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Abstract. The main result of this paper is the following theorem. Let q be a
prime and A be an elementary abelian group of order q3. Suppose that A acts as a
coprime group of automorphisms on a profinite group G in such a manner that CG(a)′

is periodic for each a ∈ A#. Then G′ is locally finite.
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1. Introduction. A profinite group is a topological group that is isomorphic to
an inverse limit of finite groups [11, 18]. In the context of profinite groups all the
usual concepts of group theory are interpreted topologically. In particular, by an
automorphism of a profinite group we mean a continuous automorphism. A group of
automorphisms A of a profinite group G will be called coprime if A has finite order and
G is an inverse limit of finite groups whose orders are relatively prime to the order of A.
Given an automorphism a of a profinite group G, we denote by CG(a) the centralizer of
a in G, that is, the subgroup of G formed by the elements fixed under a. This subgroup
is always closed.

The following result was proved in [15].

THEOREM 1.1. Let q be a prime and A an elementary abelian group of order q2.
Suppose that A acts as a coprime group of automorphisms on a profinite group G.
Assume that CG(a) is periodic for each a ∈ A#. Then G is locally finite.

Here and throughout the paper the symbol A# stands for the set of non-identity
elements of a group A.

Recall that using Wilson’s theorem on the structure of periodic profinite groups
[17] Zelmanov proved local finiteness of such groups [22]. Another relevant result is
Herfort’s theorem that the set of prime divisors of orders of elements of a periodic
profinite group is finite [5]. It is a long-standing open problem whether every periodic
profinite group has finite exponent. The proof of Theorem 1.1 also uses Lie-theoretic
techniques in the spirit of those described in Section 3 of the present paper.

https://doi.org/10.1017/S0017089511000383 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000383


98 CRISTINA ACCIARRI, ALINE DE SOUZA LIMA AND PAVEL SHUMYATSKY

A quantitative version of Theorem 1.1 for finite groups was obtained earlier in [8].

THEOREM 1.2. Let q be a prime, m be a positive integer and A be an elementary
abelian group of order q2. Suppose that A acts as a coprime group of automorphisms on
a finite group G and assume that CG(a) has exponent dividing m for each a ∈ A#. Then
the exponent of G is {m, q}-bounded.

Another quantitative result of similar nature was proved in the paper of Guralnick
and Shumyatsky [4].

THEOREM 1.3. Let m be an integer, q a prime. Let G be a finite q′-group acted on
by an elementary abelian group A of order q3. Assume that CG(a) has derived group of
exponent dividing m for each a ∈ A#. Then the exponent of G′ is {m, q}-bounded.

Note that the assumption that |A| = q3 is essential here and the theorem fails if
|A| = q2, see Section 1 of [4] for more details.

In the present paper, we exploit further the techniques developed in [8, 15, 4]. If G
is a profinite group, we denote by G′ the closed subgroup generated by all commutators
in G (the derived group of G). The main result of this paper is the following theorem.

THEOREM 1.4. Let q be a prime, A be an elementary abelian group of order q3.
Suppose that A acts as a coprime group of automorphisms on a profinite group G.
Assume that CG(a)′ is periodic for each a ∈ A#. Then G′ is locally finite.

We mention that as long as it is unknown whether every periodic profinite group
has finite exponent the above theorem cannot be deduced directly from Theorem 1.3.
Thus, in the present paper, we present an independent proof of Theorem 1.4.

2. Preliminary results. In this section, we collect some useful results about
coprime automorphisms of finite and profinite groups. We start with two well-known
lemmas (see [3], 6.2.2, 6.2.4).

LEMMA 2.1. Let A be a group of automorphisms of the finite group G with
(|A|, |G|) = 1.

(1) If N is any A-invariant normal subgroup of G, then
CG/N(A) = CG(A)N/N;

(2) If H is any A-invariant p-subgroup of G, then H is contained in an A-invariant
Sylow p-subgroup of G.

LEMMA 2.2. Let q be a prime, G a finite q′-group acted on by an elementary abelian q-
group A of order q3. Let A1, . . . , As be the maximal subgroups of A. If H is an A-invariant
subgroup of G, we have H = 〈CH(A1), . . . , CH(As)〉.

The next results are taken from [4].

LEMMA 2.3. Let q be a prime, G a finite q′-group acted on by an elementary abelian
q-group A of order q3. If N is any A-invariant normal subgroup of G then [N, G] =〈
[CN(a), CG(a)] | a ∈ A#

〉
. If [N, G] is nilpotent then [N, G] = ∏

[CN(a), CG(a)], where
the product is taken over all a ∈ A#.

THEOREM 2.4. Let q be a prime and G a finite q′-group acted on by an elementary
abelian q-group A of order q3. Let P be an A-invariant Sylow p-subgroup of G′. Then
P = 〈CG(a)′ ∩ P | a ∈ A#〉.
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Let π (G) denote the set of primes dividing the order of a finite group G.

COROLLARY 2.5. π (G′) = ∪a∈A#π (CG(a)′).

We will now describe a somewhat more precise version of Theorem 2.4. It was
obtained in [16]. Assume the hypothesis of Theorem 2.4 and let A1, . . . , As be the
maximal subgroups of A. Let P1, . . . , Pr be all the subgroups of the form

P ∩ [CG(Ai), CG(Aj)] for suitable i, j.

Observe that, since the intersection Ai ∩ Aj cannot be trivial because the rank of A is
3, any subgroup Pl, where l = 1, . . . , r, is contained in [CG(a), CG(a)] for some a ∈ A#.
We have the following theorem (see Theorems 2.12 and 2.13 in [16]).

THEOREM 2.6. P = P1 · · · Pr.

Using the routine inverse limit argument all the above results can be extended to
the case where G is a profinite group. In particular, we have the following lemmas.

LEMMA 2.7. Let A be a coprime group of automorphisms of the profinite group G.
(1) If N is any A-invariant normal closed subgroup of G, then CG/N (A) = CG(A)N/N;
(2) If H is any A-invariant pro-p subgroup of G, then H is contained in an A-invariant

Sylow pro-p subgroup of G.

LEMMA 2.8. Let q be a prime, G be a profinite group coprimely acted on by an
elementary abelian q-group A of order q3. Let A1, . . . , As be the maximal subgroups of
A. If H is an A-invariant subgroup of G we have H = 〈CH(A1), . . . , CH(As)〉.

Many other facts on automorphisms of finite groups admit corresponding profinite
versions. In particular, later on we will use profinite versions of the above results 2.3,
2.4, 2.5 and 2.6.

3. Useful Lie-theoretic machinery. Let L be a Lie algebra over a field k. Let k be
a positive integer and let x1, x2, . . . , xk, x, y be elements of L. We define inductively

[x1] = x1; [x1, x2, . . . , xk] = [[x1, x2, . . . , xk−1], xk].

An element a ∈ L is called ad-nilpotent if there exists a positive integer n such that

[x, a, . . . , a︸ ︷︷ ︸
n

] = 0 for all x ∈ L.

If n is the least integer with the above property then we say that a is ad-nilpotent of
index n. Let X ⊆ L be any subset of L. By a commutator in elements of X we mean any
element of L that can be obtained as a Lie product of elements of X with some system
of brackets. Denote by F the free Lie algebra over k on countably many free generators
x1, x2, . . . . Let f = f (x1, x2, . . . , xn) be a non-zero element of F . The algebra L is said
to satisfy the identity f ≡ 0 if f (a1, a2, . . . , an) = 0 for any a1, a2, . . . , an ∈ L. In this
case, we say that L is PI. Now we will quote a theorem of Zelmanov [20] which has
numerous important applications to group theory (in particular, see [13] for examples
where the theorem is used).
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THEOREM 3.1. Let L be a Lie algebra over a field k generated by a1, a2, . . . , am.
Assume that L is PI and that each commutator in the generators a1, a2, . . . , am is ad-
nilpotent. Then L is nilpotent.

The following theorem provides an important criterion for a Lie algebra to be PI.
It was proved by Bakhturin and Zaicev for soluble groups A [1], and later extended by
Linchenko to the general case [10].

THEOREM 3.2. Assume that a finite group A acts on a Lie algebra L in such a manner
that CL(A), the subalgebra formed by fixed elements, is PI. Assume further that the
characteristic of the ground field of L is either 0 or prime to the order of A. Then L is PI.

The next lemma is taken from [8]. We will use it later when proving ad-nilpotency
of some elements of a Lie algebra.

LEMMA 3.3. Suppose that L is a Lie algebra, H a subalgebra of L generated by r
elements h1, . . . , hr such that all commutators in the hi are ad-nilpotent in L. If H is
nilpotent, then for some number v we have [L, H, . . . , H︸ ︷︷ ︸

v

] = 0.

Now we turn to groups and for the rest of this section p will denote a fixed prime
number. Let G be any group. A series of subgroups

(∗) G = G1 ≥ G2 ≥ · · ·

is called an Np-series if [Gi, Gj] ≤ Gi+j and Gp
i ≤ Gpi for all i, j. With any Np-series (∗)

of G, one can associate a Lie algebra L∗(G) = ⊕L∗
i over the field with p elements �p,

where we view each L∗
i = Gi/Gi+1 as a linear space over �p. If x ∈ G, let i = i(x) be the

largest integer such that x ∈ Gi. We denote by x∗ the element xGi+1 of L∗(G).

LEMMA 3.4 (Lazard, [9]). For any x ∈ G we have (ad x∗)p = ad (xp)∗. Consequently,
if x is of finite order, then x∗ is ad-nilpotent.

Let w = w(x1, x2, . . . , xn) be non-trivial group word, i.e. a non-trivial element
of the free group on free generators x1, x2, . . . , xn. Suppose that the group G has
a subgroup H and elements g1, g2, . . . , gn such that w(g1h1, . . . , gnhn) = 1 for all
h1, h2, . . . , hn ∈ H. In this case, we say that the law w ≡ 1 is satisfied on the cosets
g1H, . . . , gnH and the group G satisfies a coset identity. The next proposition follows
from the proof of the main theorem in the paper of Wilson and Zelmanov [19].

PROPOSITION 3.5. Let G be a group satisfying a coset identity. Then there exists a
non-zero multilinear Lie polynomial f over �p such that for any Np-series (∗) of G the
corresponding algebra L∗(G) satisfies the identity f ≡ 0.

In general, a group G has many Np-series; one of the most important is the so
called Jennings–Lazard–Zassenhaus series that can be defined as follows.

Let γj(G) denote the jth term of the lower central series of G. Set Di = Di(G) =∏
jpk≥i γj(G)pk

. The subgroup Di is also known as the ith-dimension subgroup of G
in characteristic p. These subgroups form an Np-series of G known as the Jennings–
Lazard–Zassenhaus series. Let Li = Di/Di+1 and L(G) = ⊕Li. Then L(G) is a Lie
algebra over the field �p (see [2], Chapter 11 for more detail). The subalgebra of
L(G) generated by L1 = D1/D2 will be denoted by Lp(G). The next theorem is due to
Lazard [9].
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LEMMA 3.6. Let G be a finitely generated pro-p group. If Lp(G) is nilpotent, then G
is a p-adic analytic group.

Every subspace (or just an element) of L(G) that is contained in Di/Di+1 for
some i will be called homogeneous. Given a subgroup H of the group G, we denote
by L(G, H) the linear span in L(G) of all homogeneous elements of the form hDi+1,
where h ∈ Di ∩ H. Clearly, L(G, H) is always a subalgebra of L(G). Moreover, it is
isomorphic with the Lie algebra associated with H using the Np-series of H formed by
Hi = Di ∩ H. We also set Lp(G, H) = Lp(G) ∩ L(G, H).

LEMMA 3.7. Suppose that any Lie commutator in homogeneous elements x1, . . . , xr

of L(G) is ad-nilpotent. Let K = 〈x1, . . . , xr〉 and assume that K ≤ L(G, H) for some
subgroup H of G satisfying a coset identity. Then there exists some number v such that

[L(G), K, . . . , K︸ ︷︷ ︸
v

] = 0.

Proof. In view of Lemma 3.3, it is sufficient to show that K is nilpotent. From
Proposition 3.5, it follows that K satisfies a multilinear polynomial identity. Thus, by
Theorem 3.1 K is nilpotent. �

Lemma 2.7(1) has important implications in the context of associated Lie algebras
and their automorphisms. Let G be a pro-p group with a coprime automorphism a.
Obviously, a induces an automorphism of every quotient Di/Di+1. This action extends
to the direct sum ⊕Di/Di+1. Thus, a can be viewed as an automorphism of L(G) (or
of Lp(G)). Set Ci = Di ∩ CG(a). Then Lemma 2.7(1) shows that

CL(G)(a) = ⊕CiDi+1/Di+1. (1)

This implies that the properties of CL(G)(a) are very much related to those of CG(a) and
it follows that

Lp(G, CG(a)) = CLp(G)(a). (2)

In particular, Proposition 3.5 shows that if CG(a) has a certain coset identity, then
CL(G)(a) is PI.

LEMMA 3.8. Let a be a coprime automorphism of a pro-p group G. If CG(a)′ is
periodic, then CL(G)(a) satisfies a multilinear polynomial identity.

Proof. By Proposition 3.5 it is enough to show that CG(a) satisfies a coset identity.
For each positive integer i set

Xi = {(x, y) | x ∈ CG(a), y ∈ CG(a) and [x, y]p
i = 1}.

Each of the sets Xi is closed in CG(a) × CG(a) and there are only countably many of
them. We have CG(a) × CG(a) = ⋃

Xi. It follows from Baire’s Category Theorem (see
[7, p. 200]) that some set Xj has a non-empty interior. In particular, this set Xj contains
a set xH1 × yH2 where H1, H2 are open subgroups of CG(a). Putting H = H1 ∩ H2 we
see that the identity [xh1, yh2]p

j = 1 is satisfied for all h1, h2 ∈ H and so this is a coset
identity in CG(a). Applying Proposition 3.5 to CG(a) we conclude that CL(G)(a) satisfies
a multi-linear polynomial identity. �
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4. Proof of Theorem 1.4. Now we are ready to prove Theorem 1.4 which we state
again for the reader’s convenience.

THEOREM 4.1. Let q be a prime and A be an elementary abelian group of order q3.
Suppose that A acts as a coprime group of automorphisms on a profinite group G. Assume
that CG(a)′ is periodic for each a ∈ A#. Then G′ is locally finite.

Proof. Let π = π (G′) be the set of primes for which G′ has a non-trivial Sylow pro-p
subgroup. Note that by the profinite version of Corollary 2.5 π (G′) = ⋃

a∈A# π (CG(a)′).
According to the result of Herfort [5], the set of primes dividing the orders of elements
of a periodic profinite group is necessarily finite. Therefore, each set π (CG(a)′) is finite,
since CG(a)′ is periodic for all a ∈ A#. Hence π is finite as well. Write π = {p1, . . . , pn}.

Choose p ∈ π . It follows from Lemma 2.7(2) that G′ posses an A-invariant Sylow
pro-p subgroup P. Let A1, . . . , As be the maximal subgroups of A and let P1, . . . , Pr

be all the subgroups of the form P ∩ [CG(Ai), CG(Aj)] for suitable i, j. It is clear that
each subgroup Pk is contained in CG(a)′ for a suitable non-trivial element a ∈ Ai ∩ Aj.
The non-triviality of the intersection Ai ∩ Aj follows from the fact that A has order q3

while both Ai and Aj have order q2. The profinite version of Theorem 2.6 tells us that

P = P1P2 · · · Pr. (3)

Let x be an element of P. In view of (3), we can write x = x1 · · · xr, where each xi

belongs to some CG(a)′ for a ∈ A#. Note that r ≤ q2 + q + 1.
Let Y be the subgroup of G generated by the orbits xA

l for l = 1, . . . , r. Each orbit
contains at most q2 elements so it follows that Y has at most q2r generators. In order
to prove that G′ is locally finite it is enough to show that Y is finite. Indeed, once this
is proved, we can say that every element x in P is of finite order, so that P is periodic.
Now let y be an arbitrary element of G′ and let 〈y〉 be the procyclic subgroup generated
by y. Write 〈y〉 = S1 · · · Sn, where Si denotes the Sylow pi-subgroup of 〈y〉. Note that
each Si is contained in G′ and from the argument above we know that every Sylow
pi-subgroup of G′ is periodic. So also each Si is periodic and it follows that Si is finite,
since it is actually a cyclic group. Note also that there are only finitely many of them
since π is finite. Thus, it follows that also 〈y〉 is finite and so y has finite order. This
holds for every element of G′, so G′ is periodic. Now Zelmanov’s theorem [22] tells us
that G′ is locally finite, as desired.

Therefore, it remains to prove that Y = 〈xA
1 , . . . , xA

r 〉 is finite. The Lie-theoretic
techniques that we have described in Section 3 will now play a fundamental role. Let
L = Lp(Y ) and M = Y/�(Y ). Then M is a subspace of L such that L = 〈M〉. Since Y
is generated by at most q2r elements, it follows that the dimension of M is at most q2r.

For any a ∈ A# consider the subgroup Ta = CG(a)′ ∩ Y and denote by Ma the
image of Ta in M. Since every element xi belongs to some Ta, it follows that M =∑

a∈A# Ma. Note that Ta is a pro-p group that satisfies a coset identity, since CG(a)′ is
periodic. Furthermore, Ta has an Np-series formed by Di(Y ) ∩ Ta, so we can consider
the corresponding Lie algebra which is isomorphic to Lp(Y, Ta). Note that the algebra
〈Ma〉 generated by Ma is a subalgebra of Lp(Y, Ta). It follows from Proposition 3.5
that 〈Ma〉 is PI.

Every element of Ma corresponds to an element of CG(a)′ which is of finite order
by the hypothesis. Moreover, for a fixed a ∈ A#, any Lie commutator in elements of
Ma corresponds to a group commutator in elements of CG(a)′. In view of Lemma 3.4,
we conclude that any Lie commutator in elements of Ma is ad-nilpotent. We deduce
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from Theorem 3.1 that 〈Ma〉 is nilpotent. Thus, by Lemma 3.3, there exists a number
v such that

[L, Ma, . . . , Ma︸ ︷︷ ︸
v

] = 0. (4)

Now we will extend the ground field �p by a primitive qth root of unity ω and let
L = L ⊗ �p[ω]. We view L as a Lie algebra over �p[ω] and so it is natural to identify L
with the �p-subalgebra L ⊗ 1 of L. We note that if an element x ∈ L is ad-nilpotent,
then the ‘same’ element x ⊗ 1 is also ad-nilpotent in L. We will say that an element of
L is homogeneous if it belongs to S = S ⊗ �p[ω] for some homogeneous subspace S
of L.

The group A acts naturally on L, and this action extends uniquely to L. It is easy
to see that CL(a) = CL(a). Recall that, by (2), CL(a) = Lp(Y, CY (a)). The field �p[ω]
contains all eigenvalues for any a ∈ A regarded as a linear transformation of L. It
follows that any A-invariant subspace of L can be decomposed as a direct sum of
one-dimensional A-invariant subspaces. Certainly, the subspaces Ma are A-invariant.
Using the fact that the algebra L is generated by M = ∑

a∈A# Ma and that the �p[ω]-
dimension of M is at most q2r, we can choose vectors v1, . . . , vm ∈ ∪a∈A# Ma with
m ≤ q2r such that each one of them is a common eigenvector for all a ∈ A and M is
spanned by these vectors. It follows from equation (4) that

[L, Ma, . . . , Ma︸ ︷︷ ︸
v

] = 0,

and, since every common eigenvector vi lies in some Ma, we conclude that

each of the vectors v1, . . . , vm is ad-nilpotent. (5)

Now we wish to show that

if l1, l2 ∈ L are common eigenvectors for all a ∈ A and,

if they are homogeneous, then [l1, l2] is ad-nilpotent. (6)

Since l1, l2 are common eigenvectors for all a ∈ A, it follows that there exist two
maximal subgroups A1 and A2 of A such that l1 ∈ CL(A1) and l2 ∈ CL(A2). Let a be
a non-trivial element in A1 ∩ A2. Since CG(a)′ is periodic and CL(a) = Lp(Y, CY (a)),
it follows from Lemma 3.4 that any homogeneous element of [CL(a), CL(a)] is ad-
nilpotent. Observe that the commutator [l1, l2] is a homogeneous element of L and so
it can be written as

[l1, l2] = y0 ⊗ 1 + y1 ⊗ ω + · · · + yq−2 ⊗ ωq−2,

for suitable homogeneous elements y0, . . . , yq−2 of [CL(a), CL(a)]. Note that the
elements y0, . . . , yq−2 correspond to some elements g0, . . . , gq−2 that belong to CY (a)′.
Put K = 〈y0, . . . , yq−2〉 and H = 〈g0, . . . , gq−2〉. Since H is a subgroup of CY (a), it
follows that H satisfies a coset identity. Combining now the fact that K ≤ L(Y, H)
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with Lemma 3.7 we conclude that there exists an integer u such that

[L, K, . . . , K︸ ︷︷ ︸
u

] = 0.

Clearly, this implies that

[L, K, . . . , K︸ ︷︷ ︸
u

] = 0.

Since the commutator [l1, l2] belongs to K , we have (6), as desired.
Since CY (a)′ is periodic, CY (a) satisfies a coset identity. Hence, by using Lemma 3.8,

we obtain that CL(a) satisfies a certain multilinear polynomial identity. The identity also
holds in CL(a) = CL(a). Therefore Theorem 3.2 implies that L satisfies a polynomial
identity. Combining this fact with (5) and (6) we apply Theorem 3.1 and deduce that
L is nilpotent. Hence, L is nilpotent as well.

Since Y is a finitely generated pro-p group and L = Lp(Y ) is nilpotent, it follows
from Lemma 3.6 that Y is p-adic analytic. So Y contains an open characteristic
powerful subgroup W (see Chapter 3 in [2]). The subgroup W is again finitely generated.
Let W0 be the set of elements of finite order in W . It follows that W0 is a finite
group [2, Theorem II.4.20]. By the profinite version of Lemma 2.3 we have [W, Y ] =
〈[CW (a), CY (a)] | a ∈ A#〉. Thus, it follows that [W, Y ] is generated by elements of finite
order and so [W, Y ] � W0. This implies that the quotient group Y/W0 is central-by-
finite since W is central in Y modulo W0 and W has finite index in Y . By Schur’s
theorem [12, p. 102] the image of Y ′ in Y/W0 is finite and we conclude that Y ′ is
also finite. Note that Y/Y ′ is abelian and generated by finitely many elements of finite
order, since every xA

i is contained in CG(a)′ for a suitable a ∈ A#. It follows that the
quotient Y/Y ′ is finite and so is Y . This concludes the proof of the theorem. �
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