Objective: A single paragraph stating the hypothesis to be tested, or the observation or measurement to be made, and the methodological approach that will be taken to achieve the aims.

Methods: Materials and procedures should be described in sufficient detail to enable replication. Results should not be included in the Methods section. This section should be brief but provide sufficient information to permit others to repeat the study. Pertinent details of species, apparatus and equipment, procedures and experimental design should be described. All experiments involving human subjects must be conducted in accordance with principles embodied in the Declaration of Helsinki (Code of Ethics of the World Medical Association). Experiments involving animal subjects must conform to the principles regarding the care and use of animals adopted by the American Physiological Society and the Society for Neuroscience. The Editor may refuse papers that provide insufficient evidence of adherence to these principles.

Results: This section may contain subheadings. Authors should provide representative data and results. The results should be presented clearly and concisely, using Tables and Figures to summarize or illustrate the important findings.

Conclusions: The main conclusions that obtain directly and unambiguously from the results should be provided in one to four sentences in outline form. Each conclusion should be a declarative sentence in a bullet paragraph, with one sentence for each conclusion. These are a simple statement by the author of the facts obtained from the results, without any interpretation, extrapolation, or equivocation.

Discussion: Interpretation of the conclusions with respect to the hypothesis and the significance to the field should be discussed. Careful consideration of the conclusions for accuracy and alternative interpretations, and possible conflicts or resolution of conflicts in the field is encouraged. Limited speculation and directions for future research can be included.

Acknowledgements: Use a separate page to recognize the contributions of individuals and supporting institutions.

References: The Harvard (author-date) system should be used in the text and a complete list of References cited given at the end of the document. Unpublished communications, and manuscripts submitted for publication should be cited in the text and the supporting material submitted with the manuscript. In a text citation of a work by more than three authors cite the first author’s name followed by et al. (but the names of all of the authors should be given in the References section). In the text, references should be cited in the following styles: Hagge (2001); Stevens et al. (2002); Sanes & Scheller, 1997; Chakal et al., 2002. The alphabetical list of references (Chakal, new page, and must be typed double-spaced. Each in-text citation must have a corresponding reference and vice versa. Lists will differ between different authors who are cited within the same parentheses in chronological order, beginning with the earliest work. Journal titles should not be abbreviated. Only published articles and articles in press should appear in this list. Responsibility for the accuracy of references cited lies with the authors. If the Digital Object Identifier (DOI) is known, it can be given at the end of the citation entry.

Examples:

Journal article

Book

Book

Work in press
As above, but no year of publication or volume number.

Baiker, A. Function of gephyrin: Genetics (in press).

Thesis
Try to avoid citing these in the main text – cite peer-reviewed primary publications instead.


Abstracts
Try to avoid citing these in the main text – cite peer-reviewed primary publications instead.

CONTENTS

57 Commentary

59 Myelin structure and composition of myelinated tissue in the African lungfish
Daniel A. Kirschner, Jothie Karthigesan, Oscar A. Bizzozero, Bela Kosaras and Hideyo Inouye

71 nkx2.2a promotes specification and differentiation of a myelinating subset of oligodendrocyte lineage cells in zebrafish
Sarah Kucenas, Heather Snell and Bruce Appel

83 The natural history of the myelin-derived nerve growth inhibitor Nogo-A
Rüdiger Schweigreiter

91 Uncoupling of astrogliosis from epileptogenesis in adenosine kinase (ADK) transgenic mice
Tianfu Li, Jing-Quan Lan and Detlev Boison

101 The phylogeny of invertebrates and the evolution of myelin
Betty I. Roots

111 Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection
Wiebke Möbius, Julia Patzig, Klaus-Armin Nave and Hauke B. Werner

129 The evolution of Olig genes and their roles in myelination
Huiliang Li and William D. Richardson

137 Myelin sheaths are formed with proteins that originated in vertebrate lineages
Robert M. Gould, Todd Oakley, Jared V. Goldstone, Jason C. Dugas, Scott T. Brady and Alexander Gow

153 What is myelin?
Daniel K. Hartline