ON SEQUENCES GENERIC IN THE SENSE OF PRIKRY

A. R. D. MATHIAS

(Received 15 September 1969; revised 22 August 1970)

Communicated by G. N. Crossley

I establish here a criterion for a sequence of ordinals to be generic over a transitive model of ZFC with respect to a notation of forcing first considered by Prikry in his Doctoral dissertation [2]. In Section 0 I review some notation, in Section 1 I list some facts about measurable cardinals, and in Section 2, after giving Prikry's result, I state and prove mine.

Theorem 2.2 was proved during my brief stay at Monash University in Melbourne in June 1969. I thank Professor Crossley of that organisation for his hospitality. The paper was written in my sister's house in Pakistan.

0. Notation

In general I follow that of [1], but on Formalist grounds I use " $=_{df}$ " to separate definiendum from definiens even where it is fashionable to write " \Leftrightarrow_{df} ".

Let κ be an infinite initial ordinal. I use the letters s, t, ... for finite subsets of κ , and S, T, S', ... for infinite. 0 is the empty set and the first ordinal.

DEFINITION 0.1. $|s| =_{df} \max \{ \alpha + 1 \mid \alpha \in s \}$. In particular, |s| = 0 iff s = 0; $s \neq 0 \rightarrow |s| = \beta + 1$, for some β .

DEFINITION 0.2. s in $S =_{df} \exists : \alpha < \kappa$ $s = \alpha \cap S$ ("s is an initial segment of S").

DEFINITION 0.3. $S \subseteq_f T =_{df} \exists s : in S S - |s| \subseteq T$ ("S is, apart from finitely many elements, a subset of T").

Let F be a set of infinite subsets of κ .

DEFINITION 0.4. $P_{\underline{F}} = {}_{df} \{ \langle s, S \rangle | | s | \leq \min S \land S \in \underline{F} \}.$ I use letters $p, q \cdots$ for elements of P_F .

The following partial ordering will be important:

DEFINITION 0.5 (Prikry). $\leq =_{df} \{ \langle \langle s, S \rangle, \langle t, T \rangle \rangle | S \subseteq T \land t \subseteq s \land s - t \subseteq T \}.$ 409

Let

DEFINITION 0.6. $\mathbb{P}_{\underline{F}} =_{df} \langle P_{\underline{F}}, \leq \cap P_{\underline{F}}^2 \rangle$. $\Delta \subseteq P_{F}$.

DEFINITION 0.7. Δ is dense in $\mathbb{P}_{\underline{F}} =_{df} \forall p : \in P_{\underline{F}} \exists q : \in \Delta \ q \leq p$.

DEFINITION 0.8.
$$\Delta$$
 is \leq -closed in $\mathbb{P}_{\underline{F}} =_{df} \forall p : \in \Delta \forall q : \in P_{\underline{F}} (q \leq p \rightarrow q \in \Delta).$

Let M be a transitive ε -model of ZF + AC; let κ and \underline{F} be elements of M. Then $\mathbb{P}_{\underline{F}} \in M$. In the sequel, M may be taken to be a set or a proper class: it is left to the reader to interpret the theorems and arguments as theorem and proof schemata of ZF when appropriate.

Let $a \subseteq \kappa$, a of order type ω .

Definition 0.9.
$$F_a = \{ \langle s, S \rangle \mid S \subseteq a \subseteq s \cup S \land \langle s, S \rangle \in \mathbb{P}_F \}.$$

DEFINITION 0.10. *a* is $\mathbb{P}_{\underline{F}}$ -generic over $M =_{df}$

$$\begin{array}{ll} \forall \Delta \colon \in M \; (\Delta \; \text{dense and} \; \leq \text{-closed} \to \Delta \cap F_a \neq 0) \; \land \\ \forall p, q \colon \in F_a \exists q' \colon \in P_{\underline{F}}(q' \leq p \land q' \leq q) \; \land \\ \forall p \colon \in F_a \forall q \colon \in P_F(p \leq q \to q \in F_a). \end{array}$$

REMARK. The above is equivalent in ZF to all other customary definitions of genericity with respect to a partial ordering and a model of ZF.

1. Measurable cardinals

DEFINITION 1.1. \underline{U} is a two-valued measure on $\kappa =_{df} \underline{U}$ is a non-principal ultrafilter on κ and whenever $\lambda < \kappa$ and $\langle A_i | i < \lambda \rangle$ is a sequence of elements of $\underline{U}, \bigcap_{i < \lambda} A_i \in \underline{U}$.

DEFINITION 1.2. Let $A \subseteq \kappa$. $|A|^n =_{df} \{s \subseteq A \mid \overline{s} = n\}$. $|A|^{<\omega} =_{df} \cup \{[A]^n \mid n < \omega\}$.

Note that $0 \in [A]^{<\omega}$.

DEFINITION 1.3. \underline{U} is a normal measure on $\kappa =_{df} \underline{U}$ is a two-valued measure on κ and whenever $\langle A_t | t \in [\kappa]^{<\omega} \rangle$ is a family of elements of \underline{U} indexed by the finite subsets of κ , there is a $B \in \underline{U}$ such that

$$\forall t :\in [\kappa]^{<\omega} \ B - |t| \subseteq A_t.$$

The following lemma verifies that that definition is equivalent to the usual definitions of normal measure.

LEMMA 1.4. Let U be a two-valued measure on κ . \underline{U} is normal if and only if for any sequence $\langle C_{\alpha} | \alpha < \kappa \rangle$ of elements of \underline{U} such that $\forall \alpha : < \kappa \ C_{\alpha} = \cap \{C_{\beta+1} | \beta < \alpha\}, \{\alpha | \alpha \in C_{\alpha}\} \in \underline{U}.$

[2]

PROOF. Suppose \underline{U} normal and let $\langle C_{\alpha} | \alpha < \kappa \rangle$ be a sequence of elements of U such that

$$\forall \alpha : < \kappa \ C_{\alpha} = \cap \{C_{\beta+1} \mid \beta < \alpha\}.$$

Let $A_s = \bigcap \{C_{v+1} | v \in s\}$ if $s \in [\kappa]^{<\omega}$ and $s \neq 0$, and let $A_0 = C_0$. Let $B \in U$ be such that $B - |s| \subseteq A_s$, and let $v \in B$. If v = 0, then $v \in A_0$ and so $v \in C_0$. If $v = \alpha + 1$, then $v \in A_{\{\alpha\}}$ and so $v \in C_{\alpha+1} = C_v$. If v is a limit ordinal, let $\beta < v$: then $v \in A_{\{\beta\}}$ and so $v \in C_{\beta+1}$; so

$$v \in \bigcap \{ C_{\beta+1} \mid \beta < v \}$$

which is C_{ν} . Thus $B \subseteq \{\nu \mid \nu \in C_{\nu}\}$ which is therefore in U.

Contrariwise, if $\langle A_s | s \in [\kappa]^{<\omega} \rangle$ is a family of elements of a two-valued measure U which satisfies the hypothesis of the lemma on sequences $\langle C_{\alpha} | \alpha < \kappa \rangle$, define

$$C_{\alpha} = \cap \{A_s \mid |s| \leq \alpha\}.$$

Then $\forall \alpha \ C_{\alpha} = \bigcap \{ C_{\beta+1} | \beta < \alpha \}$ as |s| is never a limit ordinal, and each C_{α} is in $\bigcup_{\alpha \in \mathcal{A}}$ as

$$\alpha < \kappa \to \{s \mid |s| \leq \alpha\}$$

has cardinality $< \kappa$, and so, writing $B = \{\alpha \mid \alpha \in C_{\alpha}\}, B \in \bigcup_{=}^{U}$. If s = 0, B - 0 = B, and

$$\forall \alpha \colon \in B \; \alpha \in C_0 = A_0,$$

so $B - |0| \subseteq A_0$. If $s \neq 0$, let $\alpha = \max s$. Let $\beta \in B - |s|$: then $\beta \in C \subseteq A_s$ as $|s| = \alpha + 1 \leq \beta$; so $B - |s| \leq A_s$.

THEOREM 1.5 (Scott See for example Solovay [3].). (ZF + AC) If κ has a two-valued measure, it has a normal measure.

THEOREM 1.6 (Rowbottom). (ZF + AC) Let U be a normal measure on κ ; let $\lambda < \kappa$ and $f: [\kappa]^{<\omega} \to \lambda$. Then $\exists A: \in U \ \forall n: \stackrel{=}{<} \omega \ \forall x, y: \in [A]^n \ f(x) = f(y)$.

Such an A is said to be homogeneous for f.

I sketch a proof of Rowbottom's theorem. You show first by induction on n that

(†)
$$\forall f'((f': [K]^n \to \lambda) \to \exists A : \in \underbrace{U}_{=} \forall x, y : \in [A]^n f'(x) = f'(y)).$$

For n = 0 (†) is trivial, and for n = 1 it follows from the property that

$$\forall \alpha : < \lambda \ C_{\alpha} \in \underline{\underline{U}} \to \cap \{C_{\alpha} \mid \alpha < \lambda\} \in \underline{\underline{U}}.$$

Suppose true for n = k, and let $f': [\kappa]^{k+1} \to \lambda$. Then for each $s \in [\kappa]^k$ there is an $A_s \in U$ such that f' is constant on $\{s \cup \{\alpha\} \mid \alpha \in A_s\}$ and $A_s \subseteq \kappa - |s|$. Let g(s) be that constant value of f'. Let $A_s = \kappa$ if $s \notin [\kappa]^k$. Let $B \in U$ be such that $\forall s B - |s| \subseteq A_s$. Let $C \in U$ be such that

A. R. D. Mathias

[4]

$$\forall s, t :\in [C]^k g(s) = g(t).$$

(Such a C exists by the induction hypothesis.) Let $A = B \cap C$. Then f' is constant on $[A]^{k+1}$.

To prove the theorem, pick for each *n* an $A^{(n)} \in \underline{U}$ such that *f* is constant on $[A^{(n)}]^n$, and let

$$A = \cap \{A^{(n)} \mid n < \omega\}.$$

2. Prikry sequences

THEOREM 2.1 (Prikry). Let M be a transitive model of ZF + AC; let $\kappa \in M$, and let $U \in M$ be in M a normal measure on κ . Let a be a subset of κ of order type ω , and suppose that a is \mathbb{P}_{U} generic over M. Then every cardinal in M is a cardinal in M[a]; a is cofinal in κ , and so κ is of cofinality ω in M[a]; and if $\lambda < \kappa$, $b \subseteq \lambda$ and $b \in M[a]$, then $b \in M$.

The principal result of the paper is now stated.

THEOREM 2.2. Let M, κ , U be as in 2.1. Let $a \subseteq \kappa$ be of order type ω . Then a is \mathbb{P}_{U} -generic over M if and only if

$$\forall A :\in U \ a \subseteq_f A.$$

Here $a \subseteq A$ is as defined in 0.3.

COROLLARY 2.3. If a is \mathbb{P}_{U} -generic over M, so is every infinite subset of a.

The proof of Theorem 2.2 uses Theorem 1.6, as did Prikry's proof of 2.1. For the time being I argue in the theory ZF + AC with the assumption that U is a normal measure on κ .

DEFINITION 2.4. Let Δ be a dense, \leq -closed subset of P_U . s a (finite) subset of κ . T captures $\langle s, \Delta \rangle =_{df} |s| \leq \min T \land \exists n : \langle \omega(\forall t(t \in [T]^n \to \langle s \cup t, T - |t| \rangle \in \Delta)).$

LEMMA 2.5. (ZF + AC) Let Δ be a dense \leq -closed subset of P_U .

 $\forall s \colon \subseteq \kappa \; \exists T \colon \in U \; (T \; \text{captures} \; \langle s, \Delta \rangle).$

PROOF. Let Δ , s be given. To each $t \subseteq \kappa - |s|$ pick $A_t \in U$ such that

$$(\exists A: \in U \langle s \cup t, A \rangle \in \Delta) \to \langle s \cup t, A_t \rangle \in \Delta.$$

Let $A_t = \kappa$ if $t \notin \kappa - |s|$. By the normality of U there is a $B' \in U$ such that

$$\forall t :\in [\kappa]^{<\omega} B' - |t| \subseteq A_t:$$

let $B = B' \cap (\kappa - |s|)$. Then $B \in U$ and

$$(*) \quad \forall t \colon \subseteq B \left(\left(\exists A \colon \in \underline{U} \ \left\langle s \cup t, A \right\rangle \in \Delta \right) \to \left\langle s \cup t, B - \left| t \right| > \in \Delta \right),$$

412

for if $t \cup B$ and $\exists A :\in U \langle s \cup t, A \rangle \in \Delta$ then $\langle s \cup t, A_t \rangle \in \Delta$; $B - |t| \subseteq A_t$; and so $\langle s \times t, B - | t | \in \Delta$ as $\overline{\Delta}$ is \leq -closed.

Define a map $f: \lceil \kappa \rceil^{<\omega} \to 3$ by

$$f(t) = 0 \text{ if } t \notin B;$$

$$f(t) = 1 \text{ if } t \subseteq B \text{ and } \langle s \cup t, B - |t| \rangle \in \Delta;$$

$$f(t) = 2 \text{ if } t \subseteq B \text{ and } \langle s \cup t, B - |t| \rangle \notin \Delta.$$

Let $C \in U$ be homogeneous for f, and let $T = C \cap B$. Then $T \in U$.

As Δ is dense,

$$\exists t \colon \subseteq T \exists T' \subseteq T(|t| \leq \min T' \text{ and } \langle s \cup t, T' \rangle \in \Delta).$$

Fix such a t. Let $n = \overline{t}$. As $T \subseteq B$, by (*) $\langle s \cup t, B - |t| \rangle \in \Delta$, and so f(t) = 1. That T captures $\langle s, \Delta \rangle$ remains to be seen.

Let $t' \subseteq T$ and $\overline{t'} = n$. As T is homogeneous for f, f(t') = f(t) = 1, so

$$\langle s \cup t', B - |t'| \rangle \in \Delta;$$

as Δ is \leq -closed and $T - |t'| \subseteq B - |t'|$,

$$\langle s \cup t', T - |t'| \rangle \in \Delta.$$

PROOF OF THEOREM 2.2. Suppose a \mathbb{P}_{U} -generic over M, and let $A \in U$. Let

$$\Delta = [\langle s, S \rangle | s \in U \land S \subseteq A \}.$$

 Δ is dense, \leq -closed and in M, so there is an

 $\langle s, S \rangle \in \Delta \cap F_a$: $s \subseteq a \subseteq s \cup S$;

so $a \subseteq f S \subseteq A$ and hence $a \subseteq f A$.

Now suppose that $\forall A :\in U a \subseteq_f A$ and let

$$F_a = \{ \langle s, S \rangle \mid S \in \underline{U} \land s \subseteq a \subseteq s \cup S \},\$$

as in Definition 0.9. It must now be shown that F_a has the three properties listed in Definition 0.10.

(iii) Let $\langle s, S \rangle \in F_a$, and $\langle s, S \rangle \leq \langle s', S' \rangle \in P_U$. Then $s' \subseteq s \subseteq a \subseteq s \cup S \subseteq s' \cup S'$.

so $\langle s', S' \rangle \in F_a$.

(ii) Let $\langle s, S \rangle$ and $\langle s', S' \rangle \in F_a$. $s \cup s' \subseteq a$ and

$$a \subseteq (s \cup S) \cap (s' \cup S'),$$

so

$$\langle s \cup s', S \cap S' \rangle \leq \langle s, S \rangle, \langle s \cup s', S \cap S' \rangle \leq \langle s', S' \rangle, \text{ and}$$

 $\langle s \cup s', S \cap S' \rangle \in P_u.$

(i) Let $\Delta \in M$, Δ dense and \leq -closed. Working in M and using Lemma 2.5, pick for each $s \subseteq \kappa$ a $T_s \in U$ that captures $\langle s, \Delta \rangle$. There is a $B \in U$ such that $\forall s B - |s| \subseteq T_s$. $a \subseteq_f B$; so let s in a be such that $a - |s| \subseteq B$. Then $a - |s| \subseteq T_s$; as T_s captures $\langle s, \Delta \rangle$, there is an n such that in M,

$$t \in [T_s]^n \to \langle s \cup t, T_s - |t| \rangle \in \Delta$$

Let t' be the set of the first n elements of a - |s|. Then $\langle s \cup t', T_s - |t'| \rangle \in \Delta \cap F_a$.

Finally let me derive the lemma used by Prikry in his proof of Theorem 2.1 from Lemma 2.5, to which it is a kin.

LEMMA 2.6 (Prikry). Let \mathfrak{A} be a sentence of the language of forcing and $\langle s, S \rangle \in P_U$. Then

$$\exists S' \subseteq S(S' \in \underbrace{U}_{} \land (\langle s, S' \rangle | \models \mathfrak{A} \lor \langle s, S' \rangle | \models \neg \mathfrak{A})).$$

PROOF. Let $\Delta = \{\langle t, T \rangle | \langle t, T \rangle | \vdash \mathfrak{A} \lor \langle t, T \rangle | \vdash \neg \mathfrak{A} \}$. As Δ is dense and \leq -closed there are by Lemma 2.5 an $S'' \subseteq S$ and an $n \in \omega$ such that

 $\forall t :\in [S''|^n \langle s \cup t, S'' - |t| \rangle \in \Delta.$

Define $f: [S'']^n \rightarrow 2$ by

$$f(t) = 0 \text{ if } \langle s \cup t, S'' - |t| \rangle | \vdash \mathfrak{A}$$
$$= 1 \text{ if } \langle s \cup t, S'' - |t| \rangle | \vdash \neg \mathfrak{A}.$$

Let $S' \subseteq S''$ be homogeneous for f. If neither $\langle s, S' \rangle | \vdash \mathfrak{A}$ nor $\langle s, S' \rangle | \vdash \neg \mathfrak{A}$, there are $s', s'', T', T'' \subseteq S'$ with

$$T', T'' \in \underline{U}, \langle s \cup s', T' \rangle | \vdash \mathfrak{A}, \langle s \cup s'', T'' \rangle | \vdash \neg \mathfrak{A}$$

and, it may be assumed, $\min\{\overline{s}, \overline{s}''\} \ge n$. Let t' be the first n element of s' and t'' of s''. Then f(t') = 0 and f(t'') = 1 (for S'' captures $\langle s, \Delta \rangle$), which contradicts the homogeneity of S'.

References

- [1] R. B. Jensen, Modelle der Mengenlehre (Springer-Verlag, Lecture Notes Series, 1968).
- [2] K. L. Prikry, Doctoral dissertation (Berkeley, 1968). Published as 'Changing measurable into accessible cardinals' in Dissertationes Math. (Rozprawy Mat.) 68 (1969).
- [3] R. M. Solovay, 'Real-valued measurable cardinals,' in the *Proceedings of the 1967 Summer* Institute in Set Theory held at Los Angeles.

Peterhouse, Cambridge England

414