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SOME REMARKS ON SYMMETRY
FOR A MONOIDAL CATEGORY

STEFANO KASANGIAN AND FABIO Rossi

It is shown that, for a monoidal category V , not every

commutation is a symmetry and also that a commutation does not

suffice to define the tensor product A ® B of f-categorles A

and 8 . Moreover, it is shown that every symmetry can be

transported along a monoidal equivalence.

1.

Let V = (l/ ®, I, a, I, r) be a monoidal category. By a symmetry

a for 1/ is meant ([2], p. 512) a natural isomorphism

o = a ,„ : X ® B -• B ® 4 in V rendering commutative the diagrams

(i)

(ii) (A ® B) ® C >• A ® (B ® C) • (fl ® C)

a ®

(B ® A) ® C »• B ® (A ® C) ;—•=• »• B ® (C ® A) .

a 1 Q9 o

By the coherence-theorem of Mac Lane [5], along with the observations of
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[3], all "proper" diagrams made from a, I, r, c commute in the presence

of (i) and (ii).

On the other hand, Benabou [/] has defined a commutation for a

monoidal category V to be a natural isomorphism c : A ® B -*• B ® A

satisfying (i) and such that (l,., c, 1_) : V •* V is a monoidal

functor; here V is V with the evident "reversed" monoidal
rev 0

structure where A ® B = B ® A . In other words, a commutation is an

isomorphism c rendering commutative (i) and the diagrams

(iii) (A ® B) ® C y A ® (B ® C)

I I
c ® 1 1 ® eI I
(B ® A) ® C A ® (C ® B)

•I
C ® (B ® 4) < (C ® B)

(iv)

By the coherence theorem, every symmetry is clearly a commutation. It is

natural to ask whether every commutation is also a symmetry.

PROPOSITION 1. Not every commutation is a symmetry, even if the

monoidal category is closed.

Proof. Take for V the category of positively-graded abelian groups,

with its usual closed monoidal structure. Define C : J 4 ® B - > - B ® 4 as

follows: for homogeneous elements x € A and y € B^ set

e(x ® j / ) = y ® x if mn = 0 , c(x ® y) = -j/ ® x otherwise. Then (i),

(iii) and (iv) commute, but not (ii).

2.

Eilenberg and Kelly make essential use of a symmetry c on the

monoidal category V for two purposes: to define the dual A of a

V-category A ( [ 2 ] , p. 5lU), and to define the tensor product A ® 8 of
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(/-categories A and B ([2], p. 518). The question arises whether the

weaker notion of a commutation would serve for these purposes.

For the first it clearly does. The diagram they need to commute on

their p. 515, to ensure the associativity of composition in A o p , uses

precisely (iii); and the similar diagrams for the unit-laws need precisely

(iv). Indeed this is predictable: the monoidal functor

(ly, «, lj) : V -*• V induces, from the (/-structure on A , a V

structure on A , and hence a ^-structure on A * .

For the second they use coherence to infer the commutativity of the

diagram

(v) {(A ®x) ® (B ® y)) ® (c ® z) — • U ® x) ® ((B ® y) ® (c ® z))

m ® 1 1 ® m

{(A ® B) ® {X ® y)) ® (C ® Z) (A ® X) ® ((B ® C) ® (y ® Z))

((4 ® B) ® c) ® {(x ® y) ® z) a ( g ) a > (4 ® ( B ® o ) ® [x ® (y ® z))

where "i is the "middle-four interchange", given by

(vi) ( 4 ® * ) ® ( B ® y ) - (A ®B) ® (X®Y)

•I
A®[x®(B®Y)) A®(B®(X®Y))

A " l | I A "I
1 ® a 1 ® a

A ® ( U ® B ) ® y ) l 9 ( e 9 1 y A ® ( ( B ® X ) ® Y ) .

The commutativity of (v) ensures ([2], p. 518) the commutativity of the

diagram expressing the associativity of the composition in A ® 8 . But,

if V has initial object 0 preserved by the bifunctor ® , the

commutativity of (v) is also necessary for this associativity. Take for A

the free (/-category on the l/-graph G with four objects P, Q, R, S and

with G{P, Q) = C , G(Q, R) = B , G(R, S) = A , and all other G(U, V)

equal to the initial object 0 . That is, A(P, Q) = C , A(P, R) = B ®C ,

A(P, 5) = i 4 ® B ® C , and so on, and the relevant components of the
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composition in A are identities. Take for B the (/-category similarly

defined in relation to X, Y, Z . Then the associativity condition for the

composition in A ® 8 actually reduces to (v).

Now in fact a commutation is not enough to ensure the commutativity of

(v); for

PROPOSITION 2. In the presence of (i) and (iv), (v) implies (ii).

Proof. Set A = B = Z = I in (v) and simplify.

3.

That being so, it is relevant to ask whether a symmetry for V can be

transported along an equivalence r\, e : Q -<V : V -*• V in the 2-category

of the monoidal categories, to give a symmetry on V' . In fact more than

this is true: it suffices that V be equivalent to a "full monoidally-

reflective monoidal subcategory" of V . Precisely:

PROPOSITION 3. Let n, e : * -• ¥ : V' •* V be an adjunction in the

2-category of monoidal categories, with £ an isomorphism; and let a be

a symmetry for V . Then there is exactly one symmetry c' for V such

that the above adjunction becomes one in the 2-category of symmetric

monoidal categories.

Proof. By [4], Theorem 1.5, the left adjoint $ : V •*• V is a strong

monoidal functor, so that <j> : $A ® $B ->• §(A ® B) is an isomorphism. If

$ is to be a symmetric monoidal functor, it must satisfy the condition MFl*

of [2], p. 513, asserting that ^ commutes with the symmetries. From this

and the naturality of c' , we must have commutativity in

(vii)

#5 ®

1*
\}>B)

and this suffices to define c' , since e and <J> are isomorphisms. That

P ?
(<?') = 1 is immediate since c = 1 . It remains to verify (ii).
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Imagine a hexagonal prism, whose top face is the diagram (ii) for

A, B, C, a' and a' , and whose bottom face is <j> applied to the diagram

(ii) for <M, tyB, tyC, a and a ; so that the bottom commutes. The

vertical edges are all isomorphisms of the form

I K C E 1 ® e1) ® e1) or $(1 ® ^(e 1 ® (e1 ® e1)) , as

appropriate. The desired result that the top commutes will follow if all

the vertical faces commute. For five of them this follows easily from

(vii), the axiom MF3 for monoidal functors on p. 1+73 of [2], and

naturality. For the sixth - the one with a' at the top and <j>c at the

bottom - it is necessary to observe that e"1 : B ® C -*• # ( S ® C) is, by

the axiom MN2 of [2], p. kjk, for the monoidal natural transformation

E : W! •*• 1 , equal to <$'<!>• (e~ ® e~ ) ; and also that the maps involving

$ are isomorphisms because everything else in the diagram is. With that

said, the reader will have no trouble drawing the necessary diagrams, which

it would be tedious to print.
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