Linear Maps Transforming the Unitary Group

Wai-Shun Cheung and Chi-Kwong Li

Abstract. Let $U(n)$ be the group of $n \times n$ unitary matrices. We show that if ϕ is a linear transformation sending $U(n)$ into $U(m)$, then m is a multiple of n, and ϕ has the form

$$
A \mapsto V\left[\left(A \otimes I_{s}\right) \oplus\left(A^{t} \otimes I_{r}\right)\right] W
$$

for some $V, W \in U(m)$. From this result, one easily deduces the characterization of linear operators that map $U(n)$ into itself obtained by Marcus. Further generalization of the main theorem is also discussed.

1 Main Result

Denote by M_{n} the algebra of $n \times n$ complex matrices. Let $U(n)$ be the group of $n \times n$ unitary matrices. The purpose of this note is to prove the following result.

Theorem 1 Suppose $\phi: M_{n} \rightarrow M_{m}$ is a linear transformation satisfying $\phi(U(n)) \subseteq$ $U(m)$. Then m is a multiple of n and

$$
\phi(A)=V\left[\left(A \otimes I_{s}\right) \oplus\left(A^{t} \otimes I_{r}\right)\right] W
$$

for some fixed $V, W \in U(m)$.
For any linear map $\phi: M_{n} \rightarrow M_{m}$ satisfying $\phi(U(n)) \subseteq U(m)$, one can replace it by the mapping ψ of the form $A \mapsto \phi\left(I_{n}\right)^{-1} \phi(A)$. Then $\psi: M_{n} \rightarrow M_{m}$ is linear, unital, i.e., $\psi\left(I_{n}\right)=I_{m}$, and satisfies $\psi(U(m)) \subseteq U(n)$. Using this observation, one sees that Theorem 1 is equivalent to the following.

Theorem 2 Let $\phi: M_{n} \rightarrow M_{m}$ be a unital linear transformation satisfying $\phi(U(n)) \subseteq U(m)$. Then m is a multiple of n and

$$
\begin{equation*}
\phi(A)=V\left[\left(A \otimes I_{s}\right) \oplus\left(A^{t} \otimes I_{r}\right)\right] V^{-1} \tag{1}
\end{equation*}
$$

for some fixed $V \in U(m)$.
By Theorems 1 and 2, one easily deduces the following result of Marcus [5].

[^0]Corollary 3 A linear operator ϕ on M_{n} satisfying $\phi(U(n)) \subseteq U(n)$ must be of the form

$$
A \mapsto V A W \quad \text { or } A \mapsto V A^{t} W
$$

for some $V, W \in U(n)$. If, in addition, we assume that ϕ is unital, then ϕ is an (algebra) automorphism or anti-automorphism.

Let $\mathrm{GL}(m)$ be the group of $m \times m$ invertible matrices. By a result of Auerbach [1] (see [3] for an elementary proof), if G is a bounded subgroup of $\operatorname{GL}(m)$, then there exists a positive definite matrix $P \in M_{m}$ such that $P G P^{-1} \subseteq U(m)$. So, if $\phi: M_{n} \rightarrow M_{m}$ satisfies $\phi(U(n)) \subseteq G$ for a bounded subgroup G of $G L(m)$, then we may apply Theorem 1 to the mapping $A \mapsto P \phi(A) P^{-1}$ to determine the structure of ϕ. Thus, we have the following corollary.

Corollary 4 Suppose $\phi: M_{n} \rightarrow M_{m}$ is a linear transformation such that $\phi(U(n)) \subseteq$ G, where G is a bounded subgroup of $\mathrm{GL}(m)$. Then m is a multiple of n and

$$
\begin{equation*}
\phi(A)=L V\left[\left(A \otimes I_{s}\right) \oplus\left(A^{t} \otimes I_{r}\right)\right] L^{-1} \tag{2}
\end{equation*}
$$

for some fixed $L \in \mathrm{GL}(m)$ and $V \in U(m)$.
If we just assume that $\phi(U(n)) \subseteq \mathrm{GL}(m)$, the conclusion of Corollary 4 will not hold as shown by the following example.

Example 5 Consider the unital linear $\phi: M_{2} \rightarrow M_{2}$ defined by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left(\begin{array}{ll}
a & i b \\
c & d
\end{array}\right) .
$$

One readily checks that $\phi(U(2)) \subseteq G L(2)$. However, ϕ does not preserve the rank of matrices, and hence is not of the form (2) with $L \in \mathrm{GL}(2)$ and $V \in U(2)$.

Marcus and Purves [6, Theorem 2.1] showed that Corollary 3 is valid if we replace $U(n)$ by $\mathrm{GL}(n)$. One may wonder whether Theorem 1 or Theorem 2 is valid if we replace $U(m)$ and $U(n)$ by $\mathrm{GL}(m)$ and $\mathrm{GL}(n)$, respectively. This is not true as shown by the following example, which is a slight modification of [2, Example 4.3 C].

Example 6 Consider the unital linear map $\phi: M_{2} \rightarrow M_{6}$ defined by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left(\begin{array}{ll}
a I_{3} & b I_{3} \\
c I_{3} & d I_{3}
\end{array}\right)+0_{3} \oplus\left(\begin{array}{ccc}
0 & b & 0 \\
c & 0 & -b \\
0 & c & 0
\end{array}\right)
$$

One readily checks that $\operatorname{det}(\phi(A))=\operatorname{det}(A)^{3}$, and hence $\phi(\mathrm{GL}(2)) \subseteq \mathrm{GL}(6)$. However, $\phi\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$ is not similar to $-I_{3} \oplus I_{3}$. Hence, ϕ is not of the form (1) with $V \in \operatorname{GL}(6)$.

2 Proof of Theorem 2

Let $X=[1] \oplus-I_{n-1}$. Since $Y=\phi(X)$ and $\phi(0.6 I+0.8 i X)=0.6 I+0.8 i Y$ are unitary, it follows that Y is both hermitian and unitary. So we can further assume that $Y=I_{k} \oplus-I_{m-k}$; otherwise, replace ϕ by a mapping of the form $A \mapsto W^{*} \phi(A) W$ for some $W \in U(m)$ such that $W^{*} \phi(X) W=Y$. We always assume that

$$
\begin{equation*}
\phi\left(I_{n}\right)=I_{m} \quad \text { and } \quad \phi\left([1] \oplus-I_{n-1}\right)=I_{k} \oplus-I_{m-k} \tag{3}
\end{equation*}
$$

in the rest of the proof. Our result will follow once we establish the following.
Assertion There exist $V \in U(m)$ and nonnegative integers r and s with $r+s=k$ such that $V \phi(A) V^{*}$ is a block matrix $\left(A_{i j}\right)_{1 \leq i, j \leq n}$, where $A_{i j}=a_{i j} I_{s} \oplus a_{j i} I_{r}$ for all $1 \leq i$, $j \leq n$.

We prove the Assertion by induction on $n \geq 2$. When $n=2$, consider the matrix $T=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Note that $\phi(T), \phi(0.6 I+0.8 i T)$ and $\phi(0.6([1] \oplus[-1])+0.8 T)$ are all unitary, which is possible if and only if $k=m-k$, i.e. $m=2 k$, and $\phi(T)=\left(\begin{array}{cc}0 & U \\ U^{*} & 0\end{array}\right)$ for some unitary matrix $U \in U(k)$. We can further assume that $U=I_{k}$; otherwise, replace ϕ by the mapping $A \mapsto\left(U^{*} \oplus I\right) \phi(A)(U \oplus I)$. Next, consider $S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Then $\phi(S), \phi(0.6 I+0.8 S)$ and $\phi(0.6([1] \oplus[-1])+0.8 i S)$ are all unitary, which is possible if and only if $\phi(S)=\left(\begin{array}{cc}0 & V \\ -V^{*} & 0\end{array}\right)$. Since $\phi(0.6 T \pm 0.8 i S)$ are also unitary, we see that V is hermitian. We can further assume that $V=I_{s} \oplus-I_{k-s}$; otherwise, replace ϕ by a mapping of the form $A \mapsto\left(W^{*} \oplus W^{*}\right) \phi(A)(W \oplus W)$, where $W \in U(m / 2)$ satisfies $W^{*} V W=I_{s} \oplus-I_{k-s}$. As a result, the modified mapping is of the asserted form with $V=I_{m}$.

Now, suppose the Assertion is true for $n=p \geq 2$, and consider $n=p+1$. By (3), we have

$$
\phi\left([1] \oplus 0_{p}\right)=I_{k} \oplus 0_{m-k}
$$

Moreover, for any $U \in U(p)$ and any $\mu \in \mathbf{C}$ with $|\mu|=1$, we have $\phi([1] \oplus \mu U) \in$ $U(m)$. It follows that $\phi([1] \oplus U)=I_{k} \oplus \bar{\phi}(U) \in U(m)$. By induction assumption, there exist $W \in U(m-k)$ and integers l and s such that $m-k=p l$, and for any $A=\left(a_{i j}\right) \in M_{p}$ we have $\bar{\phi}(A)=W\left(A_{i j}\right) W^{*}$, where $A_{i j}=a_{i j} I_{s} \oplus a_{j i} I_{l-s}$ for all $1 \leq i, j \leq p$. We may assume that $W=I_{m-k}$; otherwise, replace ϕ by the mapping $A \mapsto\left(I_{k} \oplus W^{*}\right) \phi(A)\left(I_{k} \oplus W\right)$. Thus, for any $A=\left(a_{i j}\right) \in M_{p}$, we have

$$
\begin{equation*}
\phi([1] \oplus A)=I_{k} \oplus\left(A_{i j}\right), \quad A_{i j}=a_{i j} I_{s} \oplus a_{j i} I_{l-s} \tag{4}
\end{equation*}
$$

Now, for $X=0_{p} \oplus[1]$, we have

$$
\phi(X)=0_{m-l} \oplus I_{l} .
$$

We can apply the previous argument to $\phi(U \oplus[1])$ for $U \in U(p)$ and conclude that there exist $V \in U(m-l)$ and integers u, v such that $m-l=p u$, and for any $B=\left(b_{i j}\right) \in M_{p}$

$$
\begin{equation*}
\phi(B \oplus[1])=V\left(B_{i j}\right) V^{*} \oplus I_{l}, \quad B_{i j}=b_{i j} I_{v} \oplus b_{j i} I_{u-v} \tag{5}
\end{equation*}
$$

Next, consider $X=[1] \oplus 0_{p-1} \oplus[1]$. By (4) and (5), we see that

$$
\phi(X)=V\left[I_{u} \oplus 0_{m-l-u}\right] V^{*} \oplus I_{l}=I_{k} \oplus 0_{m-k-l} \oplus I_{l} .
$$

Hence $u=k$ and $V=V_{1} \oplus U_{2}$ for some $V_{1} \in U(k), U_{2} \in U(m-l-k)$. Moreover, from $m-k=p l$ and $m-l=p u$, we have $k=l$ and $m=k(p+1)$.

Let $E_{i j} \in M_{p-1}$ be the matrix with an 1 at the (i, j)-th position and 0 elsewhere. By considering $\phi(X)$ with $X=[1] \oplus E_{i i} \oplus[1]$, we see that $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{p}$ for some $V_{1}, \ldots V_{p} \in U(k)$. By considering $\phi(X)$ for $X=[1] \oplus E_{i j}+E_{j i} \oplus$ [1], we see that $V_{2}=V_{3}=\cdots=V_{p}$. By considering [1] $\oplus E_{i j} \oplus[1]$, we see that $v=s$ and $V_{2}=Y_{1} \oplus Y_{2}$ for some $Y_{1} \in U(s), Y_{2} \in U(k-s)$. We may now assume that $V=I_{m}$; otherwise, replace ϕ by the mapping

$$
A \mapsto\left[V_{1} \oplus\left(I_{p} \otimes V_{2}\right)\right]^{*} \phi(A)\left[V_{1} \oplus\left(I_{p} \otimes V_{2}\right)\right]
$$

Hence, (4) and (5) hold with $V=I_{m}$; so $\phi(A)=\left(A_{i j}\right)$ where $A_{i j}=a_{i j} I_{s} \oplus a_{j i} I_{k-s}$ if $(i, j) \neq(1, p+1)$ or $(p+1,1)$.

Now, apply the previous argument to $\phi(C)$ for those matrices $C \in M_{p+1}$ such that $c_{2 j}=c_{i 2}=0$ for $i \neq 2 \neq j$ and $c_{22}=1$. We see that there exists $X, Y \in U(k)$ so that

$$
A_{1, p+1}=X\left(a_{1, p+1} I_{s} \oplus a_{p+1,1} I_{k-s}\right) Y^{*} \quad \text { and } \quad A_{p+1,1}=Y\left(a_{p+1,1} I_{s} \oplus a_{1, p+1} I_{k-s}\right) X^{*} .
$$

The rest of our proof is to show that X and Y may be assumed to be I_{k}. To this end, let

$$
U=\left(\begin{array}{ccc}
0.6 & 0 \cdots 0 & 0.8 \\
-0.8 & 0 \cdots 0 & 0.6 \\
0 & & 0 \\
\vdots & I_{p-1} & \vdots \\
0 & & 0
\end{array}\right) \in U(p+1)
$$

Then $\phi(U) \in U(m)$. The submatrix of $\phi(U)$ formed by the first $2 k$ rows equals

$$
\left(\begin{array}{ccc}
0.6 I_{k} & 0 \cdots 0 & X\left[0.8 I_{s} \oplus 0_{k-s}\right] Y^{*} \\
-0.8 I_{s} \oplus 0_{k-s} & * \cdots * & 0.6 I_{s} \oplus 0_{k-s}
\end{array}\right)
$$

and has orthonormal row vectors. Therefore $X\left[I_{s} \oplus 0_{k-s}\right] Y^{*}=I_{s} \oplus 0_{k-s}$. Next, considering U^{*}, we have $X\left[0_{s} \oplus I_{k-s}\right] Y^{*}=0_{s} \oplus I_{k-s}$. Thus for $(i, j)=(1, p+1)$ or $(p+1,1)$, we also have $A_{i, j}=a_{i j} I_{s} \oplus a_{j i} I_{k-s}$. The proof of our Assertion is hereby completed, and the theorem follows.

Note Added in Proof Professor Peter Šemrl pointed out that Theorem 2 can also be proved by establishing the following.

Lemma 7 If $\phi: M_{n} \rightarrow M_{m}$ is a unital linear map satisfying $\phi(U(n)) \subseteq U(m)$ then $\phi\left(H^{2}\right)=\phi(H)^{2}$ for any Hermitian $H \in M_{n}$.

Proof Suppose $H \in M_{n}$ is Hermitian. Then

$$
e^{i t H}=I+i t H-t^{2} H^{2} / 2+\cdots \quad \text { and } \quad \phi\left(e^{i t H}\right)=I+i t \phi(H)-t^{2} \phi\left(H^{2}\right) / 2+\cdots
$$

are unitary. Thus,

$$
\begin{aligned}
I & =\phi\left(e^{i t H}\right) \phi\left(e^{i t H}\right)^{*} \\
& =\left(I+i t \phi(H)-t^{2} \phi\left(H^{2}\right) / 2+\cdots\right)\left(I-i t \phi(H)^{*}-t^{2} \phi\left(H^{2}\right)^{*} / 2+\cdots\right) .
\end{aligned}
$$

Comparing the coefficients of t, we see that $i \phi(H)-i \phi(H)^{*}=0$, i.e., $\phi(H)$ is Hermitian. Now, comparing the coefficient at t^{2}, we see that $-\phi\left(H^{2}\right) / 2+\phi(H)^{2}-$ $\phi\left(H^{2}\right) / 2=0$, i.e., $\phi\left(H^{2}\right)=\phi(H)^{2}$.

Once this is done, one can follow the proof in [4, Corollary 4.3], which depends on Noether-Skolem Theorem, to conclude that ϕ is of the asserted form. In any event, our proof is more straight forward and self-contained.

We thank Professor Peter Šemrl for his comment, and bringing our attention to [2].

References

[1] H. Auerbach, Sur les groupes bornés de substitutions linéaires. C. R. Acad. Sci. Paris 195(1932), 1367-1369.
[2] E. Christensen, On invertibility preserving linear mappings, simultaneous triangularization and Property L. Linear Algebra Appl. 301(1999), 153-170.
[3] E. Deutsch and H. Schneider, Bounded groups and norm-hermitian matrices. Linear Algebra Appl. 9(1974), 9-27.
[4] A. Guterman, C. K. Li and P. Šemrl, Some general techniques on linear preserver problems. Linear Algebra Appl. 315(2000), 61-81.
[5] M. Marcus, All linear operators leaving the unitary group invariant. Duke Math. J. 26(1959), 155-163.
[6] M. Marcus and R. Purves, Linear transformations on algebras of matrices II: The invariance of the elementary symmetric functions. Canad. J. Math. 11(1959), 383-396.

Centro de Estruturas Lineares
e Combinatórias
Universidade de Lisboa
av. Prof. Gama Pinto, 2
1649-003 Lisboa
Portugal

Department of Mathematics College of William and Mary
Williamsburg, Virginia 23187
U.S.A.
email: ckl@math.wm.edu

[^0]: Received by the editors February 21, 2001.
 The first author was supported by PIMS Postdoctoral Fellowship. The second author was partially supported by an NSF grant.

 AMS subject classification: 15A04.
 Keywords: linear map, unitary group, general linear group.
 (C)Canadian Mathematical Society 2003.

