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Linear Maps Transforming
the Unitary Group

Wai-Shun Cheung and Chi-Kwong Li

Abstract. Let U (n) be the group of n×n unitary matrices. We show that if φ is a linear transformation

sending U (n) into U (m), then m is a multiple of n, and φ has the form

A 7→ V [(A ⊗ Is) ⊕ (At ⊗ Ir)]W

for some V,W ∈ U (m). From this result, one easily deduces the characterization of linear operators

that map U (n) into itself obtained by Marcus. Further generalization of the main theorem is also

discussed.

1 Main Result

Denote by Mn the algebra of n× n complex matrices. Let U (n) be the group of n× n

unitary matrices. The purpose of this note is to prove the following result.

Theorem 1 Suppose φ : Mn → Mm is a linear transformation satisfying φ
(

U (n)
)

⊆
U (m). Then m is a multiple of n and

φ(A) = V [(A ⊗ Is) ⊕ (At ⊗ Ir)]W

for some fixed V,W ∈ U (m).

For any linear map φ : Mn → Mm satisfying φ
(

U (n)
)

⊆ U (m), one can replace

it by the mapping ψ of the form A 7→ φ(In)−1φ(A). Then ψ : Mn → Mm is linear,

unital, i.e., ψ(In) = Im, and satisfies ψ
(

U (m)
)

⊆ U (n). Using this observation, one

sees that Theorem 1 is equivalent to the following.

Theorem 2 Let φ : Mn → Mm be a unital linear transformation satisfying

φ
(

U (n)
)

⊆ U (m). Then m is a multiple of n and

(1) φ(A) = V [(A ⊗ Is) ⊕ (At ⊗ Ir)]V−1

for some fixed V ∈ U (m).

By Theorems 1 and 2, one easily deduces the following result of Marcus [5].

Received by the editors February 21, 2001.
The first author was supported by PIMS Postdoctoral Fellowship. The second author was partially

supported by an NSF grant.
AMS subject classification: 15A04.
Keywords: linear map, unitary group, general linear group.
c©Canadian Mathematical Society 2003.

54

https://doi.org/10.4153/CMB-2003-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-005-8


Linear Maps Transforming the Unitary Group 55

Corollary 3 A linear operator φ on Mn satisfying φ
(

U (n)
)

⊆ U (n) must be of the

form

A 7→ VAW or A 7→ VAtW

for some V,W ∈ U (n). If, in addition, we assume that φ is unital, then φ is an (algebra)

automorphism or anti-automorphism.

Let GL(m) be the group of m × m invertible matrices. By a result of Auerbach

[1] (see [3] for an elementary proof), if G is a bounded subgroup of GL(m), then

there exists a positive definite matrix P ∈ Mm such that PGP−1 ⊆ U (m). So, if

φ : Mn → Mm satisfies φ
(

U (n)
)

⊆ G for a bounded subgroup G of GL(m), then we

may apply Theorem 1 to the mapping A 7→ Pφ(A)P−1 to determine the structure of

φ. Thus, we have the following corollary.

Corollary 4 Suppose φ : Mn → Mm is a linear transformation such that φ
(

U (n)
)

⊆
G, where G is a bounded subgroup of GL(m). Then m is a multiple of n and

(2) φ(A) = LV [(A ⊗ Is) ⊕ (At ⊗ Ir)]L−1

for some fixed L ∈ GL(m) and V ∈ U (m).

If we just assume that φ
(

U (n)
)

⊆ GL(m), the conclusion of Corollary 4 will not

hold as shown by the following example.

Example 5 Consider the unital linear φ : M2 → M2 defined by

(

a b

c d

)

7→

(

a ib

c d

)

.

One readily checks that φ
(

U (2)
)

⊆ GL(2). However, φ does not preserve the rank

of matrices, and hence is not of the form (2) with L ∈ GL(2) and V ∈ U (2).

Marcus and Purves [6, Theorem 2.1] showed that Corollary 3 is valid if we replace

U (n) by GL(n). One may wonder whether Theorem 1 or Theorem 2 is valid if we

replace U (m) and U (n) by GL(m) and GL(n), respectively. This is not true as shown

by the following example, which is a slight modification of [2, Example 4.3 C].

Example 6 Consider the unital linear map φ : M2 → M6 defined by

(

a b

c d

)

7→

(

aI3 bI3

cI3 dI3

)

+ 03 ⊕





0 b 0

c 0 −b

0 c 0



 .

One readily checks that det
(

φ(A)
)

= det(A)3, and hence φ
(

GL(2)
)

⊆ GL(6).

However, φ
((

0 1
1 0

))

is not similar to −I3 ⊕ I3. Hence, φ is not of the form (1) with

V ∈ GL(6).
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2 Proof of Theorem 2

Let X = [1] ⊕ −In−1. Since Y = φ(X) and φ(0.6I + 0.8iX) = 0.6I + 0.8iY are

unitary, it follows that Y is both hermitian and unitary. So we can further assume

that Y = Ik⊕−Im−k; otherwise, replace φ by a mapping of the form A 7→ W ∗φ(A)W

for some W ∈ U (m) such that W ∗φ(X)W = Y . We always assume that

(3) φ(In) = Im and φ([1] ⊕−In−1) = Ik ⊕−Im−k

in the rest of the proof. Our result will follow once we establish the following.

Assertion There exist V ∈ U (m) and nonnegative integers r and s with r + s = k such

that Vφ(A)V ∗ is a block matrix (Ai j)1≤i, j≤n, where Ai j = ai jIs ⊕ a jiIr for all 1 ≤ i,

j ≤ n.

We prove the Assertion by induction on n ≥ 2. When n = 2, consider the matrix

T =

(

0 1
1 0

)

. Note that φ(T), φ(0.6I + 0.8iT) and φ
(

0.6([1] ⊕ [−1]) + 0.8T
)

are all

unitary, which is possible if and only if k = m − k, i.e. m = 2k, and φ(T) =

(

0 U
U∗ 0

)

for some unitary matrix U ∈ U (k). We can further assume that U = Ik; otherwise,

replace φ by the mapping A 7→ (U ∗ ⊕ I)φ(A)(U ⊕ I). Next, consider S =

(

0 1
−1 0

)

.

Then φ(S), φ(0.6I + 0.8S) and φ
(

0.6([1] ⊕ [−1]) + 0.8iS
)

are all unitary, which is

possible if and only if φ(S) =

(

0 V
−V∗ 0

)

. Since φ(0.6T±0.8iS) are also unitary, we see

that V is hermitian. We can further assume that V = Is ⊕ −Ik−s; otherwise, replace

φ by a mapping of the form A 7→ (W ∗ ⊕ W ∗)φ(A)(W ⊕ W ), where W ∈ U (m/2)

satisfies W ∗VW = Is ⊕ −Ik−s. As a result, the modified mapping is of the asserted

form with V = Im.

Now, suppose the Assertion is true for n = p ≥ 2, and consider n = p + 1. By (3),

we have

φ([1] ⊕ 0p) = Ik ⊕ 0m−k.

Moreover, for any U ∈ U (p) and any µ ∈ C with |µ| = 1, we have φ([1] ⊕ µU ) ∈
U (m). It follows that φ([1] ⊕ U ) = Ik ⊕ φ̄(U ) ∈ U (m). By induction assumption,

there exist W ∈ U (m − k) and integers l and s such that m − k = pl, and for any

A = (ai j) ∈ Mp we have φ̄(A) = W (Ai j)W
∗, where Ai j = ai jIs ⊕ a jiIl−s for all

1 ≤ i, j ≤ p. We may assume that W = Im−k; otherwise, replace φ by the mapping

A 7→ (Ik ⊕W ∗)φ(A)(Ik ⊕W ). Thus, for any A = (ai j) ∈ Mp, we have

(4) φ([1] ⊕ A) = Ik ⊕ (Ai j), Ai j = ai jIs ⊕ a jiIl−s.

Now, for X = 0p ⊕ [1], we have

φ(X) = 0m−l ⊕ Il.

We can apply the previous argument to φ(U ⊕ [1]) for U ∈ U (p) and conclude

that there exist V ∈ U (m − l) and integers u, v such that m − l = pu, and for any

B = (bi j ) ∈ Mp

(5) φ(B ⊕ [1]) = V (Bi j)V
∗ ⊕ Il, Bi j = bi jIv ⊕ b jiIu−v.
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Next, consider X = [1] ⊕ 0p−1 ⊕ [1]. By (4) and (5), we see that

φ(X) = V [Iu ⊕ 0m−l−u]V ∗ ⊕ Il = Ik ⊕ 0m−k−l ⊕ Il.

Hence u = k and V = V1 ⊕U2 for some V1 ∈ U (k), U2 ∈ U (m − l − k). Moreover,

from m − k = pl and m − l = pu, we have k = l and m = k(p + 1).

Let Ei j ∈ Mp−1 be the matrix with an 1 at the (i, j)-th position and 0 elsewhere.

By considering φ(X) with X = [1] ⊕ Eii ⊕ [1], we see that V = V1 ⊕V2 ⊕ · · · ⊕V p

for some V1, . . .V p ∈ U (k). By considering φ(X) for X = [1] ⊕ Ei j + E ji ⊕ [1], we

see that V2 = V3 = · · · = V p. By considering [1] ⊕ Ei j ⊕ [1], we see that v = s and

V2 = Y1 ⊕Y2 for some Y1 ∈ U (s), Y2 ∈ U (k − s). We may now assume that V = Im;

otherwise, replace φ by the mapping

A 7→ [V1 ⊕ (Ip ⊗V2)]∗φ(A)[V1 ⊕ (Ip ⊗V2)].

Hence, (4) and (5) hold with V = Im; so φ(A) = (Ai j) where Ai j = ai jIs ⊕ a jiIk−s if

(i, j) 6= (1, p + 1) or (p + 1, 1).

Now, apply the previous argument to φ(C) for those matrices C ∈ Mp+1 such that

c2 j = ci2 = 0 for i 6= 2 6= j and c22 = 1. We see that there exists X,Y ∈ U (k) so that

A1,p+1 = X(a1,p+1Is ⊕ ap+1,1Ik−s)Y
∗ and Ap+1,1 = Y (ap+1,1Is ⊕ a1,p+1Ik−s)X∗.

The rest of our proof is to show that X and Y may be assumed to be Ik. To this

end, let

U =















0.6 0 · · · 0 0.8
−0.8 0 · · · 0 0.6

0 0
... Ip−1

...

0 0















∈ U (p + 1).

Then φ(U ) ∈ U (m). The submatrix of φ(U ) formed by the first 2k rows equals

(

0.6Ik 0 · · · 0 X[0.8Is ⊕ 0k−s]Y
∗

−0.8Is ⊕ 0k−s ∗ · · · ∗ 0.6Is ⊕ 0k−s

)

and has orthonormal row vectors. Therefore X[Is ⊕ 0k−s]Y
∗

= Is ⊕ 0k−s. Next,

considering U ∗, we have X[0s ⊕ Ik−s]Y
∗

= 0s ⊕ Ik−s. Thus for (i, j) = (1, p + 1) or

(p + 1, 1), we also have Ai, j = ai jIs ⊕ a jiIk−s. The proof of our Assertion is hereby

completed, and the theorem follows.

Note Added in Proof Professor Peter Šemrl pointed out that Theorem 2 can also be

proved by establishing the following.

Lemma 7 If φ : Mn → Mm is a unital linear map satisfying φ
(

U (n)
)

⊆ U (m) then

φ(H2) = φ(H)2 for any Hermitian H ∈ Mn.
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Proof Suppose H ∈ Mn is Hermitian. Then

eitH
= I + itH − t2H2/2 + · · · and φ(eitH) = I + itφ(H) − t2φ(H2)/2 + · · ·

are unitary. Thus,

I = φ(eitH)φ(eitH)∗

=

(

I + itφ(H) − t2φ(H2)/2 + · · ·
)(

I − itφ(H)∗ − t2φ(H2)∗/2 + · · ·
)

.

Comparing the coefficients of t , we see that iφ(H) − iφ(H)∗ = 0, i.e., φ(H) is Her-

mitian. Now, comparing the coefficient at t2, we see that −φ(H2)/2 + φ(H)2 −
φ(H2)/2 = 0, i.e., φ(H2) = φ(H)2.

Once this is done, one can follow the proof in [4, Corollary 4.3], which depends on

Noether-Skolem Theorem, to conclude that φ is of the asserted form. In any event,

our proof is more straight forward and self-contained.

We thank Professor Peter Šemrl for his comment, and bringing our attention

to [2].
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