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Abstract

A continuum of stochastic dominance rules, also referred to as fractional stochastic dom-
inance (SD), was introduced by Müller, Scarsini, Tsetlin, and Winkler (2017) to cover
preferences from first- to second-order SD. Fractional SD can be used to explain many
individual behaviors in economics. In this paper we introduce the concept of fractional
pure SD, a special case of fractional SD. We investigate further properties of fractional
SD, for example the generating processes of fractional pure SD via γ -transfers of prob-
ability, Yaari’s dual characterization by utilizing the special class of distortion functions,
the separation theorem in terms of first-order SD and fractional pure SD, Strassen’s rep-
resentation, and bivariate characterization. We also establish several closure properties
of fractional SD under quantile truncation, under comonotonic sums, and under distor-
tion, as well as its equivalence characterization. Examples of distributions ordered in the
sense of fractional SD are provided.
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1. Introduction

Stochastic dominance has been studied extensively in applied probability, particularly in
the financial and economic literature concerning investment decision-making under uncer-
tainty. The concept of stochastic dominance is quite old and has served as one of the main
ways to rank risk prospects or distributions. Of special importance are first-order stochastic
dominance (FSD) and second-order stochastic dominance (SSD). We refer the reader to [15],
[24], and [26] for an overview of the SD relations and other stochastic orders. The stochastic
dominance relation has an equivalent characterization by a certain class of utility functions.
Let X and Y be two random variables (risk prospects). Y dominates X in the FSD means
that Eu(Y) ≥Eu(X) for all increasing utility functions u for which the expectations exist, and
Y dominates X in the SSD means that Eu(Y) ≥Eu(X) for all increasing and concave utility
functions u.
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In the literature of expected utility theory, it is known that a utility function with local con-
vexities is able to explain many individual behaviors, for example, many people buy insurance
and also gamble; see [2], [11], [13], [21], among others. Motivated by this, Huang, Tzeng, and
Zhao [12] and Müller, Scarsini, Tsetlin, and Winkler [25] proposed two notions of fractional
SD, both serving a continuum of FSD and SSD. However, their approaches are different. For
γ ∈ [0, 1], Müller et al. [25] developed one notion of (1 + γ )-stochastic dominance, denoted
by (1 + γ )-SD, by adding constraints to the ratio of marginal utilities. The formal definition
of (1 + γ )-SD will be given in Definition 2.1. Huang et al. [12] introduced another notion
of fractional SD, denoted by (1 + η)HTZ-SD, by adding constraints to the lower bound of
the Arrow–Pratt index of absolute risk aversion, where η ∈ [0, 1]. Both the degree parame-
ters γ and η have intuitive interpretations. Compared with [25], the approach of [12] can be
used to introduce (n + η)th-degree SD between nth-degree SD and (n + 1)th-degree SD, where
η ∈ [0, 1] and n is any positive integer. It should be pointed out that, for γ ∈ [0, 1], the notion
of γ -risk aversion introduced in [20] is equivalent to consistency with (1 + γ )-SD of [25].

The purpose of this paper is to investigate further properties of (1 + γ )-SD in the sense
of [25]. The rest of this paper is organized as follows. Section 2 recalls from [25] the defini-
tion of (1 + γ )-SD and its basic properties, including the characterization theorem in terms of
integral conditions of distribution functions or their inverse functions and closure properties
under transformation and mixture. In this section we also introduce the concept of (1 + γ )-
pure stochastic dominance, denoted by (1 + γ )-PSD, which will enable one to understand
(1 + γ )-SD. Section 3 consists of the main results of this paper, including the generating pro-
cesses of (1 + γ )-PSD via γ -transfers of probability, Yaari’s dual characterization by utilizing
the special class of distortion functions, the separation theorem in terms of FSD and (1 + γ )-
PSD, Strassen’s representation, and bivariate characterization of (1 + γ )-SD. Applications of
the main results are given in Section 4. We establish several closure properties of (1 + γ )-
SD under p-quantile truncation, under comonotonic sums, and under distortion, as well as its
equivalence characterization. Examples of distributions ordered in the sense of (1 + γ )-SD are
provided in Section 5.

Throughout this paper, let (�,A, P) be a probability space, and let L1 = L1(�,A, P) be the
set of all random variables in the probability space with finite expectations. For any distribution
function F, the inverse F−1 of F is taken to be the left continuous version defined by

F−1(α) = inf{x : F(x) ≥ α} for α ∈ (0, 1],

with F−1(0) = inf{x : F(x)> 0}. For any x ∈R, x+ = max{x, 0} and x− = max{−x, 0}. All
expectations are implicitly assumed to exist whenever they are written.

2. Preliminaries

2.1. Definitions

The following definition of stochastic dominance of order (1 + γ ) was given in [25]. We
first introduce the following notation. Let U be the set of all increasing functions on R. For
γ ∈ [0, 1], define

Uγ = {u ∈ U : u is differentiable, 0 ≤ γ u′(y) ≤ u′(x) for all x ≤ y, x, y ∈R}.
Definition 2.1. ([25].) Let X and Y be two random variables in R. We say that X is dominated
by Y in stochastic dominance of order (1 + γ ), denoted by X �(1+γ )-SD Y , if

E[u(X)] ≤E[u(Y)] for all u ∈ Uγ .
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The order �(1+γ )-SD cannot be defined for any γ > 1 because Uγ is empty except for
constant functions in this case. For 0 ≤ γ1 < γ2 ≤ 1, X �(1+γ1)-SD Y implies X �(1+γ2)-SD Y
since Uγ2 ⊆ Uγ1 . This means that lower-degree stochastic dominance always implies higher-
degree stochastic dominance. In Definition 2.1, the class Uγ of functions can be replaced by
U∗
γ defined by

U∗
γ =

{
u : 0 ≤ γ u(x4) − u(x3)

x4 − x3
≤ u(x2) − u(x1)

x2 − x1
for all x1 < x2 ≤ x3 < x4

}
.

It is obvious that �1-SD is equivalent to FSD while �2-SD is equivalent to SSD. The orders
�1-SD and �2-SD are also denoted by �FSD and �SSD, respectively. Thus (1 + γ )-SD estab-
lishes an interpolation between FSD and SSD. For more properties of FSD, SSD, and other
related stochastic orders, refer to [24] and [26].

To investigate the properties of (1 + γ )-SD, we introduce the following (1 + γ )-pure
stochastic dominance, denoted by (1 + γ )-PSD.

Definition 2.2. Let X, Y ∈ L1, and define

γ =
∫ ∞
−∞ (G(x) − F(x))+dx∫ ∞
−∞ (G(x) − F(x))−dx

(2.1)

with the convention that 0/0 = 0. X is said to be smaller than Y in the pure stochas-
tic dominance of order (1 + γ ) if γ ∈ [0, 1] and X �(1+γ )-SD Y . We denote this by
X �(1+γ )−PSD Y .

In fact (2.1) can be replaced by∫ 1

0
(G−1(α) − F−1(α))−dα = γ

∫ 1

0
(G−1(α) − F−1(α))+dα. (2.2)

The motivation of the constraint condition (2.1) or (2.1) comes from Proposition 2.1, which
gives a characterization of the order �(1+γ )-SD. For γ = 1, (2.1) is equivalent to E[X] =E[Y].
Thus 2-PSD is exactly the concave order. Equation (2.1) appears to be similar to that used
in [14] to define ε-almost FSD as follows: Y dominates X by ε-almost FSD, denoted by
X �almost(ε)

1 Y , if and only if ∫ ∞
−∞ (G(x) − F(x))+dx∫ ∞
−∞ (G(x) − F(x))−dx

≤ ε

1 − ε
,

where 0< ε < 1/2. Therefore X �(1+γ )−PSD Y implies X �almost(ε)
1 Y with ε = γ /(1 + γ ).

However, the converse is not true.
Hence (1 + γ )-PSD enables one to understand (1 + γ )-SD well. First, (1 + γ )-PSD can be

used to characterize (1 + γ )-SD (see Theorem 3.2). Second, if Y dominates X in (1 + γ )-SD,
and if there does not exist Z ∈ L1, not identically distributed with Y , such that Y dominates
Z in the FSD and Z dominates X in (1 + γ )-SD, then Y dominates X in (1 + γ )-PSD (see
Remark 3.4). These two points are the motivation for us to introduce (1 + γ )-PSD.

It should be pointed out that the order �(1+γ )-PSD for γ ∈ (0, 1) is not a partial order because
it does not possess transitivity, as illustrated by the following example.

Example 2.1. Let X, Y , and Z be three random variables with probability mass functions
(PMFs) P(X = −1) = 0.4, P(X = 2) = 0.1, P(X = 3) = 0.5, P(Y = 0) = P(Y = 3) = 1/2, and
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FIGURE 1. Probability mass movement from Z to Y and then to X.

P(Z = 2) = 1. By Theorem 2.7 in [25], it can be seen from the probability mass movement
illustrated in Figure 1 that

X �(1+1/2)-PSD Y �(1+1/2)-PSD Z.

However,
X �(1+5/12)-PSD Z and X 	�(1+1/2)-PSD Z.

This means that the order �(1 + 1/2)-PSD does not possess transitivity.

Let X ∼ F and Y ∼ G. For convenience, we will write X �order Y and F �order G inter-
changeably for any order relation �order.

2.2. Basic properties

In this subsection we list three basic properties of (1 + γ )-SD from [25]. The first charac-
terizes (1 + γ )-SD by using integral conditions, and the second and third are concerned with
preservation properties of (1 + γ )-SD under transformations and under mixture, respectively.

Proposition 2.1. ([25].) Let F and G be the distribution functions of X and Y, respectively. For
γ ∈ [0, 1], X �(1+γ )-SD Y if and only if∫ t

−∞
(G(x) − F(x))+dx ≤ γ

∫ t

−∞
(G(x) − F(x))−dx for all t ∈R, (2.3)

or, equivalently,∫ p

0
(G−1(α) − F−1(α))−dα ≤ γ

∫ p

0
(G−1(α) − F−1(α))+dα for all p ∈ (0, 1]. (2.4)

In view of Proposition 2.1, it is seen that X �(1+γ )-PSD Y if and only if (2.1) and∫ ∞

t
(G(x) − F(x))+dx ≥ γ

∫ ∞

t
(G(x) − F(x))−dx for all t ∈R.

Proposition 2.2. ([25].) If X �(1+γ1γ2)-SD Y for γ1, γ2 ∈ [0, 1], then u(X) �(1+γ2)-SD u(Y) for
all u ∈ Uγ1 .
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Proposition 2.3. ([25].) If random variables X, Y, and � satisfy

[X |�= θ ] �(1+γ )-SD [Y |�= θ ]

for some γ ∈ [0, 1] and all θ in the support of �, then X �(1+γ )-SD Y.

Immediate consequences of Proposition 2.3 are as follows. (i) Let Fi and Gi be the distri-
bution functions of Xi and Yi, respectively. For α ∈ (0, 1), assume that Z1 ∼ αF1 + (1 − α)F2
and Z2 ∼ αG1 + (1 − α)G2. If Xi �(1+γ )-SD Yi for i = 1, 2, then Z1 �(1+γ )-SD Z2. (ii) Let X1
and X2 be independent, and let Y1 and Y2 be independent. If Xi �(1+γ )-SD Yi for i = 1, 2, then

X1 + X2 �(1+γ )-SD Y1 + Y2. (2.5)

3. Further properties

3.1. Generating processes

For a better understanding of (1 + γ )-SD and (1 + γ )-PSD, we recall the definition of
γ -transfer, which is due to [25].

Definition 3.1. (γ -transfer.) Let X and Y be two discrete random variables with PMFs f and g,
respectively. We say that Y is obtained from X via a γ -transfer if there exist x1 < x2 < x3 < x4
and η1, η2 > 0 with η2(x4 − x3) = γ η1(x2 − x1) such that

g(x1) = f (x1) − η1,

g(x2) = f (x2) + η1,

g(x3) = f (x3) + η2,

g(x4) = f (x4) − η2,

g(z) = f (z) for all other values z.

In the definition of γ -transfer, γ is not necessarily restricted to be in [0,1], which can take
any value in R+ = [0,∞). Further, γ -spread is closely related to γ -transfer: X is said to be
obtained from Y by a γ -spread if Y is obtained from X by a γ -transfer. In a γ -transfer, a mass
of size η2 is moved to the left from x4 by	2 = x4 − x3, while a mass of size η1 is moved to the
right from x1 by 	1 = x2 − x1 such that 	2η2 = γ	1η1. A γ transfer increases the mean (i.e.
EX ≤EY) for γ ∈ [0, 1]. In Example 2.1, Y is obtained from X by a 1/2-transfer, Z is obtained
from Y by a 1/2-transfer, and Z is obtained from X by a 5/12-transfer.

In Definition 3.1, γ -transfer can also be defined when x1 < x2 = x3 < x4. In this case the
conditions g(x2) = f (x2) + η1 and g(x3) = f (x3) + η2 were replaced by g(x2) = f (x2) + η1 + η2.

The following proposition states that γ -transfers account for almost all mass transfers
of (1 + γ )-SD. Specifically, part (ii) of Proposition 3.1 can be seen from the proof of

Theorem 2.8 of [25]. For two random variables X and Y , we use X
d= Y to denote that X and Y

have the same distribution, and let ‖X‖∞ = ess-sup(|X|).
Proposition 3.1. ([25].) Let X and Y be two random variables such that X �(1+γ )-SD Y for
γ ∈ [0, 1].

(i) If X and Y both have finite outcomes, then there exist X1, . . . , Xn such that X
d= X1,

Xn ≤ Y a.s., and Xi is a γ -transfer of Xi−1 for i = 2, . . . , n.
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(ii) If X and Y are bounded, then there exist Xn and Yn with finite outcomes such that ‖Xn −
X‖∞ → 0, ‖Yn − Y‖∞ → 0 as n → ∞, and Xn �(1+γ )-SD Yn for n ∈N.

(iii) If X and Y are general random variables, then there exist Xn and Yn with finite outcomes
such that Xn → X, Yn → Y in distribution, E[Xn] →E[X], E[Yn] →E[Y] as n → ∞,
and Xn �(1+γ )-SD Yn for n ∈N.

For (1 + γ )-PSD, we have the following result analogous to Proposition 3.1.

Proposition 3.2. Let X and Y be two random variables such that X �(1+γ )-PSD Y for some
γ ∈ [0, 1].

(i) If X and Y both have finite outcomes, then there exist X1, . . . , Xn such that X
d= X1,

Xn
d= Y a.s., and Xi is a γ -transfer of Xi−1 for i = 2, . . . , n.

(ii) If X and Y are bounded, then there exist Xn and Yn with finite outcomes such that ‖Xn −
X‖∞ → 0, ‖Yn − Y‖∞ → 0 as n → ∞, and Xn �(1+γ )-PSD Yn for n ∈N.

(iii) If X and Y are general random variables, then there exist Xn and Yn with finite outcomes
such that Xn → X, Yn → Y in distribution, E[Xn] →E[X], E[Yn] →E[Y] as n → ∞,
and Xn �(1+γ )-PSD Yn for n ∈N.

Proof. Without loss of generality, assume γ ∈ (0, 1], and let F and G be the distribution
functions of X and Y , respectively.

(i) The result can be obtained by modifying the proof of Theorem 2.7 in [25]. We use the
same notation as in [25]. Define

A+(p) =
∫ p

0
(G−1(α) − F−1(α))+dα and A−(p) =

∫ p

0
(G−1(α) − F−1(α))−dα.

Let w(a) and v(a) be the smallest numbers satisfying

A+(w(a)) = a

γ
and A−(v(a)) = a for a ∈ [0, A−(1)].

In view of Proposition 2.1, we have w(a) ≤ v(a) for all a ∈ [0, A−(1)]. For each a ∈ [0, A−(1)],
define

x1(a) = F−1(w(a)), x2(a) = G−1(w(a)), x3(a) = G−1(v(a)), x4(a) = F−1(v(a)).

Since X and Y both have finite outcomes, there exist 0 = a1 < a2 < · · ·< ak = A−(1) such
that the functions x1(a), . . . , x4(a) are constant on (ai−1, ai]. Denote the corresponding values
of these functions as x
,i = x
(a) for a ∈ (ai−1, ai], 
= 1, . . . , 4. It was shown in [25] that
x1,i < x2,i ≤ x3,i < x4,i, and that for each i ∈ {1, . . . , k}, the probability masses of F at points
x1,i and x4,i, respectively, are moved to the points x2,i and x3,i of G by a γ -transfer.

Note that when X �(1+γ )-PSD Y , it follows from (2.2) that A−(1) = γA+(1). Then
G−1(p) ≥ F−1(p) for p> v(ak), and G−1(p) ≤ F−1(p) for p>w(ak). This means that F(x) ≥
G(x) for x> x4,k and F(x) ≤ G(x) for x> x1,k. Thus F(x) = G(x) for all x> x4,k and the jumps
of F and G occur in the points belonging to the set {x
,i : i = 1, . . . , k;
= 1, . . . , 4}. Therefore
G can be obtained from F only by a sequence of k γ -transfers.

(ii) First assume that F and G have finite crossings, that is, there exist −∞< x0 < x1 <

· · ·< xm <∞ such that either F ≤ G or F ≥ G holds in (xi−1, xi), i = 1, . . . ,m, where the
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supports of F and G are contained in [x0, xm]. For i = 1, . . . ,m and n ∈N, denote

xi,j = 1

n
[(n − j)xi−1 + jxi], j = 0, . . . , n.

Define two random variables Xn and Yn with distribution functions Fn and Gn, respectively,
where

Fn(x) = 1

xi,j − xi,j−1

∫ xi,j

xi,j−1

F(y) dy, Gn(x) = 1

xi,j − xi,j−1

∫ xi,j

xi,j−1

G(y) dy

for x ∈ [xi,j−1, xi,j). It is easy to see that Xn and Yn both have finite outcomes. It can be verified
that in each interval [xi,j−1, xi,j), either Fn ≤ Gn or Fn ≥ Gn, and the direction of the inequality
is the same as F ≤ G or F ≥ G on the same interval. Hence we have∫ xi,j

xi,j−1

(Gn(y) − Fn(y))+dy =
∫ xi,j

xi,j−1

(G(y) − F(y))+dy

and ∫ xi,j

xi,j−1

(Gn(y) − Fn(y))−dw =
∫ xi,j

xi,j−1

(G(y) − F(y))−dy.

Then it follows from F �(1+γ )-PSD G that Fn �(1+γ )-PSD Gn. On the other hand, it is easy to
see that max{|X|, |Y|} ≤ M := xm − x0 <∞,

|F−1(α) − F−1
n (α)| ≤ 1

n
max{xi,j − xi,j−1} ≤ 2M

n
, α ∈ (0, 1),

and

|G−1(α) − G−1
n (α)| ≤ 1

n
max{xi,j − xi,j−1} ≤ 2M

n
, α ∈ (0, 1).

Hence we can easily construct Xn ∼ Fn and Yn ∼ Gn such that |Xn − X| ≤ 2M/n and |Yn − Y| ≤
2M/n.

Next, consider that X and Y have infinite crossings, that is, we have infinite intervals
{(xi−1, xi), i ∈ I} such that G − F has the same sign in any one interval. Note that X and Y
are both bounded. Then, for n ∈N, the number of intervals with length larger than 1/n is
finite. Then we can merge some of the remaining neighboring intervals to make the lengths
smaller than 2/n and the number of intervals finite. Without loss of generality, assume that
the transformed intervals are still denoted by {(xi−1, xi), i = 1, . . . ,m}. In each interval, either
G − F has the same sign or the length of the interval is less than 2/n. For the intervals where
G − F has the same sign, we use the same method as in the above case to define the values of
Fn and Gn in the intervals. For the other intervals, take (xi−1, xi) as an example, where G − F
has different signs on (xi−1, xi) and xi − xi−1 < 2/n. Let x∗ ∈ (xi−1, xi) such that x∗ − xi−1 is
equal to the length of Ai = {x ∈ (xi−1, xi) : F(x) ≥ G(x)}. Denote Ac

i = (xi−1, xi) \ Ai and define

Fn(x) = 1

x∗ − xi−1

∫
Ai

F(y) dy, Gn(x) = 1

x∗ − xi−1

∫
Ai

G(y) dy

for x ∈ (xi−1, x∗), and

Fn(x) = 1

xi − x∗

∫
Ac

i

F(y) dy, Gn(x) = 1

xi − x∗

∫
Ac

i

G(y) dy
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for x ∈ (x∗, xi). Then we have∫ xi

xi−1

(Gn(y) − Fn(y))+dw =
∫ xi

xi−1

(G(y) − F(y))+dy

and ∫ xi

xi−1

(Gn(y) − Fn(y))−dy =
∫ xi

xi−1

(G(y) − F(y))−dy.

Then it can be checked that F �(1+γ )-PSD G implies Fn �(1+γ )-PSD Gn. The remaining proof is
similar to the above case.

(iii) We modify the proof of Theorem 2.8 in [25] for our purpose. For unbounded random
variables X and Y , define

ψ(t) =
∫ t

−∞
(G(x) − F(x))+dx and ξ (t) = γ

∫ t

−∞
(G(x) − F(x))−dx.

We approximate X and Y by Xn and Yn, respectively, as follows. Define

Xn =

⎧⎪⎨⎪⎩
x∗

n if X ≤ −n,

X if −n< X ≤ n,

y∗
n if X > n,

and

Yn =

⎧⎪⎨⎪⎩
−n if Y ≤ −n,

Y if −n< Y ≤ n,

n if Y > n,

where

x∗
n = −n − ξ ( − n)

γF( − n)
and y∗

n = n + ξ (n) −ψ(n) +ψ( − n)

F(n)
.

Since ξ (t) ≥ψ(t) ≥ 0 for all t, it follows that x∗
n ≤ −n and y∗

n ≥ n. Let Fn and Gn denote the
distribution functions of Xn and Yn, respectively, and define

ψn(t) =
∫ t

−∞
(Gn(x) − Fn(x))+dx and ξn(t) = γ

∫ t

−∞
(Gn(x) − Fn(x))−dx.

Then it can be checked that

ψn(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t<−n,

ψ(t) −ψ( − n) if −n< t ≤ n,

ψ(n) −ψ( − n) + (t − n)F(n) if n< t ≤ y∗
n,

ξ (n) if t> y∗
n,
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and

ξn(t) =
{
ξ (t) if −n ≤ t ≤ n,

ξ (n) if t> n.

Thus Xn and Yn are bounded, ψn(t) ≤ ξn(t) for all t ∈R, and ψn( + ∞) = ξ (n) = ξn

( + ∞). This means Xn �(1+γ )-PSD Yn for all n ∈N. On the other hand, ψ( + ∞) = ξ

( + ∞) implies that E[Xn] →E[X] and Xn → X in distribution. Obviously, E[Yn] →E[Y] and
Yn → Y in distribution. The desired result now follows from part (ii). This completes the
proof. �

3.2. Dual characterization

Let H denote the set of all probability perception functions h (also referred to as distortion
functions in the actuarial literature), that is, h : [0, 1] → [0, 1] is increasing, satisfying h(0) = 0
and h(1) = 1. For γ ∈ [0, 1], define

Hγ = {h ∈H : h is differentiable, 0 ≤ γ h′(y) ≤ h′(x) for all 0 ≤ x ≤ y ≤ 1}
and

H∗
γ =

{
h ∈H : 0 ≤ γ h(p4) − h(p3)

p4 − p3
≤ h(p2) − h(p1)

p2 − p1
for all 0 ≤ p1 < p2 ≤ p3 < p4 ≤ 1

}
,

where h′(0) and h′(1) represent the right derivative at 0 and the left derivative at 1, respectively.
Obviously, Hγ is the subset of H∗

γ containing all continuously differentiable h ∈H∗
γ .

In the following theorem, we establish in the framework of Yaari’s dual theory that
(1 + γ )-SD is equivalent to a common preference among all decision-makers with probabil-
ity perception function h ∈Hγ . This is a dual characterization of (1 + γ )-SD as the latter is
originally defined via a common preference based on utility functions. For Yaari’s dual theory,
see [30].

Theorem 3.1. Let F and G be the distribution functions of X and Y, respectively. For γ ∈ [0, 1],
the following statements are equivalent:

(i) X �(1+γ )-SD Y,

(ii)
∫ 1

0
F−1(α) dh(α) ≤

∫ 1

0
G−1(α) dh(α) for all h ∈Hγ ,

(iii)
∫ 1

0
F−1(α) dh(α) ≤

∫ 1

0
G−1(α) dh(α) for all h ∈H∗

γ .

Proof. Part (iii) is equivalent to (ii). It suffices to prove that (iii)⇒ (2.4) ⇒(ii).
To prove (iii)⇒ (2.4), for p ∈ (0, 1], define a distortion function h ∈H such that

h′(α) =

⎧⎪⎨⎪⎩
γ if F−1(α) ≤ G−1(α) and α ≤ p,

1 if F−1(α)>G−1(α) and α ≤ p,

0 if α > p.

It is easy to verify that h ∈H∗
γ and hence (2.4) holds.

To prove the other direction (2.4) ⇒(ii), we use arguments similar to those in the
proof of Theorem 2.4 of [25]. For completeness, we give the details. Let h ∈Hγ , i.e. h
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satisfies 0 ≤ γ h′(y) ≤ h′(x) for all 0 ≤ x ≤ y ≤ 1. Then R := supv∈(0,1) h′(v) ∈ (0,∞) since
0 ≤ h′(v) ≤ h′(1)/γ <∞. For any fixed n ≥ 2, define εn = 2−n and K as the largest integer k
for which

R(1 − kεn) ≥ inf
v∈(0,1)

h′(v),

and define a partition of [0,1] into intervals [vk, vk+1] as follows: v0 = 0, vK+1 = 1, and

vk = sup{v : h′(v) ≥ R(1 − kεn)}, k = 1, . . . ,K.

Then we define
mk = sup{h′(v) : vk−1 ≤ v ≤ vk} = R(1 − (k − 1)εn).

It follows that γmk+1 ≤ h′(v) ≤ mk for v ∈ [vk−1, vk], i.e. γ (mk − Rεn) ≤ h′(v) ≤ mk for all x ∈
[vk−1, vk] and k = 1, . . . ,K + 1. This implies that∫ vk

vk−1

(G−1(α) − F−1(α)) dh(α)

=
∫ vk

vk−1

(G−1(α) − F−1(α))+h′(α) dα −
∫ vk

vk−1

(G−1(α) − F−1(α))−h′(α) dα

≥ γ (mk − Rεn)
∫ vk

vk−1

(G−1(α) − F−1(α))+dα − mk

∫ vk

vk−1

(G−1(α) − F−1(α))−dα

= mkTk − εnck,

with

Tk = γ

∫ vk

vk−1

(G−1(α) − F−1(α))+dα −
∫ vk

vk−1

(G−1(α) − F−1(α))−dα

and

ck = γR
∫ vk

vk−1

(G−1(α) − F−1(α))+dα.

Note that (2.4) implies
∑k

i=1 Ti ≥ 0 for all k = 1, . . . ,K + 1, which in turn implies∑K+1
k=1 mkTk ≥ 0 for all decreasing non-negative sequences mk. Thus

∫ 1

0
(G−1(α) − F−1(α)) dh(α) ≥

K+1∑
k=1

(mkTk − εnck)

≥ −εnγR
∫ 1

0
(G−1(α) − F−1(α))+dα.

Letting n → ∞ yields part (ii). This completes the proof of the theorem. �
Remark 3.1. To get a better understanding of the dual characterization of (1 + γ )-SD, we
introduce the following index Qf of a probability perception function h:

Qh = sup
0≤p1<p2≤p3<p4≤1

(h(p4) − h(p3))/(p4 − p3)

(h(p1) − h(p1))/(p2 − p1)
.

Here we use the convention that a/0 = +∞ for any real number a> 0 and 0/0 = 0. As men-
tioned in [5], Qh is an index of non-concavity of h ∈H, Qh ≥ 1, and Qh = 1 corresponds exactly
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to concavity. Thus 1/Qh can be regarded as an index of the greediness of a decision-maker
with probability perception function h (in short, a decision-maker h). That is, for h1, h2 ∈H,
Qh1 <Qh2 means that h1 is more greedy than h2. Therefore, for γ ∈ [0, 1],

H∗
γ =

{
h ∈H : Qh ≤ 1

γ

}
denotes the set of decision-makers with index of greediness larger than or equal to γ . On the
other hand, U∗

γ or U∗
γ has a similar interpretation in terms of risk aversion.

The order X �(1+γ )-SD Y is defined in Definition 2.1 by comparing expected utilities
E[u(X)] and E[u(Y)] for all utility functions u ∈ Uγ , while the dual characterization in Theorem
3.1 compares the expected values E[Xh] and E[Yh] of random variables Xh and Yh for all prob-
ability perception functions h ∈Hγ , where Xh and Yh have the distorted distribution functions
h(F(x)) and h(G(x).

3.3. Separation theorem

We establish a separation theorem similar to the classic separation theorem for 2-SD. That
is, a (1 + γ )-SD can be separated by an FSD and a (1 + γ )-PSD.

Theorem 3.2. For X, Y ∈ L1, X �(1+γ )-SD Y if and only if there exist Z1, Z2 ∈ L1 such that

X �(1+γ )-PSD Z1 �FSD Y (3.1)

and
X �FSD Z2 �(1+γ )-PSD Y . (3.2)

Proof. The sufficiency is trivial. It requires us to prove the necessity. To this end, let F and
G denote the distribution functions of X and Y , respectively, and assume that X �(1+γ )-SD Y
but X 	�(1+γ )-PSD Y , i.e. (2.1) does not hold. By Proposition 2.1, we have

	 := γ

∫ ∞

−∞
(G(x) − F(x))−dx −

∫ ∞

−∞
(G(x) − F(x))+dx> 0.

For t ∈R= [ − ∞,∞], define

δt(x) = (G(x) − F(x))−1{x≥t}, (3.3)

where δ−∞(x) ≡ (G(x) − F(x))− and δ∞(x) ≡ 0. Note that δt(x) is decreasing in t ∈R for each
fixed x,

∫ ∞
−∞ δt(x) dx is continuous in t ∈R, and

γ

∫ ∞

−∞
δ∞(x) dx = 0<	≤ γ

∫ ∞

−∞
δ−∞(x) dx.

Then there exists t0 ∈R such that

γ

∫ ∞

−∞
δt0 (x) dx =	. (3.4)

We define
H1(x) = G(x) + δt0 (x), x ∈R,
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which is an increasing and right-continuous function. From (3.3), we have that

G(x) ≤ H1(x) ≤ G(x) + (G(x) − F(x))− = F(x) ∨ G(x), x ∈R,

and hence H1 is a distribution function on R such that H1 �FSD G. From (3.4), one can verify
that ∫ ∞

−∞
(H1(x) − F(x))+dx = γ

∫ ∞

−∞
(H1(x) − F(x))−dx (3.5)

and ∫ t

−∞
(H1(x) − F(x))+dx ≤ γ

∫ t

−∞
(H1(x) − F(x))−dx for all t ∈R. (3.6)

In fact, (3.5) follows from the fact that (H1(x) − F(x))+ = (G(x) − F(x))+ and (H1(x) −
F(x))− = (G(x) − F(x))− − δt0 (x) for all x ∈R. Equation (3.6) follows from the facts that
H1(x) = G(x) for x< t0 and H1(x) = G(x) ∨ F(x) for x ≥ t0, which implies the inequality∫ ∞

t
(H1(x) − F(x))+dx ≥ γ

∫ ∞

t
(H1(x) − F(x))−dx for all t ∈R.

This implies that F �(1+γ )-SD H1. Then (3.1) follows by taking Z1 as a random variable having
distribution function H1.

A similar argument to the above can be applied to obtain (3.2) by choosing H2(x) = F(x) −
ηt1 (x), where

ηt(x) = (F(x) − G(x))+1{x<t} (3.7)

and t1 ∈R such that

γ

∫ ∞

−∞
ηt1 (x) dx =	. (3.8)

This completes the proof of the theorem. �
Remark 3.2. For γ = 1, 2-PSD is the concave order. The separation result in Theorem 3.2
reduces to the separation theorem for the SSD: X �SSD Y if and only if there exists a random
variable Z such that

X �cv Z �FSD Y or X �FSD Z �cv Y .

This is a well-known result; see parts (c) and (d) of Theorem 4.A.6 in [26]. There are several
proofs of the above separation theorem for the SSD in the literature, for example [19] and [22].
For γ = 1, the proof of Theorem 3.2 is new and differs from those in the literature.

Remark 3.3. The proof of Theorem 3.2 gives us a method for constructing random variables
Z1 and Z2 such that (3.1) and (3.2) hold, which is illustrated by Example 5.3.

Remark 3.4. From the proof of Theorem 3.2, we conclude the following.

(i) If X �(1+γ )-SD Y , and if there does not exist Z ∈ L1 such that Z 	 d= Y , Z �FSD Y and
X �(1+γ )-SD Z, then X �(1+γ )-PSD Y .

(ii) If X �(1+γ )-SD Y , and if there does not exist Z ∈ L1 such that Z 	 d= X, X �FSD Z and
Z �(1+γ )-SD Y , then X �(1+γ )-PSD Y .

https://doi.org/10.1017/jpr.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.44


214 T. MAO ET AL.

3.4. Strassen’s representation

A famous result of Strassen [28] states that X �SSD Y if and only if there exist random
variables X̂ and Ŷ defined on a common probability space with the same distributions as X
and Y such that E[X̂ | Ŷ] ≤ Ŷ , a.s. Müller and Rüschendorf [23] presented an elementary and
constructive proof of this result on the real line. For more details on Strassen’s theorem and
extensions, see [1], [9], [10], [18], and references therein.

For (1 + γ )-SD, we have the following partial Strassen’s representation.

Theorem 3.3. Let X and Y be two random variables. If there exist X̂ and Ŷ on the same

probability space such that X̂
d= X, Ŷ

d= Y, and

E[(̂Y − X̂)− | Ŷ] ≤ γ E[(̂Y − X̂)+ | Ŷ] a.s. (3.9)

for some γ ∈ [0, 1], then X �(1+γ )-SD Y.

Proof. First we assert that, for any random variable Z,

E[Z+] ≤ γ E[Z−] =⇒ Z �(1+γ )-SD 0,

which can be seen by verifying (2.3). Then it follows from (2.5) that for any y ∈R, Z +
y �(1+γ )-SD y. Let supp(G) denote the support of the distribution function of Y . Note that (3.9)
implies that, for almost all y ∈ supp(G),

E[(X̂ − y)+ | Ŷ = y] ≤ γ E[(X̂ − y)− | Ŷ = y],

and hence [X̂ | Ŷ = y] �(1+γ )-SD y. Then, for any φ ∈ U∗
γ , we have E[φ(X̂) | Ŷ = y] ≤ φ(y) for

almost all y ∈ supp(G). Hence

E[φ(X)] =E[φ(X̂)] =E{E[φ(X̂) | Ŷ]} ≤E[φ(̂Y)] =E[φ(Y)].

We thus complete the proof. �
For γ = 1, (3.9) reduces to E[X̂ | Ŷ] ≤ Ŷ a.s. In Theorem 3.3, (3.9) is a sufficient condi-

tion for (1 + γ )-SD. However, it is not a necessary condition, as illustrated by the following
counterexample.

Example 3.1. Let X and Y be two binary random variables with PMFs

P(X = 0) = P(X = 4) = 1/2 and P(Y = 2) = P(Y = 3) = 1/2.

Then Y is a 1/2-transfer of X and hence X �(1+1/2)-SD Y . Assume that there exist X̂ and Ŷ on

the same probability space such that X̂
d= X, Ŷ

d= Y , and (3.9) holds with γ = 1/2. Denote b =
P(X̂ = 0 | Ŷ = 3). From (3.9) it follows that b ≥ 2. However, b ∈ [0, 1]. This is a contradiction.
Therefore (3.9) is not necessary for (1 + γ )-SD.

To state the next proposition, we recall the definition of comonotonicity. A random vec-
tor (X1, . . ., Xn) is said to be comonotonic if there exist non-decreasing functions gi (i =
1, . . . , n), and a random variable W such that (X1, . . . , Xn)

d= (g1(W), . . . , gn(W)). For more
on comonotonicity, see [7], [8], and references therein.

Proposition 3.3. Let F and G be two distribution functions. If G is continuous on R, then
F �(1+γ )-SD G for γ ∈ [0, 1] if and only if there exist X ∼ F and Y ∼ G on the same probability
space such that they are comonotonic and

E[(Y − X)− | Y ≤ y] ≤ γ E[(Y − X)+ | Y ≤ y] for all y ∈R. (3.10)
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Proof. To show sufficiency, let U be a random variable uniformly distributed on (0, 1). Then

we have (X, Y)
d= (F−1(U),G−1(U)) and hence, for y ∈R,

E[(Y − X)− | Y ≤ y] =E[(G−1(U) − F−1(U))− | G−1(U) ≤ y]

=E[(G−1(U) − F−1(U))− | U ≤ G(y)]

= 1

G(y)

∫ G(y)

0
(G−1(α) − F−1(α))−dα.

Similarly,

E[(Y − X)+ | Y ≤ y] = 1

G(y)

∫ G(y)

0
(G−1(α) − F−1(α))+dα.

Since G is continuous, then for any p ∈ (0, 1) there exists y ∈R such that G(y) = p. It follows
from (3.10) that (2.4) holds for all p ∈ (0, 1). It is obvious to check that (2.4) holds for p = 1
by the continuity of the two functions of (2.4). Therefore we have F �(1+γ )-SD G.

Necessity follows immediately by taking (X, Y) := (F−1(U),G−1(U)) with U uniformly
distributed on (0,1). This completes the proof. �

3.5. Bivariate characterization

To state the bivariate characterization for (1 + γ )-SD, we introduce the following class of
bivariate functions:

Gγ = {φ : R2 →R | x �→ φ(x, y) − φ(y, x) ∈ U∗
γ for each y}. (3.11)

Proposition 3.4. Let X and Y be two independent random variables. Then X �(1+γ )-SD Y if
and only if

E[φ(X, Y)] ≤E[φ(Y, X)] for all φ ∈ Gγ .

Proof. The sufficiency is trivial by noting that, for any u ∈ U∗
γ , the bivariate function

φ(x, y) := u(x) belongs to the set Gγ . To see the necessity, for any φ ∈ Gγ , define

u(x) := E[φ(x, Y)] −E[φ(Y, x)], x ∈R.

It can be easily verified that u ∈ U∗
γ and thus

E[φ(X, Y)] −E[φ(Y, X)] =E[u(X)] ≤E[u(Y)] = 0.

Necessity then follows, and hence we complete the proof. �

It is worth noting that the above result still holds true if all U∗
γ are replaced by Uγ . For

γ = 1, the equivalence characterization was implicitly given in [27]; see also Theorem 4.A.7
of [26]. An application of Proposition 3.4 is given in Example 5.6.

4. Applications

4.1. Closure under p-quantile truncation

Proposition 4.1. Let X and Y be two continuous random variables with respective distribution
functions F and G. If X �(1+γ )-SD Y, then

[X | X ≤ F−1(p)] �(1+γ )-SD [Y | Y ≤ G−1(p)], p ∈ (0, 1). (4.1)
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Proof. Let φ ∈ Uγ , and suppose that X �(1+γ )-SD Y . From Proposition 2.2 it follows that
φ(X) �SSD φ(Y). Since F−1

φ(X)(α) = φ(F−1(α)) for each α, by Theorems 4.A.1 and 4.A.3 in
[26], we have ∫ p

0
φ(F−1(α)) dα ≤

∫ p

0
φ(G−1(α)) dα, p ∈ (0, 1),

or, equivalently, E[φ(X) | X ≤ F−1(p)] ≤E[φ(Y) | Y ≤ G−1(p)] since F and G are continuous.
This means that (4.1) holds. �

From the proof of Proposition 4.1, we conclude that if X and Y are general random vari-
ables (not necessarily continuous), then F �(1+γ )-SD G implies that F−1(U)1{U≤p} �(1+γ )-SD
G−1(U)1{U≤p} for p ∈ (0, 1), where U is a random variable uniformly distributed on (0,1).

Remark 4.1. When γ = 1, the result of Proposition 4.1 was implicitly given by Theorem
4.A.42 of [26] without the constraint of continuity. However, we point out that the condition
of continuity is necessary. To see it, we give a counter-example. Define two random variables
X and Y with PMFs given by P(X = 0) = 0.625, P(X = 4) = 0.375 and P(Y = 1) = 0.7, P(Y =
2) = 0.1, P(Y = 3) = 0.2. It is easy to verify that E[X] = 1.5 =E[Y], and hence X �SSD Y . Let
F and G denote the distribution functions of X and Y , respectively. Note that, for p = 0.7,

[X | X ≤ F−1(p)] = [X | X ≤ 4] = X

and
[Y | Y ≤ G−1(p)] = [Y | Y ≤ 1] = 1.

Thus [X | X ≤ F−1(p)] 	≺SSD [Y | Y ≤ G−1(p)].

4.2. Closure under comonotonic sums

Equation (2.5) states that (1 + γ )-SD is closed under independent sums. With Theorem 3.1
we can prove that (1 + γ )-SD is closed under comonotonic sums.

Proposition 4.2. Let Xi and Yi be two random variables such that Xi �(1+γ )-SD Yi for i = 1, 2
and γ ∈ [0, 1]. If X1 and X2 are comonotonic and Y1 and Y2 are comonotonic, then X1 +
X2 �(1+γ )-SD Y1 + Y2.

Proof. Let Fi and F denote the distribution functions of Xi and X1 + X2, respectively.
Similarly, let Gi and G denote the distribution functions of Yi and Y1 + Y2, respectively.
Since X1 and X2 are comonotonic, it follows from [8] that F−1(α) = F−1

1 (α) + F−1
2 (α) for

all α ∈ (0, 1). Similarly, G−1(α) = G−1
1 (α) + G−1

2 (α) for all α ∈ (0, 1). By Theorem 3.1 (iii),
Xi �(1+γ )-SD Yi implies that∫ 1

0
F−1

i (α) dh(α) ≤
∫ 1

0
G−1

i (α) dh(α) for all h ∈H∗
γ , i = 1, 2.

Thus ∫ 1

0
F−1(α) dh(α) ≤

∫ 1

0
G−1(α) dh(α) for all h ∈H∗

γ ,

implying X1 + X2 �(1+γ )-SD Y1 + Y2 by applying Theorem 3.1 (iii) again. This completes the
proof of the proposition. �
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4.3. Closure under minima

We first present a general result concerning the preservation of (1 + γ )-SD under increasing
and concave transforms.

Proposition 4.3. Let X1, . . . , Xn be a set of independent random variables, and let Y1, . . . , Yn

be another set of independent random variables. If Xi �(1+γ )-SD Yi for i = 1, . . . , n and γ ∈
[0, 1], then

g(X1, . . . , Xn) �(1+γ )-SD g(Y1, . . . , Yn) (4.2)

for every increasing and component-wise concave function g.

Proof. Without loss of generality, assume that all random variables Xi and Yi are indepen-
dent. The proof is by induction on n. For n = 1, the result is just Proposition 2.2. Assume that
(4.2) holds true for n = m − 1 ≥ 1. Let g : Rm →R be an increasing and component-wise con-
cave function, and let u ∈ Uγ . Then u(g(x1, . . . , xm)) ∈ Uγ with respect to xj with other xi fixed,
and hence

E[u(g(X1, X2, . . . , Xm)) | X1 = x] =E[u(g(x, X2, . . . , Xm))]

≤E[u(g(x, Y2, . . . , Ym))]

=E[u(g(X1, Y2, . . . , Ym)) | X1 = x],

where the equality follows from the independence of all random variables, and the inequality
follows from the induction assumption. Thus

E[u(g(X1, X2, . . . , Xm))] ≤E[u(g(X1, Y2, . . . , Ym))].

Similarly, we have

E[u(g(X1, Y2, . . . , Ym))] ≤E[u(g(Y1, Y2, . . . , Ym))].

This proves the desired result. �

From Proposition 4.3 we obtain the following corollary by observing that min{x1, . . . , xn}
is an increasing and component-wise concave function.

Corollary 4.1. Let X1, . . . , Xn be a set of independent random variables, and let Y1, . . . , Yn be
another set of independent random variables. If Xi �(1+γ )-SD Yi for i = 1, . . . , n and γ ∈ [0, 1],
then

min{X1, X2, . . . , Xn}�(1+γ )-SD min{Y1, Y2, . . . , Yn}.
For γ = 1, Corollary 4.1 for SSD was implicitly given in [17]; see, for example, the

paragraph after Corollary 4.A.16 in [26].

4.4. Closure under distortion

Under suitable conditions, (1 + γ )-SD is preserved under a distortion transformation on the
space of distribution functions.

Proposition 4.4. Let F and G be two distribution functions such that F �(1+γ )-SD G, and right
continuous h ∈Hβ with γ ∈ [0, 1], β ∈ (0, 1], and γ ≤ β. Then h(F) �(1+γ /β)-SD h(G).

Proof. Denote Fh = h(F) and Gh = h(G). Then their left inverse functions are F−1
h (p) =

F−1(h−1(p)) and G−1
h (p) = G−1(h−1(p)), where all the inversion functions are left inverse.
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Then, for any φ ∈H∗
γ /β , we have∫ 1

0
F−1

h (α) dφ(α) =
∫ 1

0
F−1(h−1(α)) dφ(α) =

∫ 1

0
F−1(α) dφ(h(α)).

Similarly, ∫ 1

0
G−1

h (α) dφ(α) =
∫ 1

0
G−1(α) dφ(h(α)).

Note that for any φ ∈H∗
γ /β it can be verified that φ(h) ∈H∗

γ . To see this, for any 0 ≤ p1 < p2 ≤
p3 < p4 ≤ 1 we have

γ
φ(h(p4)) − φ(h(p3))

p4 − p3
= γ

β

φ(h(p4)) − φ(h(p3))

h(p4) − h(p3)
· β h(p4) − h(p3)

p4 − p3

≤ φ(h(p2)) − φ(h(p1))

h(p2) − h(p1)
· h(p2) − h(p1)

p2 − p1

= φ(h(p2)) − φ(h(p1))

p2 − p1
,

where the inequality follows from the fact that φ ∈H∗
γ /β , h ∈H∗

β , and h is increasing. Then
the desired result follows immediately from Theorem 3.1 (iii). �

For SSD (γ = β = 1), Proposition 4.4 was implicitly given in Theorem 4.2 of [29], which
was proved by using the fact that any concave h ∈H can be approximated by a sequence of
piecewise linear concave distortion functions of the form hα(t) = min{t/α, 1}, 0<α ≤ 1.

4.5. Equivalence characterization

In the expected utility theory, a decision-maker is risk-averse if she has an increasing and
concave utility function. The next proposition states that, for two risks X and Y satisfying
X �(1+γ )-SD Y , if a risk-averse decision-maker is indifferent between X and Y , then X and Y
are identically distributed.

Proposition 4.5. Let γ ∈ [0, 1), and let X and Y be two random variables such that
X �(1+γ )-SD Y. If E[φ(X)] =E[φ(Y)] for some strictly increasing and concave function φ, then

X
d= Y.

Proof. By Proposition 4.3, it suffices to show the case when φ(x) = x for x ∈R, i.e. E[X] =
E[Y]. Let F and G denote the distribution functions of X and Y , respectively. By Proposition
2.1, we have that X �(1+γ )-SD Y if and only if (2.3) holds, that is,

(1 − γ )
∫ t

−∞
(G(x) − F(x))+dx ≤ γ

∫ t

−∞
(F(x) − G(x)) dx for all t ∈R. (4.3)

Note that

E[Y] −E[X] =
∫ ∞

−∞
(F(x) − G(x)) dx.

Then, taking t → ∞ in (4.3) yields

(1 − γ )
∫ ∞

−∞
(G(x) − F(x))+dx ≤ γ (E[Y] −E[X]) = 0,
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which implies that (G(x) − F(x))+ = 0 for all x ∈R, i.e. G(x) ≤ F(x) for all x ∈R. Thus we have

X �st Y . By E[X] =E[Y], it follows from Theorem 1.A.8 of [26] that X
d= Y . This completes

the proof. �
In the literature, several authors have investigated conditions under which ordered random

variables are equal in distribution; see, for example, [3], [4], [6], and [16].
An immediate consequence of Proposition 4.5 is the following corollary.

Corollary 4.2. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be two collections of independent and
identically distributed random variables. If X1 �(1+γ )-SD Y1 and

E

[
min

1≤i≤n
Xi

]
=E

[
min

1≤i≤n
Yi

]
,

then X1
d= Y1.

Proof. From Corollary 4.1 it follows that min1≤i≤n Xi}�(1+γ )-SD min1≤i≤n Yi. By

Proposition 4.5, E[ min1≤i≤n Xi] =E[ min1≤i≤n Yi] implies that min1≤i≤n Xi
d= min1≤i≤n Yi.

Therefore, by the relation between the survival functions of X1 and min1≤i≤n Xi, we have

X1
d= Y1. �

5. Examples

In this section we present several examples of distributions ordered with respect to the order
�(1+γ )-SD except for those given in [25], and also give some applications of the main results
in the previous section.

Example 5.1. (Binary distribution.) Let X and Y be two binary random variables with PMFs
given by

P(X = x1) = p = 1 − P(X = x2) and P(Y = y1) = q = 1 − P(Y = y2),

where x1 < x2 and y1 < y2, and assume that X �(1+γ )-SD Y for some γ ∈ (0, 1]. Denote X ∼ F
and Y ∼ G. From (2.3), it follows that x1 ≤ y1 and

x1p + x2(1 − p) ≤ y1q + y2(1 − q). (5.1)

If y2 > x2, then define a new random variable Y∗ such that P(Y∗ = y1) = q = 1 − P(Y∗ = x2).
Then X �(1+γ )-SD Y∗ if and only if X �(1+γ )-SD Y . So, without loss of generality, assume that
x1 ≤ y1 < y2 ≤ x2 and (5.1) holds. Then

G(x) − F(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−p for x1 ≤ x< y1,

q − p for y1 ≤ x< y2,

1 − p for y2 ≤ x< x2,

0 otherwise.

It follows that X �(1+γ )-SD Y if and only if

(q − p)+(y2 − y1) + (1 − p)(x2 − y2) ≤ γ [p(y1 − x1) + (q − p)−(y2 − y1)]

or, equivalently,

γ ≥ (q − p)+(y2 − y1) + (1 − p)(x2 − y2)

p(y1 − x1) + (q − p)−(y2 − y1)
.
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Example 5.2. (Special transfer.) Let Y be a discrete random variable with PMF given by

Y x1 x2 · · · xn

Prob. p1 p2 · · · pn

where x1 < x2 < · · ·< xn. Let 0<α < 1 and Pi = ∑i
j=1 pi for each i. There exists a k such that

Pk−1 <α ≤ Pk, where P0 = 0. Define a random variable X with PMF given by

X x1 − a · · · xk−1 − a xk − a xk + b xk+1 + b · · · xn + b

Prob. p1 · · · pk−1 a − Pk−1 Pk − α pk+1 · · · pn

where a, b> 0 such that (1 − α)b ≤ αa. Denote X ∼ F and Y ∼ G. Obviously, F single-crosses
G from above at point xk. It is easy to see that

A :=
∫ xk

−∞
[F(x) − G(x)] dx = αa

and

B :=
∫ ∞

xk

[G(x) − F(x)] dx = (1 − α)b.

From Corollary 2.5 in [25], it follows that X �(1+γ )-SD Y if and only if

γ ≥ B

A
= (1 − α)b

αa
,

and that X �(1+γ )-PSD Y if and only if γ = (1 − α)b/(αa).

Example 5.3. (Application of the separation theorem.) Let X be a discrete random variable
with PMF given by

X 0 1 2 3 4 5

Prob. 1/8 1/12 1/4 1/8 7/24 1/8

and let Y be another random variable with P(Y = 2) = P(Y = 4) = 1/2. We claim that
X �(1 + 1/2)-SD Y . To verify this assertion, define a discrete random variable X1 with PMF given
by

X1 0 2 3 4

Prob. 1/8 1/4 1/8 1/2

It can be checked that X1 is a 1/2-transfer of X, and Y is a 1/2-transfer of X1, and hence
X �(1 + 1/2)-PSD X1 and X1 �(1+1/2)-PSD Y . This implies X �(1+1/2)-SD Y (but X 	�(1+1/2)-PSD
Y). Now we apply the method in the proof of Theorem 3.2 to construct two random variables
Z1 and Z2 such that

X �(1+1/2)-PSD Z1 �FSD Y, X �FSD Z2 �(1+1/2)-PSD Y .
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Let X ∼ F, Y ∼ G, Z1 ∼ H1, and Z2 ∼ H2, and let δt(x) and ηt(x) be defined by (3.3) and (3.7),
respectively. Then t0 = 3 in (3.4) and t1 = 2/3 in (3.8). Hence

H1(x) = G(x) + δt0 (x), x ∈R,

and
H2(x) = F(x) − ηt1 (x), x ∈R.

Therefore the PMFs of Z1 and Z2, respectively, are given by

Z1 2 3 4 Z2 2/3 1 2 3 4 5
and

Prob. 1/2 1/12 5/12 Prob. 1/8 1/12 1/4 1/8 7/24 1/8

Example 5.4. (Uniform distribution.) Let X and Y be random variables uniformly distributed
over the intervals (a,b) and (c,d), respectively, and assume that X �(1+γ )-SD Y for some γ ∈
(0, 1]. From (2.3) it follows that a ≤ c and X �SSD Y , which implies E[X] ≤E[Y] (i.e. a + b ≤
c + d). If d> b, then X �FSD Y . Without loss of generality, assume that a< c< d ≤ b and
a + b ≤ c + d. Denote X ∼ F and Y ∼ G. Then F single-crosses G at x0 ∈ (c, d) from above,
where

x0 = a + (b − a)(c − a)

b + c − a − d
= c + (d − c)(c − a)

b + c − a − d
.

It is easy to check that

A :=
∫ x0

−∞
[F(x) − G(x)] dx = (c − a)2

2(b + c − a − d)

and

B :=
∫ ∞

x0

[G(x) − F(x)] dx = (c − a)2

2(b + c − a − d)
+ 1

2
(b + a − c − d).

From Corollary 2.5 in [25] it follows that X �(1+γ )-SD Y if and only if

γ ≥ B

A
=

(
b − d

c − a

)2

.

Example 5.5. (Shifted exponential distribution.) Let X and Y be two random variables with
respective density functions given by f (x) = λe−λ(x−a) for x> a and g(y) =μe−μ(y−b) for
y> b, where a, b ∈R and λ, μ> 0. Assume that X �(1+γ )-SD Y for γ ∈ (0, 1]. It is known
that X �SSD Y if and only if a ≤ b and δ := b + 1/μ− a − 1/λ≥ 0. If a ≤ b and λ≥μ,
then X �FSD Y . So, assume without loss of generality that a ≤ b, λ<μ and δ ≥ 0. Then F
single-crosses G at x0 ∈ (c, d) from above, where

x0 = a + μ(b − a)

μ− λ
= b + λ(b − a)

μ− λ
.

It is easy to check that

A :=
∫ x0

−∞
[F(x) − G(x)] dx = δ +	 and B :=

∫ ∞

x0

[G(x) − F(x)] dx =	,
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where

	 :=
(

1

λ
− 1

μ

)
exp

{
−λμ(b − a)

μ− λ

}
> 0.

From Corollary 2.5 in [25] it follows that X �(1+γ )-SD Y if and only if

γ ≥ B

A
= 	

δ+	
.

Example 5.6. (Application of bivariate characterization.) Choose two real numbers a< b such
that 2a ≥ b, and define

γ := 2a − b

2b − a
∈ [0, 1].

Let ψ be any differentiable function with a ≤ψ ′(x) ≤ b for all x ∈R. Then φ(x, y) := ψ(2x +
y) ∈ Gγ , where Gγ is defined by (3.11). If X �(1+γ )-SD Y , and X and Y are independent, then

E[ψ(X + 2Y)] ≤E[ψ(2X + Y)]

by Proposition 3.4.
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