
Canad. J. Math. Vol. 65 (5), 2013 pp. 989–1004
http://dx.doi.org/10.4153/CJM-2012-049-6
c©Canadian Mathematical Society 2012

Automatic Continuity of Homomorphisms
in Non-associative Banach Algebras
C-H. Chu and M. V. Velasco

Abstract. We introduce the concept of a rare element in a non-associative normed algebra and show
that the existence of such an element is the only obstruction to continuity of a surjective homomor-
phism from a non-associative Banach algebra to a unital normed algebra with simple completion.
Unital associative algebras do not admit any rare elements, and hence automatic continuity holds.

1 Introduction

All vector spaces in this paper are over the complex field, and all algebras are not
assumed to be associative. To highlight non-associativity and by a slight abuse of lan-
guage, the term non-associative (Banach) algebra is used to mean a (Banach) algebra
that may or may not be associative.

In what follows, an algebra A is a complex vector space equipped with a bilinear
product, which is usually written by juxtaposition. It is called associative if the prod-
uct is associative. An algebra norm on A is a norm ‖ · ‖ satisfying ‖ab‖ ≤ ‖a‖‖b‖ for
a, b ∈ A. A normed algebra A is an algebra equipped with an algebra norm, and if
the norm is complete, we call A a Banach algebra.

Important natural examples of non-associative Banach algebras include the evolu-
tion algebras in genetics [17] and Banach Lie algebras in geometry [1, 18], where the
complete holomorphic vector fields on a complex Banach manifold form a Banach
Lie algebra.

In the study of associative Banach algebras, the theory of automatic continuity of
homomorphisms and uniqueness of complete algebra norm is fundamental and has
been well-established since the seminal works of Rickart [12] and Johnson [5]. We
refer to [2, 11] for details.

For non-associative algebras, the question of automatic continuity has been in-
vestigated by several authors; see, for example, [8, 9, 13–15, 19, 20], where the back-
ground and connections to spectral theory have been explained succinctly. In this
paper, we examine the issue of spectral theory in the context of automatic conti-
nuity for non-associative algebras. Indeed, we introduce in Definition 3.1 the con-
cept of a rare linear operator on a normed vector space in terms of a special spectral
property of the operator. A rare element in a normed algebra is an element x for
which the left multiplication Lx and the right multiplication Rx are rare operators.
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We show that the existence of a rare element is the only obstruction to automatic
continuity. More precisely, we show in Theorem 4.2 that a surjective homomorphism
θ : A → B from a non-associative Banach algebra A to a unital normed algebra B

with a simple completion is continuous if and only if B does not have any rare el-
ements. Unital associative algebras do not have rare elements and hence automatic
continuity follows. This reveals a distinguishing feature between associativity and
non-associativity, namely, the existence of rare elements, and also suggests that the
study of rare operators should lead to interesting and fruitful consequences. One
consequence is the dichotomy in Theorem 4.5 that, given a unital normed algebra
B with simple completion, either B admits a dominating complete algebra norm,
in which case all homomorphisms from a non-associative Banach algebra A onto B

are continuous, or B does not admit a dominating complete algebra norm, in which
case all homomorphisms from A onto B are discontinuous. If B is unital, power
associative, and has a simple completion, then it is shown in Corollary 4.12 that any
complete algebra norm on B is dominating. Another notable result is that, given a
homomorphism θ from a non-associative Banach algebra A onto a simple normed
algebra B, either the kernel ker θ is closed or the multiplication operators on B form
a nowhere dense set in the space L(B) of bounded operators on B. It follows that
every surjective homomorphism θ from A onto a power-associative normed algebra
B with simple completion is continuous whenever the multiplication algebra M(B)
is of second category in L(B).

2 Spectra for Incomplete Normed Spaces

We begin with some notations and basic properties of various spectra of a linear
operator on a normed space that need not be complete. Let X be a normed vector
space with dual X∗. For each x ∈ X and r > 0, we denote by B(x, r) the open ball
centred at x of radius r. The norm closure of a set E ⊂ X is denoted by E. Let L(X)
denote the normed algebra of all bounded linear operators from X to itself. For each
operator T ∈ L(X), we denote the spectrum of T by

σ(T) =
{
λ ∈ C : T − λI is not invertible in L(X)

}
.

We have σ(T) = σs(T)∪σp(T)∪σa(T) = σs(T)∪σa(T), where σs(T) is the surjective
spectrum of T defined by

σs(T) = {λ ∈ C : T − λ is not surjective}.

The point spectrum

σp(T) = {λ ∈ C : T − λ is not injective}

is the set of eigenvalues of T, contained in the approximate spectrum of T:

σa(T) = {λ ∈ C : T − λ is not bounded below}.

In the sequel, we will write σX(T) for σ(T) if it is necessary to highlight the un-
derlying space X. The same convention applies to all other spectra.
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If X is a Banach space, then the open mapping theorem implies that σ(T) =
σs(T) ∪ σp(T), which is a nonempty compact set in C. We also have (cf. [7])

(2.1) σs(T) = σa(T∗) and σa(T) = σs(T∗).

However, if X is incomplete, the spectrum σX(T) need not be compact, as shown in
Example 3.8.

Given a normed space X and T ∈ L(X), we will always denote by X̂ the completion
of X and by T̂ ∈ L(X̂) the unique continuous extension of T to X̂. We note that the
completion X̂ of an incomplete normed space X can be reflexive. For instance, Lp(Rn)
is the completion of the space Cc(Rn) of continuous functions with compact support,
equipped with the Lp-norm, for 1 < p <∞.

If X is an incomplete normed space, then we have σX̂(T̂) ⊂ σX(T) and σX
p (T) ⊂

σX̂
p (T̂).

Lemma 2.1 Let X be a normed space and T ∈ L(X). Then we have σX
a (T) = σX̂

a (T̂).

Proof If F ∈ L(X) and the completion F̂ is bounded below, then evidently F is also
bounded below. Conversely, let F ∈ L(X) satisfy ‖F(x)‖ ≥ k‖x‖ for all x ∈ X. If
x̂ = limn xn, then

‖F̂(x̂)‖ = lim
n
‖F(xn)‖ ≥ lim

n
k‖xn‖ = k‖x̂‖.

Hence F̂ is bounded below.

Lemma 2.2 Let X be a normed space and T ∈ L(X). Then we have

σX̂
s (T̂)\σX̂

a (T̂) ⊂ σX
s (T).

Proof This follows from σX̂(T̂) ⊂ σX(T) = σX
s (T) ∪ σX

a (T) and Lemma 2.1.

Example 2.3 Let B(H) be the von Neumann algebra of bounded linear operators
on an infinite dimensional Hilbert space H. Pick a projection p ∈ B(H) that is
equivalent, but not equal, to the identity 1 ∈ B(H). We have 1 = u∗u and p = uu∗

for some partial isometry u ∈ B(H). Let T : B(H)→ B(H) be the linear map T(x) =
ux. Then 1 /∈ T(B(H)), and T is a non-surjective isometry. Hence 0 ∈ σs(T)\σa(T).

For completeness, we include a short proof of the following fact.

Lemma 2.4 Let X be a Banach space and T ∈ L(X). Then the surjective spectrum
σs(T) is nonempty and compact.

Proof First, σs(T) is nonempty because it contains the boundary of the spectrum
σ(T) (cf. [7]).

For compactness, it suffices to show that σs(T) is closed in C. Indeed, given λ ∈
C\σs(T), the operator T − λ : X → X is surjective. Since the surjective operators
in L(X) form an open set [3], there exists ε > 0 such that each S ∈ L(X) satisfying
‖S− (T − λ)‖ < ε is surjective. It follows that each µ ∈ C satisfying |µ− λ| < ε is
outside the surjective spectrum σs(T).

In contrast to Lemma 2.4, we shall see that the surjective spectrum σX
s (T) could

be a large open set if X is not complete.
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3 Rare Operators

We introduce rare linear operators in this section and discuss some of their proper-
ties, which will be used to derive several results on automatic continuity. The subject
of rare operators itself may also be of independent interest.

Definition 3.1 Let X be a normed vector space with completion X̂. A linear oper-
ator T ∈ L(X) is called rare if

σX
s (T) ∩ σX̂

s (T̂) = ∅.

It is readily seen that if T is a rare operator, then so are λT and λ1± T for λ 6= 0,
where 1 denotes henceforth the identity operator on a vector space. Evidently, if X is
complete, then there is no rare operator on X by Lemma 2.4.

Given a normed space X and T ∈ L(X), we recall that the compression spectrum of
T is defined by

σc(T) := {λ ∈ C : (T − λ)(X) is not dense in X}.

If X is a Banach space, then σX(T) = σX
c (T) ∪ σX

a (T). For any normed space X, we

have σX̂
c (T̂) = σX

c (T).

Lemma 3.2 Let X be a normed space and let T ∈ L(X) be a rare operator. Then we

have σX̂
c (T̂) = ∅ and σX(T) = σX

s (T) ∪ σX̂(T̂).

Proof Indeed, σX̂
c (T̂) = σX

c (T) ⊂ σX
s (T) ∩ σX̂

s (T̂) = ∅, and the second assertion
follows from Lemma 2.1.

We note that an operator T ∈ L(X) has dense range if and only if its dual T∗ ∈
L(X∗) is injective. It follows that σX∗

p (T∗) = σX
c (T). Therefore, σX∗

p (T∗) = ∅ if T is
rare. While Lemma 3.2 shows how the spectra of T and T̂ differ for a rare operator
T, the spectra of the dual operators T∗ and T̂∗ are identical: σX̂(T̂) = σX̂∗(T̂∗) =
σX∗(T∗), since X∗ is isometric to X̂∗.

Given a compact operator T on an infinite dimensional normed space X, it has
been shown in [16] that T cannot be surjective, that is, 0 ∈ σX

s (T). Since the dual
T∗ is also a compact operator on the Banach space X∗, we have σX∗

p (T∗) 6= ∅ or
σX∗(T∗) = {0}. In the latter case, we have σX̂(T̂) = σX∗(T∗) = {0} and hence
0 ∈ σX

s (T) ∩ σX̂
s (T̂). Therefore compact operators are not rare. In fact, neither are

the weakly compact operators, which will be shown later.
We recall that a rare set or a set of first category in a metric space is a countable

union of nowhere dense sets. We will show that the rare operators in L(X) form
a rare set, which explains the terminology for a rare operator. We first give some
criteria for rare operators and an appropriate converse for Lemma 3.2.

Proposition 3.3 Let X be a normed space and let T ∈ L(X). The following conditions
are equivalent:

(i) T is a rare operator;
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(ii) σX
c (T) = ∅ and σX

s (T) ∩ σX̂
s (T̂) ∩ σX

a (T) = ∅;

(iii) σX(T)\σX
s (T) = σX̂

s (T̂) ∪ (σX
a (T)\σX

s (T)).

Proof (i)⇒ (ii). This is immediate from Lemma 3.2.
(ii)⇒ (iii). Since σX̂(T̂) = σX̂

c (T̂)∪σX̂
a (T̂), condition (ii) implies σX̂

s (T̂) ⊂ σX̂
a (T̂)

and σX̂
s (T̂) ⊂ σX(T)\σX

s (T), which gives (iii) readily.

Finally, it is evident that (iii) implies σX
s (T) ∩ σX̂

s (T̂) = ∅, which completes the
proof.

If T is a rare operator and σs(T) * σa(T), then Lemma 3.2 shows that σ(T) 6=
σ(T∗). However, for a weakly compact operator T on a normed space X, we always
have σ(T) = σ(T∗). Indeed, by [10, Corollary 3.3], we have σs(T)∪σp(T) = σ(T∗).
It follows that σX̂(T̂) = σs(T)∪ σp(T) and σ(T) = σs(T)∪ σp(T) by Lemma 3.2. In
fact, T is not a rare operator as shown below.

Proposition 3.4 A weakly compact operator T on a normed space X is not rare.

Proof We may assume that X is incomplete. Let T ∈ L(X) be weakly compact. We
first observe, by (2.1), that

σX̂
s (T̂) = σX∗

a (T∗) = σX∗∗

s (T∗∗).

By [10, Proposition 2.5], we have

σX
s (T) ∪ {0} = σX∗∗

s (T∗∗) ∪ {0} = σX̂
s (T̂) ∪ {0}.

If 0 ∈ σX
s (T), then σX

s (T) ∩ σX̂
s (T̂) 6= ∅ as the surjective spectrum σX̂

s (T̂) is never
empty. If 0 /∈ σX

s (T), then T is surjective, and by [10, Theorem 4.3], σX(T) con-
tains a disc of eigenvalues, centred at 0. Since σX̂

s (T̂) contains the boundary of
σX̂(T̂) = σX(T), there must be a nonzero element in σX̂

s (T̂), and we also have
σX

s (T) ∩ σX̂
s (T̂) 6= ∅.

It is well known that finite dimensional subspaces are complemented in any
normed space X. Although a finite rank projection on a dual space X∗ need not
be weak* continuous, we have nevertheless the following fact.

Lemma 3.5 Let X be a normed space and let E be a one dimensional subspace of X∗.
Then there is a weak* continuous contractive projection P : X∗ → E.

Proof Let E = C g for some g ∈ X∗. Pick a ∈ X such that g(a) = 1. Then the
contractive projection P : X∗ → E defined by

P( f ) = f (a) g ( f ∈ X∗)

is weak* continuous.
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Given a normed space X, the set

U(X) = {F ∈ L(X∗) : F has an isolated eigenvalue with
finite dimensional eigenspace}

is an open set in L(X∗) (cf. [6]), and it has been shown in [4, Theorem 1.5] that U(X)
is actually dense in L(X∗).

Theorem 3.6 For any normed space X, the set

S = {T ∈ L(X) : T is rare}

of rare operators is nowhere dense in L(X).

Proof We need to show that the normed closure S of S has empty interior. Suppose
otherwise. Then there is an operator T ∈ S and ε > 0 such that the ε-open ball
B(T, ε) centred at T is contained in S.

Let L = {F ∈ L(X∗) : σp(F) 6= ∅}. Then L contains the open dense set U(X)
defined above. By [4], there exists a finite rank operator S ∈ L(X∗) with ‖S‖ < ε such
that T∗ + S ∈ U(X), where S is constructed as follows. As in [4], there is a boundary
point α of the spectrum σ(T∗) and a vector g ∈ X∗ such that ‖(T∗ − α)(g)‖ < ε/2.
There is a weak* continuous contractive projection P : X∗ → Cg by Lemma 3.5. Let
S = U P, where the operator U : Cg → Cv satisfies U (g) = v and v = µg − T∗g for
some µ in the resolvent set ρ(T∗). Then S is as required.

Since S : X∗ → X∗ is weak* continuous, it has a predual S1 : X → X with ‖S1‖ =
‖S‖ < ε. Hence, T + S1 ∈ B(T, ε) ⊂ S implies T∗ + S = (T + S1)∗ ∈ L(X∗)\U(X),
since F ∈ S implies F∗ ∈ L(X∗)\L by the remark after Lemma 3.2. This contradicts
T∗ + S ∈ U(X), which completes the proof.

Although the set of rare operators in L(X) is nowhere dense, it is nevertheless
nonempty, as shown below.

Example 3.7 1 Let X = C[x] be the space of polynomial functions p(x) on [0, 1],
equipped with the norm

|p| =
∑
k≥0

‖p(k)‖ (p ∈ X)

where p(0) = p and ‖p(k)‖ denotes the supremum norm of the k-th derivative of p.
Let T : X → X be the differential operator T = d

dx . Then T is rare since σs(T) = ∅.

We now give an example of a rare operator with nonempty surjective spectrum.

Example 3.8 2 Let 1 ≤ p <∞ and let X = cc(Z) be the space of complex sequences
x = (xn)n∈Z, with finite support, equipped with the `p-norm ‖x‖p

p =
∑

n |xn|p. The

completion of X is the Banach space X̂ = `p(Z).

1We thank M. Mbekhta for this example.
2This example originates from a discussion with L. L. Stacho, for which we are thankful.
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Let {en : n ∈ Z} be the canonical basis in `p(Z), where

en(m) = δmn (m ∈ Z).

Let (wn)n∈Z be a weight sequence given by wn = 1
2|n|
. Let T : X → X be the weighted

shift
Ten = wnen+1 (n ∈ Z).

Although T is invertible, its inverse is unbounded. Hence 0 ∈ σX
a (T)\σX

s (T). Since

T̂N (xn) = T̂N

(∑
n

xnen

)
=
∑

n

xn(T̂N en) =
∑

n

xnwnwn+1 · · ·wn+N−1en+N ,

we have

‖T̂N (xn)‖p
p =

∑
n

|xnwnwn+1 · · ·wn+N−1|p ≤ (w−1w0w1 · · ·wN−2)p
∑

n

|xn|p,

=
( 1

2

1

2

1

22
· · · 1

2N−2

) p∑
n

|xn|p <
( 1

2(N−1)(N−2)/2

) p∑
n

|xn|p

and hence

‖T̂N‖1/N
p <

1

2(N−1)(N−2)/2N
−→ 0

as N →∞. Therefore we have σX̂(T̂) = {0}.
On the other hand, (T − λI)X 6= X, for every λ 6= 0, because the support of

(T − λI)x contains at least two points, for any sequence x ∈ X\{0}, and hence the
equations (T − λI)x = en (n ∈ Z) cannot be solved. Indeed, if xn 6= 0, then the
sequence (T − λI)x is nonzero at n and n + 1. It follows that

σX(T) = C, σX
s (T) = C \ {0}, and σX

s (T) ∩ σX̂(T̂) = ∅,

and T is a rare operator.

Given a normed algebra A and an element a ∈ A, the question of rareness of a left
multiplication operator La : x ∈ A 7→ ax ∈ A or right multiplication Ra : x ∈ A 7→
xa ∈ A is closely related to our problem of automatic continuity of homomorphisms
in the setting of non-associative normed algebras.

Let M(A) be the multiplication algebra M(A) of A, that is, M(A) is the subalgebra
of L(A) generated by the left and right multiplication operators. We prove below that
the left and right multiplication operators on a unital associative algebra A are not
rare.

Proposition 3.9 LetA be an associative normed algebra with identity 1. Then for each
a ∈ A, the left multiplication La and the right multiplication Ra are not rare operators
on A.

If, moreover, A is commutative, then all operators T in M(A) are not rare.
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Proof Let T = La or T = Ra. By associativity of A, it is readily seen that T is
surjective if and only if 1 ∈ T(A). Therefore, if Â is the completion of A, then T̂ is
not surjective if and only if T̂(Â)∩ inv(Â) = ∅ where inv(Â) denotes the open set of
invertible elements in Â. In particular, T̂(Â) is not dense in Â if T̂ is not surjective. It
follows that σÂ

c (T̂) = σÂ
s (T̂) 6= ∅ and hence T is not rare by Lemma 3.2.

If A is commutative, then the above arguments apply to all multiplication opera-
tors T ∈ M(A).

Example 3.10 Let T be the operator in Example 3.8. Although T itself is a rare
operator on X, the left multiplication LT : L(X)→ L(X) is not a rare operator on the
associative algebra L(X).

In contrast to the associative case, multiplication operators can be rare. We pro-
vide in the following example a device to construct multiplication operators on non-
associative algebras with prescribed properties.

Example 3.11 Let X be a normed space and T ∈ L(X) with ‖T‖ = 1. Pick x0 ∈ X
and f ∈ X∗ such that f (x0) = 1 = ‖ f ‖. Define a non-associative product ◦ on X by

x ◦ y = f (x)T(y) (x, y ∈ X).

Then on the normed algebra (X, ◦), the left multiplication Lx0 : X → X is just the
operator T. Hence Lx0 is rare if T is rare. Also, Lx0 is compact if T is compact.

By a character of a normed algebra A, we mean a nonzero homomorphism
ψ : A→ C.

Example 3.12 If a normed algebra A admits a character, then the left and right
multiplication operators on A are not rare. Indeed, let ψ be a character of A and let
a ∈ A. Then we have

(L∗a )(ψ)(x) = ψ(ax) = ψ(a)ψ(x) (x ∈ A)

and hence ψ(a) ∈ σp(L∗a ), which is nonempty. Therefore La cannot be rare.

Definition 3.13 Let A be a normed algebra. An element a ∈ A is called rare if the
left and right multiplication operators La and Ra are rare operators on A. We denote
by R(A) the set of rare elements in A and call it the rarity of A.

Let A be a normed algebra. We recall that the set

U(A) = {F ∈ L(A∗) : F has an isolated eigenvalue with
finite dimensional eigenspace}

is open and dense in L(A∗).

Lemma 3.14 Let A be a normed algebra. If there exists a ∈ A such that L∗a ∈ U(A)
or R∗a ∈ U(A), then the rarity R(A) is not dense in A.
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Proof We need only consider the case L∗a ∈ U(A), the other case can be proved
analogously. Since σp(L∗a ) 6= ∅, we have a /∈ R(A). Since U(A) is open, we have
B(L∗a , r) ⊂ U(A) for some r > 0. Hence for each b ∈ B(a, r), we have L∗b ∈ B(L∗a , r)
and b /∈ R(A). Therefore R(A) is not dense in A.

By Example 3.11, a multiplication operator on a normed algebra can be compact.

Proposition 3.15 Let A be a normed algebra. If there exists a ∈ A such that La or Ra

is of finite rank, or a compact operator with nonzero spectrum, then R(A) is not dense
in A.

Proof Let T = La or Ra. Then T∗ ∈ U(A) if it is of finite rank. Let T be compact
with nonzero spectrum. As noted before, we have σ(T) = σ(T∗), which, by assump-
tion, contains some λ 6= 0. Hence the compact operator T∗ has a nonzero eigenvalue
and therefore T∗ ∈ U(A). By Lemma 3.14, R(A) is not dense in A.

We have seen that the rarity R(A) is empty for a unital associative algebra A, but it
will be seen in Example 4.11 that a non-associative unital normed algebra can contain
many rare elements. In fact, obstruction to automatic continuity in non-associative
algebras is the existence of rare elements, which will be shown in the next section.

4 Continuity of Homomorphisms

We shall now apply the notion of a rare element to the study of automatic continuity
of homomorphisms in non-associative algebras. We begin with a lemma and re-
iterate that a normed algebra need not be associative.

Lemma 4.1 Let θ : A → B be a continuous homomorphism from a non-associative
Banach algebra A onto a normed algebra B. Then R(B) = ∅.

Proof Since θ is continuous, its kernel ker θ is closed in A and the quotient A/ ker θ
is a (non-associative) Banach algebra. The induced map

τ : A/ ker θ → B

given by
τ (x + ker θ) = θ(x) (x ∈ A)

is a continuous bijection.
We show that R(B) = ∅. Let x ∈ A. The left multiplication Lθ(x) on B is related

to the left multiplication Lx+ker θ on the quotient A/ ker θ by

Lθ(x) − λ1 = τ−1(Lx+ker θ − λ1)τ (λ ∈ C),

where 1 denotes the identity operator. Hence the two left multiplication operators
have the same surjective spectra,

σB
s (Lθ(x)) = σA/ ker θ

s (Lx+ker θ),
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which is nonempty since A/ ker θ is complete. The same can be said about the right
multiplication operators:

σB
s (Rθ(x)) = σA/ ker θ

s (Rx+ker θ) 6= ∅.

For the dual operators, we have, for λ ∈ C,

L∗θ(x) − λ1 = τ∗
−1

(L∗x+ker θ − λ1)τ∗,

R∗θ(x) − λ1 = τ∗
−1

(R∗x+ker θ − λ1)τ∗,

(4.1)

where τ∗ : B∗ → (A/ ker θ)∗ is a linear homemomorphism by the open mapping
theorem. By (4.1), we have

σs(Lθ(x)) = σs(Lx+ker θ) = σa(L∗x+ker θ) = σa(L∗θ(x)) = σs(L̂θ(x)).

Hence Lθ(x) cannot be a rare operator. Likewise, the right multiplication operator
Rθ(x) cannot be rare. Hence θ(x) is not rare in B.

A normed algebra B is called simple if its product is nonzero and there is no
nonzero proper ideal in B. A normed algebra B is said to have a simple completion if
its completion B̂ is a simple algebra

Theorem 4.2 Let θ : A → B be a surjective homomorphism from a non-associative
Banach algebra A to a unital normed algebra B with a simple completion. Then θ is
continuous if and only if R(B) = ∅.

Proof We have already shown in Lemma 4.1 that continuity of θ implies that B has
empty rarity R(B).

Conversely, let R(B) = ∅. To show continuity of θ, it suffices to show, by the
closed graph theorem, that the separating subspace

S(θ) = {b ∈ B̂ : b = lim
n
θ(an) for some sequence an → 0 in A}

reduces to {0}, where B̂ is the completion of B. Since B̂ is simple and S(θ) is an ideal
in B̂, we only need to show that the identity e ∈ B is not in S(θ).

Indeed, for each a ∈ A, either the left multiplication Lθ(a) or the right multiplica-
tion Rθ(a) is not a rare operator on B, by assumption. We have σB

s (Lθ(a)) ⊂ σA
s (La)

and σB
s (Rθ(a)) ⊂ σA

s (Ra). Say Lθ(a) is not rare, then neither is 1 − Lθ(a), and there
exists

λ ∈ σB
s (1− Lθ(a)) ∩ σB̂

s (1− L̂θ(a)).

Since 1− λ ∈ σB
s (Lθ(a)) ⊂ σA(La), we have |1− λ| ≤ ‖a‖. It follows that

1 ≤ |1− λ| + |λ| ≤ ‖a‖ + ‖1− L̂θ(a)‖ = ‖a‖ + ‖e− θ(a)‖ (a ∈ A),

which implies that e /∈ S(θ). If Rθ(a) is not rare, the same argument also shows that
e /∈ S(θ) and hence θ is continuous.
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Remark 4.3 It can be seen from the proof of the above theorem that it is still valid
if we weaken the assumption of an identity e in B to the requirement that B̂ contain
an identity e.

Since unital associative normed algebras do not have rare element, by Proposi-
tion 3.9, we have the following result of automatic continuity.

Corollary 4.4 Let θ : A → B be a surjective homomorphism from a non-associative
Banach algebra A to a unital associative normed algebra B with simple completion.
Then θ is continuous.

We say that a normed algebra (B, ‖ · ‖) admits a dominating complete norm if there
is a complete algebra norm | · | on B satisfying | · | ≥ α‖ · ‖ for some α > 0. This
is equivalent to the existence of a continuous surjective homomorphism θ : A → B

on a non-associative Banach algebra A. Given a normed algebra B, we now have the
following dichotomy.

Theorem 4.5 Let B be a unital normed algebra with a simple completion. Then

(i) either B admits a dominating complete norm, in which case all homomorphisms
from a non-associative Banach algebra onto B are continuous;

(ii) or B does not admit a dominating complete norm, in which case all homomor-
phisms from a non-associative Banach algebra onto B are discontinuous.

Proof (i) Let B have a complete dominating norm | · |. Then the identity map
1 : (B, | · |) → (B, ‖ · ‖) is a continuous surjective homomorphism, and it follows
from Theorem 4.2 that R((B, ‖ · ‖)) = ∅, and that any other surjective homomor-
phism θ : A→ (B, ‖ · ‖) on a non-associative Banach algebra A is also continuous.

(ii) This has been already noted above. Indeed, if there is a continuous surjective
homomorphism θ : A → B on a non-associative Banach algebra A, then the kernel
ker θ is closed in A, and the induced continuous isomorphism from the quotient
Banach algebra A/ ker θ to B gives a dominating complete algebra norm on B.

Now we consider a weaker condition than continuity on a surjective homomor-
phism θ : A → B, namely, that ker θ is closed. This condition is of interest, since
the existence of a homomorphism onto B with closed kernel is equivalent to the ex-
istence of a complete algebra norm on B. Let M(θ(ker θ)) be the subalgebra in L(B)
generated by the left and right multiplication operators {Lx,Rx : x ∈ θ(ker θ) ⊂ B}.

Lemma 4.6 Let B be a normed algebra and let θ : A → B be a surjective homomor-
phism on a non-associative Banach algebra A. Let 1 ∈ L(B) be the identity map. If the
intersection

B(1, 1) ∩M
(
θ(ker θ)

)
is nonempty, then it consists of rare operators on B.

Proof We first note that, for each x ∈ θ( ker θ ) and for ε > 0, we can choose a ∈
ker θ such that x = θ(a) and ‖a‖ < ε. Indeed, given x = θ(b) for some b ∈ ker θ,
there exists c ∈ ker θ such that ‖b− c‖ < ε and we have x = θ(b− c).
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The homomorphism θ induces a natural surjective homomorphism

θ̂ : M(A) −→ M(B) ⊂ L(B)

between the multiplication algebras satisfying

θ̂(La) = Lθ(a), θ̂(Ra) = Rθ(a).

Indeed, given F ∈ M(A), one can define θ̂(F) to be the unique element in M(B)

satisfying θ ◦ F = θ̂(F) ◦ θ. To see that this is well defined, say that F is of the form

F = p(La1, . . . , Lak,Rb1, . . . ,Rbm ) = q(Lc1, . . . , Lcn,Rd1, . . . ,Rds )

for some polynomials p and q, then for

S1 = p
(

Lθ(a1), . . . , Lθ(ak),Rθ(b1), . . . ,Rθ(bm)

)
,

S2 = q
(

Lθ(c1), . . . , Lθ(cn),Rθ(d1), . . . ,Rθ(ds)

)
,

we have S1 ◦ θ = θ ◦ F = S2 ◦ θ and S1 = S2 by surjectivity of θ. Hence θ̂(F) is well
defined.

For each T ∈ M(θ( ker θ )) with T = θ̂(F) and F ∈ M(A), we have

σB
s (T) = σB

s (θ̂(F)) ⊂ σA
s (F),

as θ is surjective. Moreover, if x = θ(a) with ‖a‖ < ε, then Lx = θ̂(La) and ‖La‖ < ε.

Also, Rx = θ̂(Ra) and ‖Ra‖ < ε.
Now let T ∈ B(1, 1) ∩ M(θ( ker θ )). Then T is a polynomial of operators L ∈

L(B), where L is either a left multiplication Lx or a right multiplication Rx with x =
θ(a) ∈ θ( ker θ ) and ‖a‖ can be made arbitrarily small. Therefore, given any ε > 0,

we can find F ∈ M(A) such that T = θ̂(F) and ‖F‖ < ε.
Suppose, for contradiction, that T is not a rare operator on B. Then neither is

1− T, and there exists

λ ∈ σB
s (1− T) ∩ σB̂

s (1− T̂).

This gives
1 ≤ |1− λ| + |λ| ≤ |1− λ| + ‖1− T‖

where 1 − λ ∈ σB
s (T) ⊂ σA

s (F) ⊂ σA(F). By the above observation, for each

ε > 0 one can choose F ∈ M(A) with T = θ̂(F) and ‖F‖ < ε. Hence |1 − λ| < ε,
which implies that |1− λ| = 0, as ε is arbitrary. This leads to the contradiction that
1 ≤ ‖1− T‖ < 1, since T ∈ B(1, 1). The proof is now complete.

Lemma 4.7 Let B be a normed algebra and suppose B or B̂ is simple. Let S be the
set of rare operators in L(B). Let θ : A → B be a surjective homomorphism on a non-
associative Banach algebra A. Then either ker θ is closed or

M(B) ⊂ C1 + M(θ( ker θ )) ∩ S,

where 1 ∈ L(B) is the identity operator.
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Proof Suppose that ker θ is not closed in A. Then the simplicity of B̂ or B implies
that θ( ker θ ) is dense in B.

Let T ∈ B(0, 1)∩M(B) and 0 < ε < 1/2. Pick α ∈ (0, ε). Since θ(ker θ) is dense
in B and 1 ∈ M(B), one can find S ∈ M(θ(ker θ)) such that ‖S− (1− αT)‖ < αε.
We have

‖1− S‖ ≤ ‖1− (1− αT)‖ + ‖S− (1− αT)‖ < α + αε < 1.

By Lemma 4.6, S is a rare operator on B. Hence α−1(1− S) is a rare operator on
B satisfying ‖α−1(1− S)− T‖ < ε. Since scalar multiples of rare operators are also
rare, we conclude that each T ∈ M(B) is the limit of a sequence of rare operators in
C1 + M(θ(ker θ)).

Theorem 4.8 Let B be a normed algebra that is either simple or admits a simple
completion. If the closure M(B) in L(B) has nonempty interior, then every surjective
homomorphism θ : A→ B on a non-associative Banach algebra A has a closed kernel.

Proof If ker θ is not closed in A, then the above lemma implies that M(B) is con-
tained in the closure S of the set S of rare operators in L(B). Since S is nowhere dense
in L(B) by Theorem 3.6, M(B) is also nowhere dense in L(B).

In the above theorem, the existence of a closed kernel ker θ need not imply con-
tinuity of θ. However, if B is power associative with a simple completion, then con-
tinuity of θ indeed follows from ker θ being closed, by [19, Theorem 14]. We recall
that an algebra B is power-associative if it satisfies the identity

am+n = aman (a ∈ B, m, n ∈ N),

where the powers are defined inductively by

a1 = a, an+1 = aan (n = 1, 2, . . . ).

Jordan and Lie algebras are prominent examples of power associative algebras.

Corollary 4.9 Let B be a power-associative normed algebra with a simple completion.
If M(B) is of second category in L(B), then every surjective homomorphism θ : A→ B

on a non-associative Banach algebra A is continuous.

For a homomorphism with dense range, we have the following result.

Theorem 4.10 Let A be a non-associative Banach algebra and B a unital normed
algebra with a simple completion. Let θ : A → B be a homomorphism with a dense
range. Among the following conditions, we have (i)⇔ (ii)⇒ (iii)⇒ (iv):

(i) θ is continuous;
(ii) R(θ(A)) = ∅;
(iii) R(θ(A)) + R(θ(A)) 6= B;
(iv) ker θ is closed.

Further, if B is power-associative, then all the above conditions are equivalent.
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Proof (i)⇒ (ii). This follows from Lemma 4.1.
(ii)⇒ (iii). Obvious.
For (iiii)⇒ (iv), if ker θ is not closed, then θ( ker θ ) is dense in B, by simplicity

of the completion B̂. Hence the identity e ∈ B is the limit of a sequence (θ(an))
in θ( ker θ ), and by Lemma 4.6, θ(an) can be chosen in the rarity R(θ(A)). Given
x ∈ θ(A), the proof of Lemma 4.7 shows that the left multiplication Lx on θ(A) is
arbitrarily close to a sum α−1(Lθ(an) − Ly) of two rare operators with y ∈ R(θ(A)).
This proves that R(θ(A)) + R(θ(A)) is dense in θ(A).

If B is power associative, then as noted before, the assertion (iv) ⇒ (i) follows
from [19, Theorem 14].

In the next example, we construct a simple unital normed algebra B, which is not
power associative, and the rarity R(B) is neither empty nor dense.

Example 4.11 Let B be a complex vector space spanned by {e0, e1, e2, . . . }. We
define a non-associative product on B by the following table:

e0 e1 e2 e3 e4 e5 · · · ek−1 ek ek+1 · · ·
e0 e0 e1 e2 e3 e4 e5 · · · ek−1 ek ek+1 · · ·
e1 e1 0 e0 0 0 0 · · · 0 0 0 · · ·
e2 e2 e0 0 e1 e2 e3 · · · ek−3 ek−2 ek−1 · · ·
e3 e3 0 e1 e2 0 0 · · · 0 0 0 · · ·
e4 e4 0 e2 0 e3 0 · · · 0 0 0 · · ·
e5 e5 0 e3 0 0 e4 · · · 0 0 0 · · ·
e6 e6 0 e4 0 0 0 · · · 0 0 0 · · ·
e7 e7 0 e5 0 0 0 · · · 0 0 0 · · ·
e8 e8 0 e6 0 0 0 · · · 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
ek−1 ek−1 0 ek−3 0 0 0 · · · ek−2 0 0 · · ·

ek ek 0 ek−2 0 0 0 · · · 0 ek−1 0 · · ·
ek+1 ek+1 0 ek−1 0 0 0 · · · 0 0 ek

...
...

...
...

...
...

...
...

...
...

. . .

where e0 is the identity and the marked top left corner is not governed by the multi-
plication rules for indices k ≥ 4. This product is not power associative; for example,
we have e2

4e2
4 6= e4e3

4.
We equip B with the `1-norm:∥∥∥∥ K∑

k=1

αnk enk

∥∥∥∥ :=
∑

k

|αnk |

for αn1 , . . . , αnK ∈ C and en1 , . . . , enK ∈ {e0, e1, e2, . . . }.
With this norm, B is a simple normed algebra with a simple completion B̂. In-

deed, as a Banach space, B̂ is just the space `1 with canonical basis {e0, e1, e2, . . . }.
To see that the norm ‖ · ‖ is an algebra norm, let x =

∑∞
n=0 αnen ∈ B̂ and pick any
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m ∈ N ∪ {0}. Then we have ‖emx‖ ≤
∑

n |αn| = ‖x‖ and likewise ‖xem‖ ≤ ‖x‖. It

follows that ‖xy‖ ≤ ‖x‖‖y‖ for every y ∈ B̂.

For the simplicity of B and B̂, consider any x =
∑∞

n=0 αnen ∈ B̂\{0}. We show

that the ideal Ix in B̂ generated by x contains the identity e0. First, assume αm 6= 0
for some m ≥ 5, then we have (xem)em−1 = αmem−2. Since e2

k = ek−1 for k ≥ 3 and

e2e1 = e0, it follows that e0 ∈ Ix in this case. For x =
∑4

n=0 αnen with αn 6= 0 for
some n ∈ {1, 2, 3, 4}, we observe that

α4e0 = ((xe4)e3)e1, α3e0 = (xe3)e1, α2e0 = (xe4)e1, α1e0 =
((

(xe2)e2

)
e4

)
e1.

From this, one deduces e0 ∈ Ix as well. Therefore, Ix = B̂ for x ∈ B̂\{0} and B̂ is
simple. The same argument shows that B is simple too.

We have R(B) 6= ∅. For instance, e2 ∈ R(B). In fact, we have σs(Le2 ) = ∅ =
σs(Re2 ). To see that the left multiplication Le2 − λI : B → B and the right multi-
plication Re2 − λI : B → B are surjective for all λ ∈ C, it suffices to observe the
identities

(e2 − λe0)e1 = e1(e2 − λe0) = e0 − λe1,

(e2 − λe0)e2 = e2(e2 − λe0) = −λe2,

(e2 − λe0)em = em(e2 − λe0) = em−2 − λem (m ≥ 3).

Although B contains rare elements, we have, nevertheless, R(B) 6= B by Proposi-
tion 3.15, since there exist finite rank multiplication operators, for instance, Le4 .

We conclude with an immediate consequence of Theorem 4.10.

Corollary 4.12 Let B be a unital power associative normed algebra with a simple
completion. If B admits a complete algebra norm, then it dominates the original norm
of B, and every surjective homomorphism θ : A → B on a non-associative Banach
algebra A is continuous.

Proof Let ‖ · ‖ be the original norm on B and let | · | be a complete algebra norm on
B. Then the identity map 1 : (B, | · |)→ (B, ‖ · ‖) is continuous, because its kernel is
closed. The last assertion follows from Theorem 4.5.
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