3.6)

υni+1 := inf{t ≥ ςni : Xxn
t ∈ Bx

ε1/2
}. (3.7)

Note that although Bx
ε1/2

and Bx
ε1

do not depend on n, the above quantities will be well defined
and finite for large n; when they are not, simply set ςn0 = 0 and ςni = υni = ∞ for i ≥ 1.
Define Axn,ε1 , τxn,ε1 , and Xxn,ε1 from these stopping times analogously to the definitions of
Ax,ε1 , τx,ε1 , and Xx,ε1 , respectively.

Lemma 3.3. If xn → x then, for t0, ε > 0,

lim
ε1→0

lim sup
n→∞

Pxn
0

(
sup

t∈[0,t0]
d�1(X

xn
t , X

xn,ε1
t ) > ε

)
= 0.

Proof. Similarly to the bound in (3.5), it is possible to deduce that

lim sup
n→∞

Pxn
0

(
sup

t∈[0,t0+1]
|t − A

xn,ε1
t | > ε

)
≤ lim sup

n→∞
cλxn(Bx

ε1
) = cλx(Bx

ε1
), (3.8)

where c is a constant that does not depend on n or ε1. The result will follow from this if we
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can show that the sequence (Pxn
0 )n≥1 is tight. To prove this, first observe that it is elementary

to check that there exist constants c1, c2 ∈ (0,∞) such that

c1r ≤ lim inf
n→∞ inf

x∈T xn
λxn(B�1(x, r)) ≤ lim sup

n→∞
sup
x∈T xn

λxn(B�1(x, r)) ≤ c2r

for every r ∈ (0, 1]. By applying the argument of [18, Lemma 4.2], this implies that

lim sup
n→∞

sup
x∈T xn

Pxn
x (inf{s : d�1(x,Xxn

s ) > r} < t) ≤ c3e−c4r
2/t

for every r ∈ (0, 1], t ∈ (0, t1], and some constants c3, c4, t1 ∈ (0,∞). Consequently,

lim
t→0

lim sup
n→∞

t−1 sup
x∈T xn

Pxn
x (inf{s : d�1(x,Xxn

s ) > r} < t) = 0

for any r > 0, which implies the tightness of (Pxn
0 )n≥1, as desired (cf. the corollary to

Theorem 7.4 of [3]).

We now construct an approximation for the additive functionalAx,ν . First, formulate a local
time Lx,ε1 for the process Xx,ε1 by setting

L
x,ε1
t (x) :=

∫ τx,ε1 (t)

0
1{s∈I } dsL

x
s (x) (3.9)

for x ∈ T x and t ≥ 0, where I is as defined in (3.3), then let Ax,ν,ε1 be defined by

A
x,ν,ε1
t :=

∫
T x
ε1

L
x,ε1
t (x)ν(dx)+

∑
x∈Bx

ν(B�1(x, ε1)) sup
y∈∂B

�1 (x,ε1)∩T x

L
x,ε1
t (y), (3.10)

where T x
ε1

:= T x \ Bx
ε1

. That Ax,ν,ε1 is uniformly close to Ax,ν is confirmed by the following
lemma.

Lemma 3.4. For t0, ε > 0,

lim
ε1→0

Px
0

(
sup

t∈[0,t0]
|Ax,ν
t − A

x,ν,ε1
t | > ε

)
= 0.

Proof. Since {s : Xs ∈ T x
ε1

} ⊆ I , the definition of Lx,ε1 in (3.9) implies that Lx,ε1
t (x) =

Lx
τx,ε1 (t)

(x) for every x ∈ T x
ε1

and t ≥ 0. Consequently, we can check that

sup
t∈[0,t0]

|Ax,ν
t − A

x,ν,ε1
t | ≤ sup

t∈[0,t0]
sup

{x,y∈T x : d
�1 (x,y)≤2ε1}

|Lx
t (x)− Lx

τx,ε1 (t)(y)|,

where we apply the fact that ν is a probability measure. The Px
0 -a.s. joint continuity of the local

times Lx allows us to deduce the result from (3.4).

For large n, we obtain objects analogous to Lx,ε1 and Ax,ν,ε1 by setting

L
xn,ε1
t (x) :=

∫ τxn,ε1 (t)

0
1{s∈In} dsL

xn
s (x)

for x ∈ T xn and t ≥ 0, where In = R \ ⋃∞
i=0(υ

n
i , ς

n
i ) is defined from the stopping times

introduced in (3.6) and (3.7), then letting Axn,νn,ε1 be defined by

A
xn,νn,ε1
t :=

∫
T xn
ε1

L
xn,ε1
t (x)νn(dx)+

∑
x∈Bx

νn(B�1(x, ε1)) sup
y∈∂B

�1 (x,ε1)∩T xn

L
xn,ε1
t (y), (3.11)

where T xn
ε1 := T xn \ Bx

ε1
and the summands where B�1(x, ε1) ∩ T xn = ∅ are assumed to be
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equal to 0. To check thatAxn,νn,ε1 is close toAxn,νn uniformly in n, we will apply the following
tightness result for the local times (Lxn)n≥1.

Lemma 3.5. If xn → x then, for t0, ε > 0,

lim
δ→0

lim sup
n→∞

Pxn
0

(
sup

{x,y∈T xn : d
�1 (x,y)≤δ}

sup
{s,t∈[0,t0] : |s−t |≤δ}

|Lxn
s (x)− L

xn
t (y)| > ε

)
= 0. (3.12)

Proof. First note that any two vertices x, y ∈ T xn are contained in a set of the form
[[0, x(i)n ]]xn or [[x(i)n , x(j)n ]]xn for some i, j ∈ {1, . . . , k}, i �= j , where, for x′, y′ ∈ T xn ,
we write [[x′, y′]]xn to represent the path from x′ to y′ in T xn . Secondly, writing bxn(x, x′, x′′)
to represent the branch point of x, x′, and x′′ in T xn , applying the assumption xn → x, and
Equation (5) of [2], it is possible to check that there exists a finite integer n0 such that

η(n) := sup
i,j=1,...,k

d�1(bxn(0, x(i)n , x
(j)
n ), bx(0, x(i), x(j))) <

ε0

2

for n ≥ n0, where ε0 is defined in (3.2). This implies that d�1(0, x(i)n ) > ε0 and also that
d�1(bxn(0, x(i)n , x

(j)
n ), x

(i)
n ) > ε0 for every i �= j , whenever n ≥ n0. For n ≥ n0, it is an

elementary exercise to deduce from these two facts the existence of a collection of paths
([[ai, bi]]xn)i∈In , where d�1(ai, bi) = ε0 and d�1(bxn(0, ai, bi), ai) ∈ {0, ε0/2, ε0}, such that,
if x, y ∈ T xn and d�1(x, y) < ε0/2, then x and y are both contained in a single set of the form
[[ai, bi]]xn for some i ∈ In. Moreover, the collection ([[ai, bi]]xn)i∈In can be chosen in such
a way that #In is uniformly bounded in n.

Suppose now that n ≥ n0 is large enough so that a cover of the form described above exists
and δ < ε0/2. For i ∈ In, define

Ait :=
∫

[[ai ,bi ]]xn
L

xn
t (x)λ

xn(dx)

and τ i(t) := inf{s : Ais > t}. Similarly to Lemma 2.4, the law of the process Xi , where
Xit := X

xn
τ i (t)

, under Pxn
0 is equal to the law of the Brownian motion on the measured compact

real tree ([[ai, bi]]xn , λxn([[ai, bi]]xn∩·)) started from bxn(0, ai, bi). Moreover, the local times
ofXi are given by Lit (x) = L

xn
τ i (t)

(x) for x ∈ [[ai, bi]]xn and t ≥ 0 (cf. [7, Lemma 3.4]). Now,
by our choice of the intervals ([[ai, bi]]xn)i∈In we have

sup
{x,y∈T xn : d

�1 (x,y)≤δ}
sup

{s,t∈[0,t0] : |s−t |≤δ}
|Lxn
s (x)− L

xn
t (y)|

≤
∑
i∈In

sup
{x,y∈[[ai ,bi ]]xn : d

�1 (x,y)≤δ}
sup

{s,t∈[0,t0]∩τ i (R+) : |s−t |≤δ}
|Lxn
s (x)− L

xn
t (y)|,

where the condition s, t ∈ τ i(R+) is justified by the observation that, for x ∈ [[ai, bi]]xn , the
local time Lxn

t (x) increases only on the set {t ≥ 0 : Xt = x} ⊆ τ i(R+). Furthermore, simple
continuity arguments allow us to replace τ i(R+) by τ i(R+). Since |Ais − Ait | ≤ |s − t |, we
have |τ i(s)− τ i(t)| ≥ |s − t |, and, consequently, we obtain from this bound

sup
{x,y∈T xn : d

�1 (x,y)≤δ}
sup

{s,t∈[0,t0] : |s−t |≤δ}
|Lxn
s (x)− L

xn
t (y)|

≤
∑
i∈In

sup
{x,y∈[[ai ,bi ]]xn : d

�1 (x,y)≤δ}
sup

{s,t∈[0,t0] : |s−t |≤δ}
|Lis(x)− Lit (y)|,
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where we apply the representation of (Lit (x))x∈[[ai ,bi ]]xn , t≥0 noted above. All the measured real
trees {([[ai, bi]]xn , λxn([[ai, bi]]xn ∩ ·))}i∈In are equivalent and, by construction, the Brownian
motion Xxn first hits [[ai, bi]]xn at bxn(0, ai, bi); hence, it follows that the probability on the
left-hand side of (3.12) is bounded above by

#In sup
x∈{0,ε0/2}

P[0,ε0]
x

(
sup

{y,z∈[0,ε0] : |y−z|≤δ}
sup

{s,t∈[0,t0] : |s−t |≤δ}
|L[0,ε0]
s (y)− L

[0,ε0]
t (z)|

> ε(#In)
−1

)
,

where P[0,ε0]
x is the law of the Brownian motion on the real interval [0, ε0] equipped with the

one-dimensional Hausdorff measure and the (L[0,ε0]
t (x))x∈[0,ε0], t≥0 are the local times of this

process. Recalling that #In is uniformly bounded in n, Lemma 2.2 allows it to be deduced that
the above expression decays to 0 as first n → ∞ and then δ → 0.

By following a similar proof to that of Lemma 3.4, combining the previous lemma with (3.8)
allows it to be deduced that Axn,νn,ε1 does indeed approximate Axn,νn , as desired.

Lemma 3.6. If xn → x then, for t0, ε > 0,

lim
ε1→0

lim sup
n→∞

Pxn
0

(
sup

t∈[0,t0]
|Axn,νn
t − A

xn,νn,ε1
t | > ε

)
= 0.

Our next step is to demonstrate that Xxn,ε1 converges to Xx,ε1 and Axn,νn,ε1 is close to
Ax,ν,ε1 , which we do by applying a particular sample path construction of the processes from
their excursions between jump times. Let us start by introducing some further notation. Set
T x
ε1/2

:= T x \Bx
ε1/2

, which consists of a finite number of connected components, each a closed
line segment with endpoints in the finite set ∂T x

ε1/2
. For x ∈ ∂T x

ε1/2
, write

Nx
ε1
(x) := {y ∈ ∂T x

ε1
: [[x, y]]x ∩ ∂T x

ε1
= {y}}

to represent the collection of ‘nearest neighbours’of x in ∂T x
ε1

, where [[x, y]]x is the path from x

to y in T x . For a pictorial representation of the definitions at a typical branch point, see Figure 1.
For x ∈ T x

ε1/2
, we will denote by Cx

ε1
(x) the connected component of T x

ε1/2
containing x.

Let (ζi)i≥0 be the jump times ofXx,ε1 ; by convention we set ζ0 = 0. Applying the definition
of Brownian motion on a dendrite, conditional on Xx,ε1

ζi
, the path segment (Xx,ε1

ζi+t )t∈[0,ζi+1−ζi )
is distributed precisely as a standard one-dimensional Brownian motion on the line segment
Cx
ε1
(X

x,ε1
ζi

), started from X
x,ε1
ζi

and run until it hits ∂T x
ε1/2

. The local times

(L
x,ε1
ζi+t (x))x∈Cx

ε1
(X

x,ε1
ζi

), t∈[0,ζi+1−ζi )
are distributed exactly as the local times of the same one-dimensional Brownian motion; outside
Cx
ε1
(X

x,ε1
ζi

), the local times Lx,ε1 do not increase on the time interval [ζi, ζi+1). Moreover, the
strong Markov property implies that, conditional onXx,ε1

ζi
, (Xx,ε1

ζi+t , (L
x,ε1
ζ i+t (x))x∈T x )t∈[0,ζi+1−ζi )

is independent of theσ -algebra generated by (Xx,ε1
t )t≤ζi . At discontinuities, the process satisfies

the following transition law:

px,ε1(x, y) := Px
0 (X

x,ε1
ζi

= y | Xx,ε1

ζ−
i

= x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + #Nx
ε1
(x)

2#Nx
ε1
(x)

if y ∈ Cx
ε1
(x),

1

2#Nx
ε1
(x)

otherwise,

for x ∈ ∂T x
ε1/2

and y ∈ Nx
ε1
(x). As a consequence of this description, we can construct
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y'

y ''

y
x

x'

Figure 1: Example of x ∈ ∂T x
ε1/2

, x′ ∈ Bx , and Nx
ε1
(x) = {y, y′, y′′}.

(Xx,ε1 , Lx,ε1) from a countable collection{
(αx,i)x∈∂T x

ε1/2
, (βy,i , γ y,i , ξy,i)y∈∂T x

ε1

}
i≥0 (3.13)

of random variables built on an underlying probability space with probability measure P that
satisfy the following properties.

• The random variables (αx,i)x∈∂T x
ε1/2

, i≥0 are independent. The random variable αx,i is
Nx
ε1
(x)-valued and distributed according to the law determined by px,ε1(x, ·).

• The triples {(βy,i , γ y,i , ξy,i)}y∈∂T x
ε1
, i≥0 are independent of each other and of the

collection (αx,i)x∈∂T x
ε1/2

, i≥0. The process βy,i = (β
y,i
t )t≥0 is a Brownian motion on

the line segment Cx
ε1
(y) (equipped with the appropriate restriction of λx) started from

y; γ y,i := inf{s : βy,is ∈ ∂T x
ε1/2

}; and ξy,i = (ξ
y,i
t (x))x∈Cx

ε1
(y), t≥0 are the jointly

continuous local times of βy,i .

We now define a càdlàg process X̃x,ε1 , its times of discontinuities (ζ̃i )i≥1, and its local times
L̃x,ε1 from these random variables. First, set X̃x,ε1

0 to be the unique point in T x satisfying
d�1(0, X̃x,ε1

0 ) = ε1 (such a point is well defined, because we are assuming that 0 is a leaf of T x

and ε1 is less than ε0, as defined in (3.2)), ζ̃0 = 0, and L̃x,ε1
0 (x) = 0 for every x ∈ T x . Given

(X̃
x,ε1
t , (L̃

x,ε1
t (x))x∈T x )t∈[0,ζ̃i ], define

ζ̃i+1 := ζ̃i + γ
X̃

x,ε1
ζ̃i

,i
,

(
X̃

x,ε1
t

)
t∈(ζ̃i ,ζ̃i+1)

:= (
β
X̃

x,ε1
ζ̃i

,i

t−ζ̃i
)
t∈(ζ̃i ,ζ̃i+1)

, X̃
x,ε1

ζ̃i+1
:= α

X̃
x,ε1
ζ̃
−
i+1

,i

,

and also

(
L̃

x,ε1
t (x)

)
t∈(ζ̃i ,ζ̃i+1] :=

⎧⎪⎪⎨
⎪⎪⎩

(
L̃

x,ε1

ζ̃i
(x)+ ξ

X̃
x,ε1
ζ̃i

,i

t−ζ̃i (x)
)
t∈(ζ̃i ,ζ̃i+1] if x ∈ Cx

ε1

(
X̃

x,ε1

ζ̃i

)
,

(
L̃

x,ε1

ζ̃i
(x)

)
t∈(ζ̃i ,ζ̃i+1] otherwise.
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x

y z

ϒn(y) ϒn(z) ϒn(y')ϒn(z')
x'

y'z'

Figure 2: Example of a homeomorphism between line segments.

Applying the above description of (Xx,ε1 , Lx,ε1), it is straightforward to check that the law of
(X̃x,ε1 , L̃x,ε1) under P is identical to the law of (Xx,ε1 , Lx,ε1) under Px

0 .
We continue by describing the structure of T xn

ε1/2
. Define η(n) as in the proof of Lemma 3.5.

The assumption xn → x implies that there exists a finite integer n0 such that η(n) < ε1/2 for
n ≥ n0, which implies in turn that T xn

ε1/2
is homeomorphic to T x

ε1/2
for n ≥ n0. In particular,

if we suppose that x and x′ are neighbours in Bx , by which we mean that x, x′ ∈ Bx , x �= x′
and [[x, x′]]x ∩ Bx = {x, x′}, then there exists a unique connected component of T xn

ε1/2
which

is a closed line segment with endpoints in ∂B�1(x, ε1/2) and ∂B�1(x′, ε1/2); moreover, every
connected component of T xn

ε1/2
can be represented in this way. We define a homeomorphism

from T xn
ε1/2

to T x
ε1/2

that maps the endpoint of such a line segment, y say, in ∂B�1(x, ε1/2) to the
unique point ϒn(y) in [[x, x′]]x that satisfies d�1(x,ϒn(y)) = ε1/2; maps the point of the line
segment at a distance ε1/2 from y, z say, to the unique point ϒn(z) in [[x, x′]]x that satisfies
d�1(x,ϒn(z)) = ε1; and ϒn is extended by linear interpolation on the line segments between
points for which we have not already defined it. Figure 2 depicts a typical configuration on a
line segment.

We now assume that η(n) < ε1/2. The transition law at the discontinuities (ζ ni )i≥1 ofXxn,ε1

is given by
pxn,ε1(x, y) := Pxn

0

(
X

xn,ε1
ζ ni

= y | Xxn,ε1

ζ ni
− = x

)
,

where x ∈ ∂T xn
ε1/2

and y ∈ Nxn
ε1 (x) := ϒ−1

n (Nx
ε1
(ϒn(x))). We use this to define a càdlàg process

X̃xn,ε1 for each n from a countable collection{
(αn,x,i)x∈∂T xn

ε1/2
, (βn,y,i , γ n,y,i , ξn,y,i)y∈∂T xn

ε1

}
i≥0

of random variables built on our underlying probability space with probability measure P that
satisfy the following properties, where we apply the notationCxn

ε1 (x) to represent the connected
component of T xn

ε1/2
containing x ∈ T xn

ε1/2
.

• The random variables (αn,x,i)x∈∂T xn
ε1/2

, i≥0 are independent. The random variable αn,x,i

is Nxn
ε1 (x)-valued and distributed according to pxn,ε1(x, ·).

• The triples {(βn,y,i , γ n,y,i , ξn,y,i)}y∈∂T xn
ε1 , i≥0 are independent of each other and of the

collection (αn,x,i)x∈∂T xn
ε1/2

, i≥0. The process βn,y,i = (β
n,y,i
t )t≥0 is a Brownian motion

on the line segment Cxn
ε1 (y) (equipped with the appropriate restriction of λxn ) started
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from y; γ n,y,i := inf{s : βn,y,is ∈ ∂T xn
ε1/2

}; and ξn,y,i = (ξ
n,y,i
t (x))x∈Cxn

ε1 (y), t≥0 are the

jointly continuous local times of βn,y,i .

Constructing (X̃xn,ε1 , L̃xn,ε1) from these random variables, similarly to the definition of

(X̃x,ε1 , L̃x,ε1),

results in a process whose law under P is equal to that of (Xxn,ε1 , Lxn,ε1) under Pxn
0 . The

following simple lemma is crucial in proving that Xxn,ε1 converges to Xx,ε1 and Axn,νn,ε1 is
close to Ax,ν,ε1 , as we do in the subsequent result. Note that the topology on the countable
collections with the same index sets we consider is that generated by uniform convergence of
finite subcollections (with respect to the appropriate product topology).

Lemma 3.7. If xn → x, the countable collection of random variables consisting of(
ϒn(α

n,ϒ−1
n (x),i )

)
x∈∂T x

ε1/2
, i≥0

and (
βn,ϒ

−1
n (y),i , γ n,ϒ

−1
n (y),i ,

(
ξn,ϒ

−1
n (y),i (ϒ−1

n (x))
)
x∈Cx

ε1
(y)

)
y∈∂T x

ε1
, i≥0

converges in distribution to the collection in (3.13).

Proof. To deduce that ϒn(αn,ϒ
−1
n (x),i ) converges in distribution to αx,i , it suffices to check

that
pxn,ε1(ϒ−1

n (x), ϒ−1
n (y)) → px,ε1(x, y)

for each x ∈ ∂T x
ε1/2

and y ∈ Nx
ε1
(x). The proof that this is true involves an elementary

electrical network (or harmonic analysis) calculation and is omitted (that the Brownian motion
on a real tree can be constructed in terms of electrical resistance networks is guaranteed by [7,
Proposition 2.2], and a detailed study of harmonic analysis on such spaces appears in [17]).

The convergence of the triple

(βn,ϒ
−1
n (y),i , ξn,ϒ

−1
n (y),i , (γ n,ϒ

−1
n (y),i (ϒ−1

n (x)))x∈Cx
ε1
(y))

to (βy,i , γ y,i , ξy,i) is a simple consequence of the fact that

((Bt )t≥0, h(−an, bn), (Lt (x))x∈R, t≥0) → ((Bt )t≥0, h(−a, b), (Lt (x))x∈R, t≥0)

in distribution whenever an → a and bn → b for some a, b > 0, where B is a standard
Brownian motion in R started from 0, h(−a, b) is the hitting time of {−a, b} by B, and L are
the jointly continuous local times of B. Note that to map this result into our setting, we apply
the fact that supx∈T xn d�1(ϒn(x), x) → 0 as n → ∞.

Lemma 3.8. Suppose that xn → x. If F is a continuous bounded function onD(R+, �1) then

lim
n→∞ Exn

0 (F (X
xn,ε1)) = Ex

0 (F (X
x,ε1)). (3.14)

Moreover, if νn → ν weakly as probability measures on �1 and F is a continuous bounded
function on D(R+, �1)× C(R+,R+), then

lim
ε1→0

lim sup
n→∞

|Exn
0 (F (X

xn,ε1 , Axn,νn,ε1))− Ex
0 (F (X

x,ε1 , Ax,ν,ε1))| = 0. (3.15)
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Proof. By separability, it is possible to assume that all the relevant random variables are
constructed in such a way that the convergence of Lemma 3.7 holds P-a.s. It will follow
easily from this that X̃xn,ε1 → X̃x,ε1 in D(R+, �1), P-a.s., if we can show that the number of
discontinuities that X̃x,ε1 admits in any finite time interval is finite. By continuity, there exists
an ε > 0 such that P(infy∈∂T x

ε1
γ y,i > ε) > 0. Thus, the strong law of large numbers implies

that

lim
i→∞ ζ̃i ≥

∞∑
i=0

inf
y∈∂T x

ε1

γ y,i = ∞, (3.16)

P-a.s., and, hence, there can indeed only be a finite number of discontinuities of X̃x,ε1 in any
finite time interval. Due to the equivalence of the laws of X̃xn,ε1 , X̃x,ε1 andXxn,ε1 , Xx,ε1 under
the appropriate probability measures, this yields the convergence result in (3.14).

Let us now suppose that we have a realisation of random variables such that the convergence
of Lemma 3.7 occurs and (3.16) holds. Under these conditions, it is possible to check that, for
any t0 > 0,

ε(n) := sup
t∈[0,t0]

sup
x∈T x

ε1

|L̃xn,ε1
t (ϒ−1

n (x))− L̃
x,ε1
t (x)| → 0 (3.17)

as n → ∞. Moreover, we can define a function (L̄x,ε1
t (x))x∈T x∪Bx

ε1
, t≥0 that is jointly

continuous and agrees with L̃x,ε1
t (x) for x ∈ T x

ε1
. If x ∈ B�1(y, ε1) for some y ∈ Bx

then we set

L̄
x,ε1
t (x) :=

∑
z∈∂B

�1 (y,ε1)∩T x

d�1(x, z)−1L̃
x,ε1
t (z)

/ ∑
z∈∂B

�1 (y,ε1)∩T x

d�1(x, z)−1,

so that L̄x,ε1
t (x) is a weighted average of the points in T x on the boundary of B�1(y, ε1).

Furthermore, for large n, let φn : T xn ∪Bx
ε1

→ T x ∪Bx
ε1

be defined by setting φn(x) = ϒn(x)

on T xn
ε1 and φn(x) = x otherwise, and note that νn ◦ φ−1

n → ν weakly as probability measures
on T x ∪ Bx

ε1
. If we construct Ãxn,νn,ε1 and Ãx,ν,ε1 from L̃xn,ε1 and L̃x,ε1 analogously to the

definitions of Axn,νn,ε1 and Ax,ν,ε1 in (3.10) and (3.11), respectively, then we can apply the
above notation to deduce that, for any 0 ≤ t1 ≤ · · · ≤ tm ≤ t0,

sup
t∈{t1,...,tm}

|Ãxn,νn,ε1
t − Ã

x,ν,ε1
t |

≤ ε(n)+ 2 sup
t∈[0,t0]

sup
{x,y∈T x∪Bx

ε1
: d
�1 (x,y)≤2ε1}

|L̄x,ε1
t (x)− L̄

x,ε1
t (y)|

+ sup
t∈{t1,...,tm}

∣∣∣∣
∫

T x∪Bx
ε1

L̄
x,ε1
t (x)νn ◦ φ−1

n (dx)−
∫

T x∪Bx
ε1

L̄
x,ε1
t (x)ν(dx)

∣∣∣∣.
By (3.17), the first term in the upper bound decays to 0 as n → ∞. The third term also
converges to 0, since νn ◦ φ−1

n → ν. It follows from this and the definition of L̄x,ε1 that, for
any ε > 0,

P
(

lim sup
n→∞

sup
t∈{t1,...,tm}

|Ãxn,νn,ε1
t − Ã

x,ν,ε1
t | > ε

)

≤ Px
0

(
2 sup
t∈[0,t0]

sup
{x,y∈T x

ε1
: d
�1 (x,y)≤4ε1}

|Lx,ε1
t (x)− L

x,ε1
t (y)| > ε

)

= Px
0

(
2 sup
t∈[0,t0]

sup
{x,y∈T x

ε1
: d
�1 (x,y)≤4ε1}

|Lx
τx,ε1 (t)(x)− Lx

τx,ε1 (t)(y)| > ε
)
,
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where the equality follows from the observation made in the proof of Lemma 3.4 thatLx,ε1
t (x) =

Lx
τx,ε1 (t)

(x) for x ∈ T x
ε1

. By applying the Px
0 -a.s. continuity of the local times Lx and (3.4), this

implies that

lim
ε1→0

P
(

lim sup
n→∞

sup
t∈{t1,...,tm}

|Ãxn,νn,ε1
t − Ã

x,ν,ε1
t | > ε

)
= 0.

In conjunction with the result of the opening paragraph of the proof and Lemma 3.6, this will
imply the convergence in (3.15) once the tightness of (Axn,νn)n≥1 in C(R+,R+) has been
checked. However, this is an easy corollary of Lemma 3.5, and so the proof is complete.

The main result of this section, which we can now state precisely, is an immediate conse-
quence of Lemmas 3.2, 3.3, 3.4, 3.6, and 3.8.

Proposition 3.1. Suppose that xn → x and νn → ν weakly as probability measures on �1. If
F is a continuous bounded function on C(R+, �1)× C(R+,R+) then

lim
n→∞ Exn

0 (F (X
xn , Axn,νn)) = Ex

0 (F (X
x, Ax,ν)).

4. Simple random walk convergence

The results of the two previous sections allow us to prove our main scaling limit theorems by
relatively straightforward adaptations of the proofs in [7]. Since most of the objects we study
here were also considered in [7], we will be brief in introducing them, and refer the reader to
[7] for further details.

Let (Tn)n≥1 be a collection of ordered graph trees such that Tn has n vertices for each n. The
root of Tn will be denoted by ρ = ρ(Tn). Define the depth-first search ŵn : {0, . . . , 2n} → Tn
as in [2, Section 2.6] (ŵn is extended from the definition there by setting ŵn(0) = ŵn(2n) = ρ),
and suppose that the search-depth process (wn(t))t∈[0,1] is the function satisfying

wn

(
i

2n

)
:= dTn(ρ, ŵn(i)), 0 ≤ i ≤ 2n,

where dTn is the graph distance on Tn, and which is linear between these values, so that wn
takes values in C([0, 1],R+). The uniform probability measure on the vertices of Tn will be
written as µn. For each n, if we construct a function γn : [0, 1] → [0, 1] by setting

γn(t) :=
{

�2nt�/2n if wn(�2nt�/2n) ≥ wn(�2nt�/2n),
�2nt�/2n otherwise,

then it is the case that
µn = λ[0,1] ◦ (2nγn)−1 ◦ ŵ−1

n , (4.1)

where, as previously, λ[0,1] is the one-dimensional Lebesgue measure on [0, 1] (this result can
be checked by arguing along the lines of [2, Lemma 12]). It will be useful later to note that γn
satisfies supt∈[0,1] |γn(t)− t | ≤ (2n)−1.

For a sequence (unk)k≥1 ∈ [0, 1]N, define (σnk )k≥1 ∈ T N
n by σnk := ŵn(2nγn(unk)). Set Tn(k)

to be the minimal graph tree spanning {ρ, σn1 , . . . , σ nk }. The measure projection of µn onto
Tn(k) is denoted by

µ(k)n := µn ◦ φ−1
Tn,Tn(k)

,

where the projection operator φTn,Tn(k) is defined on graph trees analogously to the projection
operator for real trees (see Section 2).
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We will repeatedly apply the following assumption throughout the remainder of the section.
The set � was introduced in Definition 2.1.

Assumption 4.1. For each n, the sequence (unk)k≥1 is dense in [0, 1]. Furthermore, there exists
a divergent sequence (αn)n≥1 such that αn = o(n) and

(α−1
n wn, u

n) → (w, u),

in C([0, 1],R+)× [0, 1]N, for some (w, u) ∈ �.

As in Section 2 for real trees, we use the sequential construction of [2, Section 2.2] to
isometrically embed the vertices of Tn into �1 from the vertex sequence (σnk )k≥1. Observe that,
under Assumption 4.1, because we are assuming that (unk)k≥1 is dense in [0, 1], the sequence
(σnk )k≥1 will contain all the vertices of Tn, and so this procedure does result in an isometric
embedding forTn. We will denote byψn the unique distance-preserving map from the vertices of
Tn into the set {(x(1), x(2), . . . ) ∈ �1 : x(i) ≥ 0, i = 1, 2, . . . } ⊆ �1 that satisfies ψn(ρ) = 0
and

πk(ψn(σ )) = ψn(φTn,Tn(k)(σ )) (4.2)

for every σ ∈ Tn and k ≥ 1, where πk is the projection operator defined below (2.8). We write
T̃n, µ̃n, . . . to represent the �1-embedded versions of objects.

Let us now introduce the discrete-time processes that we will consider. Suppose that Xn =
(Xnm)m≥0 is the discrete-time simple random walk on Tn started from ρ, and denote its law
by PTnρ . SetXn,k = φTn,Tn(k)(X

n), and let J n,k be the associated jump chain, so that J n,k is the
simple random walk on the vertices of Tn(k) started from ρ. If (An,km )m≥0 are the jump times
of Xn,k , i.e. An,k0 = 0 and, for m ≥ 1,

An,km := min{l ≥ A
n,k
m−1 : Xnl ∈ Tn(k) \ {Xn

A
n,k
m−1

}},

and (τn,k(m))m≥0 is the discrete inverse of An,k , i.e. τn,k(m) := max{l : An,kl ≤ m}, then we
can recover Xn,k from J n,k through the identity

Xn,km = J
n,k

τn,k(m)
. (4.3)

The local times of J n,k are determined by

Ln,km (σ ) := 2

degn,k(σ )

m∑
l=0

1σ (J
n,k
l )

for σ a vertex in Tn(k), where degn,k(σ ) is the usual graph degree of σ in Tn(k), and we use

these to define an additive functional, (Ân,km )m≥0, by setting Ân,k0 = 0, and, for m ≥ 1,

Ân,km := n

∫
Tn(k)

L
n,k
m−1(σ )µ

(k)
n (dσ).

The discrete-time inverse of Ân,k is given by τ̂ n,k(m) := max{l : Ân,kl ≤ m}, and we use this
to define a time-changed version of J n,k , denoted by (X̂n,km )m≥0, by setting

X̂n,km := J
n,k

τ̂ n,k(m)
. (4.4)
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As in [7], to show that X̂n,k andXn,k are close, we will prove a tightness result forAn,k and Ân,k .
We start by proving a continuity result for the local times Ln,k . Coinciding with the notation
of [7], we define �(k)n := α−1

n #E(Tn(k)), where E(Tn(k)) is the edge set of Tn(k).

Lemma 4.1. Fix k ∈ N and t0 > 0. Under Assumption 4.1,

lim
δ→0

lim sup
n→∞

PTnρ
(
α−1
n sup

{σ,σ ′∈Tn(k) : dTn (σ,σ ′)≤δαn}
sup

m≤t0α2
n�

(k)
n

|Ln,km (σ )− Ln,km (σ ′)| > ε
)

= 0.

Proof. By assumption, α−1
n dTn(ρ, σ

n
i ) → dT (ρ, σi) > 0 for each i ≥ 1. Hence, there exists

a constant L > 0 such that
inf

i=1,...,k
α−1
n dTn(ρ, σ

n
i ) ≥ 2L (4.5)

for large n. For the remainder of the proof, we will suppose that n is large enough so that this
bound holds. If σ ∈ Tn(k) then σ is on the path between ρ and σni for some i ∈ {1, . . . , k}.
Consequently, (4.5) implies that there exists an injective path in Tn(k) of length at least �αnL�
with endpoint σ . By considering the random walk observed on this path and the other vertices
adjacent to σ , we can deduce that, for t > 0,

PTnρ
(
α−1
n L

n,k

t0α2
n�

(k)
n

(σ ) ≥ t
)

≤ P
�(�αnL�,degn,k(σ )−1)
0

(
α−1
n L

�(�αnL�,degn,k(σ )−1)

t0α2
n�

(k)
n

≥ t
)
,

where �(i,D) is a graph tree consisting of a path of length i emanating from a vertex 0 along
withD other vertices each attached to 0 by a single edge, and (L�(i,D)m )m≥0 is the local time at 0
of the simple random walk on �(i,D). Using a strong Markov argument, it is possible to check

that L�(i,D)m is stochastically dominated by
∑L

�(i,0)
m

j=1 ξDj , where the (ξDj )j≥1 are independent
geometric, parameterD/(D+1), random variables, independent of the random walk on�(i, 0).
Therefore,

PTnρ
(
α−1
n L

n,k

t0α2
n�

(k)
n

(σ ) ≥ t
)

≤ sup
D≤k

P�(�αnL�,D)
0

(
α−1
n L

�(�αnL�,D)
t0α2

n�
(k)
n

≥ t
)

≤ (tαn)
−4 sup

D≤k
E�(�αnL�,0)

0

( L
�(�αnL�,0)
t0α

2
n�

(k)
n∑

i1,i2,i3,i4=1

ξDi1 ξ
D
i2
ξDi3 ξ

D
i4

)

≤ c1(tαn)
−4 E�(�αnL�,0)

0

((
L
�(�αnL�,0)
t0α2

n�
(k)
n

)4)
≤ c2t

−4, (4.6)

where c1 and c2 are constants that do not depend on σ , n, or t . The final inequality here is an
application of [7, Lemma B.2] and the easily checked fact that�(k)n is uniformly bounded in n.

Given the above bound, it is possible to deduce that, for fixed ε > 0,

sup
{σ,σ ′∈Tn(k) : dTn (σ,σ ′)≤δαn}

PTnρ
(
α−1
n sup

m≤t0α2
n�

(k)
n

|Ln,km (σ )− Ln,km (σ ′)| > ε
)

≤ c3δ
2 (4.7)

for every n ≥ n0 and δ ∈ (0, 1), where n0 is a suitably large integer, by following the same
argument as used to prove [7, Lemma 4.5] (which itself is an adaptation of a result appearing
in [5]), inserting αn in place of the scaling factor n1/2 where appropriate. More specifically,
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fix σ �= σ ′ ∈ Tn(k) such that dTn(σ, σ
′) ≤ δαn (note that in what follows we may assume that

δαn ≥ 1, else the left-hand side of (4.7) is clearly 0). Conditional on the event where the jump
chain J n,k hits σ before σ ′ occurs, we have, by a simple calculation,

sup
m≤t0α2

n�
(k)
n

∣∣∣∣Ln,km (σ )− Ln,km (σ ′)+ 2

degn,k(σ )L
n,k
m (σ )/2∑

i=1

ηi

∣∣∣∣
≤ sup

{
2Nidegn,k(σ

′)−1 : i ≤ degn,k(σ )L
n,k

�t0α2
n�

(k)
n �(σ )/2

}
, (4.8)

where Ni is the number of visits by J n,k to σ ′ between the ith and (i + 1)th visits to σ , and
ηi := Nidegn,k(σ

′)−1 − degn,k(σ )
−1 is a centred random variable (for the precise distribution

of Ni and estimates of the moments of ηi , see [7, Section B.2]). Now, since (
∑m
i=1 ηi)m≥1 is a

martingale with respect to the filtration (Fm)m≥1, where Fm is the σ -algebra generated by J n,k

up to the (m + 1)th hitting time of σ , and L := degn,k(σ )L
n,k

�t0α2
n�

(k)
n �(σ )/2 is a stopping time

for this martingale, Doob’s martingale norm inequality implies that

PTnρ

(
2α−1

n sup
m≤L

∣∣∣∣
m∑
i=1

ηi

∣∣∣∣ > ε

)
≤ c4α

−4
n ETnρ

(( L∑
i=1

ηi

)4)
.

An upper bound for the right-hand side in terms of the moments of L and ηi can be computed
by following the steps that lead to [5, Equation (1.29)], which is an analogous bound for a
simple random walk on the line. In particular, we can check from (4.6) and the estimates for
the moments of ηi of the form |ETnρ (ηpi )| ≤ c(δαn)

p−1 appearing in the appendix of [7] that

PTnρ

(
2α−1

n sup
m≤L

∣∣∣∣
m∑
i=1

ηi

∣∣∣∣ > ε

)
≤ c5δ

2, (4.9)

uniformly in n, σ , and σ ′. Moreover, it also holds that

PTnρ
(
α−1
n sup

i≤L
2Nidegn,k(σ

′)−1 > ε
)

≤ ETnρ (L)PTnρ (2α
−1
n N1degn,k(σ

′)−1 > ε)

≤ c6α
−3
n (1 + ETnρ (|η1|4))

≤ c7δ
3, (4.10)

uniformly in n, σ , or σ ′. Piecing together (4.8), (4.9), and (4.10), we obtain the estimate (4.7),
as desired.

Subsequently, by considering, for each σ ∈ Tn(k), the behaviour of the local times on the
paths from σ to the at most k + 1 leaves of Tn(k), we can apply a standard maximal inequality
(for example, the extension of [3, Theorem 10.3], suggested as [3, Problem 10.1]) to deduce
from this result that

sup
σ∈Tn(k)

PTnρ
(
α−1
n sup

{σ ′∈Tn(k) : dTn (σ,σ ′)≤δαn}
sup

m≤t0α2
n�

(k)
n

|Ln,km (σ )− Ln,km (σ ′)| > ε
)

≤ c8δ
2

for every n ≥ n0 and δ ∈ (0, 1) (cf. [7, Equation (39)]).
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Finally, note that, for each n and δ, we can choose a set An(δ) of at most c9δ
−1 vertices of

Tn(k) (where c9 is independent ofn and δ) such that the sets {σ ′ : dTn(σ, σ ′) ≤ δαn}, σ ∈ An(δ),
cover Tn(k). Therefore,

PTnρ
(
α−1
n sup

{σ,σ ′∈Tn(k) : dTn (σ,σ ′)≤δαn}
sup

m≤t0α2
n�

(k)
n

|Ln,km (σ )− Ln,km (σ ′)| > ε
)

≤
∑

σ∈An(δ)
2 PTnρ

(
α−1
n sup

{σ ′∈Tn(k) : dTn (σ,σ ′)≤2δαn}
sup

m≤t0α2
n�

(k)
n

|Ln,km (σ )− Ln,km (σ ′)| > ε

2

)

≤ c10δ

(cf. [7, Lemma 4.6]), from which the lemma follows.

We now show that the rescaled jump chains J̃ n,k := ψn(J
n,k) and additive functionals

Ân,k converge. Henceforth, we extend J̃ n,k and Ân,k to continuous-time processes by linear
interpolation in �1 and R+, respectively. We recall the definition of T (k) from (2.3) and also that
the process X̃T (k),λ(k) is the �1-embedding of XT (k),λ(k) (as introduced below Proposition 2.1).
The definition of Â(k) appears in (2.5).

Lemma 4.2. Under Assumption 4.1, the joint laws of the pairs(
α−1
n J̃

n,k

tα2
n�

(k)
n

, (nαn)
−1Â

n,k

tα2
n�

(k)
n

)
t≥0

under PTnρ converge to the joint law of(
X̃

T (k),λ(k)

t , Â
(k)
t

)
t≥0

under PT (k),λ(k)
ρ weakly as probability measures on the space C(R+, �1)× C(R+,R+).

Proof. Fix k ≥ 1. Consider the vectors xn := (α−1
n ψn(σ

n
1 ), . . . , α

−1
n ψn(σ

n
k )) and x :=

(ψ(σ1), . . . , ψ(σk)). Under Assumption 4.1, it is possible to check that xn → x. In fact, this
is true for any k, and so we can write

(α−1
n ψn(ŵn(2nγn(u

n
i ))))i≥1 → (ψ(ŵ(ui)))i≥1

as sequences in �1. Since (ui)i≥1 is dense in [0, 1] and ψ ◦ ŵ is continuous, if we can show
that (α−1

n ψn ◦ ŵn ◦ (2nγn))n≥1 is tight then we will obtain

α−1
n ψn ◦ ŵn ◦ (2nγn) → ψ ◦ ŵ (4.11)

in C([0, 1], �1). The necessary tightness can be proved as follows:

lim
δ→0

lim sup
n→∞

sup
s,t∈[0,1]
|s−t |≤δ

d�1(α−1
n ψn(ŵn(2nγn(s))), α

−1
n ψn(ŵn(2nγn(t))))

= lim
δ→0

lim sup
n→∞

sup
s,t∈[0,1]
|s−t |≤δ

d
α−1
n wn

(γn(s), γn(t))

= lim
δ→0

sup
s,t∈[0,1]
|s−t |≤δ

dw(s, t)

= 0,

where d
α−1
n wn

is a distance on [0, 1] defined similarly to the distance dw introduced in (2.9).
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The second equality is a result of Assumption 4.1, and the final equality holds because w is a
continuous function. Now, by (4.1) we can write

µ̃n = λ[0,1] ◦ (2nγn)−1 ◦ ŵ−1
n ◦ ψ−1

n ,

and so (4.11) implies that µ̃n(αn·) converges to µ̃ = λ[0,1] ◦ ŵ−1 ◦ψ−1 weakly as probability
measures on �1. Thus, because µ̃(k) = µ̃ ◦ π−1

k and µ̃(k)n = µ̃n ◦ π−1
k (these expressions follow

from (2.8) and (4.2), respectively), we obtain

µ̃(k)n (αn·) → µ̃(k)

weakly as probability measures on �1 for each k ≥ 1.
The vector and measure convergence of the previous paragraph allows us to apply Proposi-

tion 3.1 to deduce that the law of(
X

xn
tλxn (T xn ), A

xn,νn
tλxn (T xn )

)
t≥0

under Pxn
0 converges to the law of (

Xx
tλx (T x ), A

x,ν
tλx (T x )

)
t≥0

under Px
0 , weakly as probability measures on the space C(R+, �1) × C(R+,R+), where

νn := µ̃
(k)
n (αn·) and ν := µ̃(k). We can readily check that the distribution of the limit is equal

to the distribution of (X̃T (k),λ(k) , Â(k)) under PT (k),λ(k)
ρ . To complete the proof, we will use a

coupling argument to show how the pairs (J̃ n,k, Ân,k) and (Xxn , Axn,νn) can be related.
The defining properties of Brownian motion on a dendrite imply that, under Pxn

0 , the process
(X

xn
hn(m))m≥0, where hn(0) := 0 and

hn(m) := inf{t ≥ hn(m− 1) : d�1(X
xn
t , X

xn
hn(m−1)) = α−1

n },

has the same law as (α−1
n J̃

n,k
m )m≥0 under PTnρ . In view of this fact, for the remainder of the proof,

we will abuse notation slightly by identifying J n,k with the process (ψ−1
n (αnX

xn
hn(m)))m≥0, and

Ln,k with its local times. Furthermore, by considering the path segments of Xxn between the
hitting times (hn(m))m≥0, it is possible to check that the rescaled increments α−2

n (hn(m) −
hn(m − 1)) are independently and identically distributed as the hitting time of {±1} by a
standard Brownian motion in R started from 0, which is a random variable with mean 1 and
finite fourth moments. After applying a standard martingale estimate (see [16, Proposition 7.16]
for example), it readily follows that, for any t0, ε > 0,

lim
n→∞ Pxn

0

(
sup

m≤t0α2
n�

(k)
n

∣∣∣∣hn(m)− m

α2
n

∣∣∣∣ > ε

)
= 0 (4.12)

(cf. the proof of [7, Lemma 4.2]). Consequently, since the sequence (Pxn
0 )n≥1 is tight and

λxn(T xn) = �
(k)
n , we are able to deduce that, for t0, ε > 0,

lim
n→∞ Pxn

0

(
sup

t∈[0,t0]

∣∣∣α−1
n J̃

n,k

tα2
n�

(k)
n

−X
xn
tλxn (T xn )

∣∣∣ > ε
)

= 0. (4.13)
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For the related additive functionals, to prove that

lim
n→∞ Pxn

0

(
sup

t∈[0,t0]

∣∣∣(nαn)−1Â
n,k

tα2
n�

(k)
n

− A
xn,νn
tλxn (T xn )

∣∣∣ > ε
)

= 0, (4.14)

by applying the tightness results of Lemmas 3.5 and 4.1, it will suffice to prove that

lim
n→∞ sup

σ∈Tn(k)
Pxn

0

(
sup

t∈[0,t0]

∣∣∣α−1
n L

n,k

tα2
n�

(k)
n

(σ )− L
xn
tλxn (T xn )(α

−1
n ψn(σ ))

∣∣∣ > ε
)

= 0, (4.15)

where the definition of Ln,k is extended to continuous time by linear interpolation. To demon-
strate that this is the case requires a simple adaptation of [7, Lemma 4.7]. In particular, for
σ ∈ Tn(k), denote by (ςi)i≥1 the hitting times of σ by J n,k , and define

ηi := L
xn
hn(ςi+1)(α

−1
n ψn(σ ))− L

xn
hn(ςi )

(α−1
n ψn(σ )),

so that the (ηi)∞i=1 is a sequence of independent random variables, each distributed as

2Z

αndegn,k(σ )
,

where Z represents the local time at 0 of a standard Brownian motion in R started from 0,
evaluated at the hitting time of {±1}. By conditioning on Ln,k

t0α2
n�

(k)
n

(σ ), applying the fact that Z

is a random variable with mean 1 and finite fourth moments and recalling (4.6), it is possible
to check that

lim
n→∞ sup

σ∈Tn(k)
Pxn

0

(
sup

m≤t0α2
n�

(k)
n

∣∣∣η1 + · · · + ηdegn,k(σ )L
n,k
m (σ )/2 − α−1

n Ln,km (σ )

∣∣∣ > ε
)

= 0 (4.16)

(cf. [7, Equation (40)]). Now, if J n,km = σ then

η1 + · · · + ηdegn,k(σ )L
n,k
m (σ )/2 = L

xn
hn(m+1)(α

−1
n ψn(σ )),

otherwise the sum is equal to Lxn
hn(m)(α

−1
n ψn(σ )). From this and the fact that, conditional

on J n,km = σ , Lxn
hn(m+1)(α

−1
n ψn(σ ))− L

xn
hn(m)(α

−1
n ψn(σ )) is distributed as 2Z/αndegn,k(σ ),

it is readily deduced that (4.16) also holds when α−1
n L

n,k
m (σ ) is replaced by the continuous

local time Lxn
hn(m)(α

−1
n ψn(σ )). These observations, together with the hitting time estimate

of (4.12) and the local time tightness results of Lemmas 3.5 and 4.1, imply (4.15), which
thereby establishes (4.14). Finally, combining (4.13) and (4.14) with the convergence result of
the first part of the proof yields the lemma.

Lemma 4.3. If Assumption 4.1 holds then, for t0, ε > 0,

lim
k→∞ lim sup

n→∞
PTnρ

(
(nαn)

−1 sup
m≤t0α2

n�
(k)
n

|An,km − Ân,km | > ε
)

= 0.

Proof. The proof of this result is an adaptation of that used to obtain [7, Proposition 5.2].
In particular, for m ∈ N, |An,km − Â

n,k
m | is bounded above by

∣∣∣∣
m−1∑
l=0

(
A
n,k
l+1 − A

n,k
l − 2nµ(k)n ({J n,kl })− 2 + degn,k(J

n,k
l )

degn,k(J
n,k
l )

)∣∣∣∣ +
m−1∑
l=0

|2 − degn,k(J
n,k
l )|

degn,k(J
n,k
l )

.
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Clearly, the second term is no greater thanm, and so its supremum overm ≤ t0α
2
n�

(k)
n converges

to 0 when multiplied by (nαn)−1 (recall that αn = o(n) by assumption). We now deal with the
first term, which we will denote by �(m). Since, conditional on knowing J n,k , the expected
value of An,kl+1 − A

n,k
l is precisely

2nµ(k)n ({J n,kl })− 2 + degn,k(J
n,k
l )

degn,k(J
n,k
l )

and its expected square is bounded by

36n2(degn,k(J
n,k
l )+�(k)n )

µ
(k)
n ({J n,kl })2

degn,k(J
n,k
l )

,

where �(k)n := supσ∈Tn dT n(σ, φTn,Tn(k)(σ )) (these are elementary simple random walk esti-
mates; see [7, Lemma B.3]), we can use Kolmogorov’s maximum inequality (see Lemma 4.15
of [16]) to deduce that, for ε > 0,

PTnρ
(
(nαn)

−1 sup
m≤t0α2

n�
(k)
n

�(m) > ε

∣∣∣ J n,k)

≤ 1

n2α2
nε

2

�t0α2
n�

(k)
n �−1∑

l=0

36n2(degn,k(J
n,k
l )+�(k)n )

µ
(k)
n ({J n,kl })2

degn,k(J
n,k
l )

≤ 18

nα2
nε

2 Â
n,k

�t0α2
n�

(k)
n �

(
max
σ∈Tn(k)

degn,k(σ )+�(k)n

)
.

Hence, if we can show that

lim
k→∞ lim sup

n→∞
α−1
n

(
max
σ∈Tn(k)

degn,k(σ )+�(k)n

)
= 0, (4.17)

and also that
lim
t→∞ lim sup

k→∞
lim sup
n→∞

PTnρ
(
(nαn)

−1Â
n,k

t0α2
n�

(k)
n

> t
)

= 0, (4.18)

then the lemma will follow. That

lim
k→∞ lim sup

n→∞
α−1
n �(k)n = 0 (4.19)

is a straightforward consequence of Assumption 4.1 (cf. [7, Lemma 2.7]). Moreover, we clearly
have maxσ∈Tn(k) degn,k(x) ≤ k+ 1, and so (4.17) holds. The distributional convergence result
of Lemma 4.2 and the tail bound of (2.7) together imply (4.18), which completes the proof.

We can now prove the convergence of simple random walks. In the statement of the result
and the proof, discrete-time processes are extended to continuous time by linear interpolation
in the appropriate spaces.

Proposition 4.1. Under Assumption 4.1, the laws of(
α−1
n X̃ntnαn

)
t≥0

under PTnρ converge to P̃
T ,µ
ρ weakly as probability measures on the space C(R+, �1).
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Proof. By Lemma 2.5, Â(k) is PT (k),λ(k)
ρ -a.s. continuous and strictly increasing. Conse-

quently, Lemma 4.2 implies that the joint laws of the pairs(
α−1
n J̃

n,k

tα2
n�

(k)
n

, (α2
n�

(k)
n )

−1τ̂
n,k
tnαn

)
t≥0

under PTnρ converge to the law of

(
X̃

T (k),λ(k)

t , τ̂
(k)
t

)
t≥0

under PT (k),λ(k)
ρ weakly as probability measures on the spaceC(R+, �1)×C(R+,R+). Hence,

we see from the continuous mapping theorem that the laws under PTnρ of (α−1
n ψn(X̂

n,k
tnαn

))t≥0

converge to P̃
T (k),µ(k)

ρ weakly as probability measures on the space C(R+, �1) for each k ≥ 1,

where we apply the representations of X̂n,k and XT (k),µ(k) from (4.4) and Lemma 2.4, respec-

tively. Moreover, it is immediate from Proposition 2.1 and the continuity of ψ that P̃
T (k),µ(k)

ρ

converges to P̃
T ,µ
ρ as k → ∞. The proposition will follow from these convergence results by

applying [3, Theorem 3.2] for example, if we can demonstrate the following tightness condition:
for every t0, ε > 0,

lim
k→∞ lim sup

n→∞
PTnρ

(
sup

m≤t0nαn
α−1
n dTn(X

n
m, X̂

n,k
m ) > ε

)
= 0.

To prove this, first observe that, by construction, dTn(X
n
m,X

n,k
m ) ≤ �

(k)
n for everym ≥ 0, where

�
(k)
n was defined in the proof of Lemma 4.3. Thus, (4.19) implies that it will actually suffice

to prove that

lim
k→∞ lim sup

n→∞
PTnρ

(
sup

m≤t0nαn
α−1
n dTn(X

n,k
m , X̂n,km ) > ε

)
= 0.

Applying the representations of Xn,k and X̂n,k in terms of the jump chain from (4.3) and (4.4),
respectively, for any δ > 0, the probability on the left-hand side of this expression is bounded
above by p1(n, k)+ p2(n, k), where

p1(n, k) := PTnρ
(

sup
s,t∈[0,t0+δ]|s−t |≤δ

α−1
n d�1(J̃

n,k

τ̂ n,k(snαn)
, J̃

n,k

τ̂ n,k(tnαn)
) > ε

)
,

p2(n, k) := PTnρ (τ
n,k(tnαn) �∈ [τ̂ n,k((t − δ)nαn ∨ 0), τ̂ n,k((t + δ)nαn)] for some t ∈ [0, t0]).

It is elementary to check from Lemma 4.3 that

lim
k→∞ lim sup

n→∞
p2(n, k) = 0

for any δ > 0. Furthermore, the convergence results above yield

lim
k→∞ lim sup

n→∞
p1(n, k) = PT ,µ

ρ

(
sup

s,t∈[0,t0+δ]|s−t |≤δ
dT (X

T ,µ
s , X

T ,µ
t ) > ε

)
,

which can be made arbitrarily small by letting δ → 0, becauseXT ,µ is a diffusion under PT ,µ
ρ .

This completes the proof.
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We can now complete the proof of our main results.

Proof of Theorem 1.1. Let w ∈ W satisfy (T , µ) ∈ T
∗, and let U = (Ui)i≥1 be an

independent sequence of U [0, 1] random variables. Since the Lebesgue measure λ[0,1] on
[0, 1] has full support, and the measure µ is nonatomic, has full support, and is supported on
the leaves of T , it is clear that (Ui)i≥1 is dense in [0, 1], and the vertices (σi)i≥1 = (ŵ(Ui))i≥1
are a dense collection of leaves of T , distinct and not equal to ρ for any i, for almost every
realisation of U . In particular, there exists a u ∈ [0, 1]N such that (w, u) ∈ �. Set un = u for
each n, so that, under the assumptions of the theorem, we have

(α−1
n wn, u

n) → (w, u)

in C([0, 1],R+) × C(R+,R+) for some (w, u) ∈ �, which is Assumption 4.1. Applying
Proposition 4.1, this implies that

P̃
Tn
ρ ({f ∈ C([0, 1], �1) : (α−1

n f (tnαn))t∈[0,1] ∈ ·}) → P̃
T ,µ
ρ

weakly as probability measures on C([0, 1], �1). The convergence µ̃n(αn·) → µ̃ in M(�1)

was established in the proof of Lemma 4.2. That α−1
n T̃n(k) converges to T̃ (k) in K(�1) is a

straightforward consequence of the convergence xn → x in (�1)k , where the vertices xn and
x are defined as in the proof of Lemma 4.2. To extend this to the result that α−1

n T̃n → T̃ , we
apply the tightness result of (4.19) and the fact that supσ∈T dT (σ, φT ,T (k)(σ )) → 0, which
was noted below (2.4).

Proof of Theorem 1.2. We start our proof, which is an adaptation of [7, Section 8], by outlin-
ing the construction of the measure Pr. First, by following the proof of Lemma 4.2, it is possible
to check that, for each k ≥ 1, the map (w, u) �→ (x, ν), where x := (ψ(σ1), . . . , ψ(σk))

and ν := µ̃(k), is continuous on �. By Lemma 2.4, Lemma 2.5, and Proposition 3.1, this

implies that (w, u) �→ (T̃ (k), µ̃(k), P̃
T (k),µ(k)

ρ ) is also continuous on �. Consequently, we find

from Proposition 2.1 that (w, u) �→ (T̃ , µ̃, P̃
T ,µ
ρ ) is a measurable map on �. Given this, and

noting that, under the assumptions of the theorem, (W,U) ∈ �, P-a.s., checking the existence
of a unique probability measure satisfying (1.2) is straightforward. The construction of Prn
is similar, but easier. Finally, to check that Prn ◦�−1

n → Pr, we consider a Skorokhod-
type coupling of random variables. In particular, since the relevant spaces are separable,
if (α−1

n Wn)n≥1 converges in distribution to W then there exists a probability space upon
which random variables (W ∗

n , U
∗
n )n≥1 and (W ∗, U∗) are defined in such a way that (W ∗

n , U
∗
n )

has the distribution of (Wn,U) for each n, (W ∗, U∗) has the distribution of (W,U), and
(α−1
n W ∗

n , U
∗
n ) → (W ∗, U∗) almost surely. Defining all the related objects on this probability

space, then exactly as in the previous proof we are able to deduce from Proposition 4.1 that

�n(T̃n, µ̃n, P̃
Tn
ρ ) → (T̃ , µ̃, P̃

T ,µ
ρ ) almost surely, and the result easily follows.

5. Application to α-stable trees

In this section we describe the application of our results to Galton–Watson trees with a
possibly infinite offspring distribution variance. Suppose that ξ is a nonnegative integer-valued
random variable that is aperiodic, has mean 1, and is in the domain of attraction of a stable law
with index α ∈ (1, 2), by which we mean that there exists a sequence an ↑ ∞ such that

ξ [n] − n

an

d−→ �,
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where ξ [n] is the sum of n independent copies of ξ and the limit random variable satisfies
E(e−λ�) = e−λα . If (Tn)n≥1 is a family of random trees such that Tn is a Galton–Watson tree
with offspring distribution ξ , conditioned on the total progeny being equal to n, then it is known
(see [12, Theorem 3.1]) that the associated rescaled search-depth processes (n−1anWn)n≥1
converge in distribution to a random excursion W with law N

(1)
α , say. The corresponding

random real tree T is the α-stable tree conditioned to have total mass equal to 1, and we denote
its law by�(1)α (see also [19, Section 4]). Consequently, to allow us to apply Theorem 1.2 to the
sequence (Tn)n≥1 with αn = na−1

n , it remains to check that the �(1)α -almost everywhere (a.e.)
realisation of µ is nonatomic, supported on the leaves of T , and satisfies (1.1) for some κ > 0.
In fact, rather than investigating µ under the conditioned measure �(1)α , by rescaling, it will
suffice to check that the required properties hold under the unconditioned ‘excursion’ measure
�α of the α-stable tree (see [19, Definition 4.2]), as is done in the following proposition. For
a rooted real tree, we use the notation χ(T ) := sup{dT (ρ, σ ) : σ ∈ T } to represent its height.

Proposition 5.1. Let α ∈ (1, 2). For �α-a.e. realisation of T , µ is nonatomic, supported on
the leaves of T , and satisfies

lim inf
r→0

infσ∈T µ(B(σ, r))

rα/(α−1)(ln r−1)−α/(α−1)
> 0. (5.1)

In particular, (5.1) implies (1.1) for any κ > α/(α − 1).

Proof. That µ is nonatomic and supported on the leaves of T for �α-a.e. realisation of T
follows from results of [13]. Thus, it remains to check (5.1).

Fix a compact rooted real tree T and r > 0. Following [13], denote by (T (i),o)i∈I the
connected components of the open set {σ ∈ T : dT (ρ, σ ) > r}. Define T (i) := T (i),o ∪ {σi},
where σi is the common ancestor in level r of every σ ∈ T (i),o, so that T (i) is a compact rooted
real tree, and we set its root to be σi . The trees (T (i))i∈I are the subtrees of T originating from
level r . If χ(T (i)) ≥ δ then we say that T (i) hits level r + δ. The number of subtrees of T
originating from level r that hit level r + δ will be written as Z(r, δ).

For integers n, k ≥ 0, define (T n,k,(i))
Z(k2−n,2−n)
i=1 to be the collection of subtrees of T

originating at level k2−n that hit level (k + 1)2−n. If we assume that χ(T ) ≥ 2−n then it is
elementary to check that, for fixed r > 0,

inf
σ∈B(ρ,r) µ(B(σ, 3 · 2−n)) ≥ inf

0≤k≤2nr
1≤i≤Z(k2−n,2−n)

µ(T n,k,(i)(2−n)),

where T n,k,(i)(2−n) is the ball in T n,k,(i) of radius 2−n centred at the root of T n,k,(i), which
implies that

�α

(
inf

σ∈B(ρ,r) µ(B(σ, 3 · 2−n)) ≤ x, χ(T ) ≥ 2−n)
≤

∑
0≤k≤2nr

�α

(
inf

1≤i≤Z(k2−n,2−n)
µ(T n,k,(i)(2−n)) ≤ x, χ(T ) ≥ (k + 1)2−n). (5.2)

Note that if χ(T ) < (k + 1)2−n for some k ≥ 0 then Z(k2−n, 2−n) = 0 and the infimum
appearing in the kth summand is infinite. Hence, the summands are not decreased by including
the statement χ(T ) ≥ (k + 1)2−n, as we do.
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The branching property of Lévy trees (see [13, Theorem 4.2]) implies that, under the
measure �α(· | χ(T ) ≥ k2−n), conditional on Z(k2−n, 2−n), the trees in the collection

(T n,k,(i))
Z(k2−n,2−n)
i=1 are distributed as an independent sample chosen from the law

�α(· | χ(T ) ≥ 2−n).

Hence, writing �̃α := �α(· | χ(T ) ≥ k2−n) and Z := Z(k2−n, 2−n), when k ≥ 1, the kth
summand of (5.2) satisfies

�α

(
inf

1≤i≤Z µ(T
n,k,(i)(2−n)) ≤ x, χ(T ) ≥ (k + 1)2−n)

= �̃α

(
�̃α

(
inf

1≤i≤Z µ(T
n,k,(i)(2−n)) ≤ x, χ(T ) ≥ (k + 1)2−n

∣∣∣ Z))
×�α(χ(T ) ≥ k2−n)

= �̃α

(
1{Z �=0}�̃α

(
inf

1≤i≤Z µ(T
n,k,(i)(2−n)) ≤ x

∣∣∣ Z))
�α(χ(T ) ≥ k2−n)

≤ �̃α(Z�α(µ(B(ρ, 2−n)) ≤ x | χ(T ) ≥ 2−n))�α(χ(T ) ≥ k2−n)
= �α(Z)�α(µ(B(ρ, 2−n)) ≤ x | χ(T ) ≥ 2−n).

Moreover, we have �α(Z) = �α(χ(T ) ≥ 2−n) (cf. proof of [13, Lemma 5.4]), and so
summing over k yields

�α

(
inf

σ∈B(ρ,r) µ(B(σ, 3 · 2−n)) ≤ x, χ(T ) ≥ 2−n)
≤ (2nr + 1)�α(µ(B(ρ, 2−n)) ≤ x, χ(T ) ≥ 2−n)

≤ c1(2
nr + 1)2n/(α−1)e−c22−nx−(α−1)/α

,

where c1 and c2 are constants not depending on n, r , or x, and the second inequality is a result
of Equation (5.8) of [14]. Taking c3 suitably small, this implies that, for any R > 0,

∞∑
n=0

�α

(
inf

σ∈B(ρ,r) µ(B(σ, 3 · 2−n)) ≤ c3(n2n)−α/(α−1), χ(T ) ≥ R
)
< ∞.

The result follows by applying the Borel–Cantelli lemma, and then letting r → ∞ andR → 0.

To complete this section, we note that the above proposition allows the heat kernel estimate
of Lemma 2.1(b) to be improved in the following way in the α-stable case. By comparison with
results appearing in [10] for random walks on infinite variance Galton–Watson trees conditioned
to survive, we expect that the polynomial term in the following lemma is the best possible. For
an analogous estimate in the Brownian case, see [8].

Corollary 5.1. Let α ∈ (1, 2). For�α-a.e. realisation of T , the Brownian motionXT ,µ admits
a transition density (pt (σ, σ ′))σ,σ ′∈T , t>0 that satisfies

lim sup
t→0

supσ,σ ′∈T pt (σ, σ
′)

t−α/(2α−1)(ln t−1)α/(2α−1)
< ∞.
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