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HOMOGENEOUS POLYNOMIALS, CENTRALIZERS 
AND DERIVATIONS IN RINGS 

ONOFRIO MARIO DIVINCENZO AND ROSA SAGONA 

ABSTRACT. Let d be a non-zero derivation on a primitive ring R andf(x\,..., xn ) a 
homogeneous polynomial of degree m. We prove that the condition d lf(r\,..., rn )') = 
0, for all r\,..., rn G R, with t depending on r\,..., rn, forces R to be a finite dimen
sional central simple algebra and/ power-central valued on R. We also obtain bounds 
on [R : Z(R)] in terms of m. 

Let C be a fixed commutative ring with 1 and let C{X} be the free algebra over C 
generated by a countable set X of noncommutative variables. If R is a C-algebra then 
given a polynomial/ = f(x\,... ,JC„) in C{X} in n variables,/ induces a map Rn —> R 
which is said to be algebraic valued. 

The study of such functions includes as a special case the theory of algebras with 
polynomial identities or with central polynomials (see [10]). 

Many results have been proved concerning the relationship between a ring R and the 
valuations in R of some nonzero polynomial in C{X} (see [1], [4], [5] and [9]). 

We recall that the polynomial f(x\,... ,xn) is said to be power-central valued in R if 
for all r\,..., rn in R there exists an integer t — t(r\,..., rn) > 1 such that / ( r j , . . . , rny 
is in Z(R), the center of R. 

The main result of this paper is the following: 

THEOREM 2. Let R be a primitive ring, f(x\,..., xn) a homogeneous polynomial of 
degree m. Suppose that d is a non-zero derivation on R such that, for all r\,... ,rn G R, 
there exists t G N, t = t(r\,..., rn), such that d(f(r\,..., rn)

r) = 0. //"char R = p> Owe 
assume thatf is not an identity for p x p matrices in characteristic p. Thenf(x\,... ,xn) 
is power-central valued and R is a finite dimensional central simple algebra. Moreover, 
iff is not a polynomial identity on R then either d is an inner derivation on R or Z(R) is 
infinite of characteristic p ^ 0. 

We also obtain bounds on [R : Z(R)] in terms of m. 
The hypothesis that/ is not an identity for p x p matrices in characteristic p ^ 0 is 

required in the result of [9], that if D is a division ring and/ power-central valued on D 
then D is finite dimensional over its center. Since that result is fundamental in what we 
do, we assume this hypothesis throughout this paper. 
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HOMOGENEOUS POLYNOMIALS 23 

As a consequence of our result we also obtain a characterization of the subring T(R) of 
R of those elements which commute with some power of the valuations off(x\, ...,xn). 
More precisely as in [3] let 

T(R) = 

{aER\ af(ri,...9rny = f(ru... ,r„)'a; n , . . . ,r„ eR,t = t(a9 ru . . . , r„) > 1}. 

Then either 7(7?) = Z(7?) or R is a finite dimensional central simple algebra and / is 
power-central valued. 

Notice that in the special case when/ is multilinear it was proved in [2] and [3] that 
if R is a prime ring with no non-zero nil right ideals then/ must be power-central valued 
and R satisfies the standard identity of degree n + 2. 

In all that follows/ = f(x\,... ,xn) will denote a homogeneous polynomial of degree 
ra, we assume also that d is a non-zero derivation on R which is C-linear (i.e. for all 
c 6 C, r G 7? d(cr) = cd(r)) and satisfies the following condition: 

d(f(ru...,rny)=0 

for all n , . . . , rn € R, t = t(r\, ...,rn) > 1. Moreover, if char R = /? we assume that/ is 
not a polynomial identity for p x /? matrices in characteristic p. Finally, since throughout 
R will be a prime ring, we may assume that C is a domain and R is torsion free over C. 

We begin with the case when/ is power-central valued. We set as in [9] 

<t>(m) = 
log(/n[m/2] + l) 

log 2 
([m/2]+l) 

where [x] is the integral part of the real number x. 
We have the following theorem. 

THEOREM 1. Let R be a primitive ring, f(x\,..., xn) a homogeneous polynomial of 
degree m. If char R = p we also assume thatf is not a polynomial identity for p x p ma
trices in characteristic p. If f is power-central valued in R then R is a finite dimensional 
central simple algebra. Let N2 = [R : Z(R)\ then 

1) either f is a polynomial identity for (N — 1) x (iV— 1) matrices over Z(R) and 
N< \(m + 2)or 

2) Z(R) is a finite field with \Z(R)\ < <\>(m)m andN < </>(m) + 1. 

PROOF. Since R is primitive, R is a dense ring of linear transformations on a vector 
space V over a division ring D. 

Suppose that V is infinite dimensional over D; then, for every integer k,f is power-
central valued on Dk, the ring of k x k matrices over D. We can regard Dk_i as the 
subring of Dk consisting of all k x k matrices with zero in the last row and last column. 
Thus/(^i,.. . ,JC„) is nil-valued on Dk-\. By [9] (Theorem 1.7, Corollary 1.8) either/ is 
an identity of Dk-\ or Dk_\ is a finite ring and/(;q,... ,xn)^

m) is a polynomial identity 
on Dk-\. In any case we must have 2k < (f)(m)m + 2 for all k, and this is a contradiction. 
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24 O. M. DI VINCENZO AND R. SAGONA 

Therefore dim/) V = t and so R ~ Dt. 
If f = 1 then R ~ D is a division ring and by Theorem 3.2 of [9] /? is finite dimensional 

over its center Z(R). Also if N2 = [R : Z(R)],f is an identity for (N— 1) x (N— 1) matrices 
over Z(R),f(x\,... ,xn)

N is a central polynomial on R and N < \(m + 2). 
Suppose now t > 1. The previous argument shows that/ is nil-valued in Dr_i ; hence 

/ is an identity on D. Thus [D : Z(D)] = r2 and /? ^ Dr is a central simple algebra and 
N2 = (rt)2 = [R : Z(R)]. Since/ is power-central valued on R and the center of R is a 
field,/ also has multinomial degree one on R (see Definition 0.2 of [9]). 

If Z(R) is not algebraic over a finite field, then by Theorem 3.8 of [9] we can conclude 
that N < \(m + 2\f is an identity on (N — 1) x (N — 1) matrices over Z(7?), and 
f(x\,...,xn)

N is central on R. 
Finally suppose that Z(R) — Z(D) is algebraic over a finite field P. As [D : Z(D)] = r2 

one has that every element a of D is algebraic over P. Hence P(a) is a finite field and so 
there exists an integer s = s(a) greater than 1 such that as = a. By a result of Jacobson, 
this suffices to conclude that D is commutative ([6] Theorem 3.1.2). Therefore, in this 
case, r = I, N = t and /? ^ Z#. As we said above/ is nil-valued on Z/v_i and so 
Theorem 1.7 of [9] again implies that either/ is a polynomial identity on Z#_i or Z is a 
finite field of order \Z\ < cf)(m)m and N — I < (j)(m). 

In any case TV is bounded by an explicit function of the degree m off(x\ ,...,xn). This 
completes the proof. 

REMARK 1. Let F be a finite field of order q and R — F#. Assume f(x\,... ,xn) is 
power-central valued on R and let a — f(r\,..., rn) for r\,..., rn G R. If as(a) G F then 
we have: 

1) either a is nilpotent, hence s(a) < N, or 
2) a is invertible, and by Lagrange's Theorem a' GL(7VF)I = /. 

As a result/(xi,... ,xn)M is a central polynomial on F#, where 

Af = tf| GL(W,F)| = W • ^ î ^ - 1 ) • [JO?'' - 1). 

Moreover, either f(x\,..., JC„) is a polynomial identity on F/v_i and so N < \{m + 2) or 
TV < </>(m) + 1 and g < <t>(m)m with m = degree of/. 

Notice that if J is the inner derivation induced by an element a of R then the condition 
d(f(r\,..., rny) = 0 for all n , . . . , rn G /?, f = t(ri,..., rn) > 1 implies that a is in 
7(7?) which is: T(R) = {a G R | a / (n , . . . , r„)f = / ( n , . . . , rn)

rfl, t = t(a, ru • •., rn)}. As 
quoted in [3], T(/?) is a subring of /? containing Z(/?), invariant under all automorphisms 
of/?; moreover we notice that the proof of Lemma 1 in [3] holds also for homogeneous 
polynomials, hence we have the following: 

LEMMA 1. If D is a division ring then either T(D) = Z(D) or [D : Z(D)] = N2, 
/(JCI, . . . ,x n ) N is central in D and N < ^(m + 2). 

REMARK 2. If T(R) = R and R is an algebra finite dimensional over its center Z, 
then for n , . . . , rn G R there exists t > 1 such that /Oi , . . . , rn)

f centralizes a fixed basis 
of R over Z. 
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Hence/(n, . . . , r„)r G Z, that i s / is power-central valued. 
We continue with: 

LEMMA 2. Let R — GF(2)2 be the ring of2x2 matrices over GF(2). Then either 
T(R) = Z(R) orf{xu. ..,xnf is central in R. 

PROOF. We consider the following set-partition of R: 

<E 

z = 

ri o 
[o o. 

f r o o 
i [o o 

1 f1 l 

I ' [0 0 

1 » ( J Ï 
1 f1 ° 
I ' U o 

]= 
' 

/ > the center of B 

0 0 
.0 1. 

[0 0 ] 

' 1 1 i j 

> 

' 
0 1 

.0 1 . ! 
the set of non-central idempotents, 

ro n 
.0 OJ 
1 1 ] 
0 1 J 

ro 0] 

»-C 
» 

0 
1, 

1 1 ] 
1 1 J 

' c = 

> the set of nilpotent elements and 

r 0 
o ] ' w 1 1 

. i o 
1 » v = 

0 111 
1 1 J , 

9t 

the set of non-central invertible elements ofR. 

We remark that the 6-th power of all elements of L lies in the center of R\ in fact 
a2 — b1 — c2 — I and also u3 = v3 = /. 

Hence, if/(jci,..., xn) is not power-central valued then there exist s\,..., sn G R such 
thatf(su...,sn) = ee E. 

If a G T(R), then a commutes with/Oi,. . . ,sn)
1 = e and for any automorphism /? of 

R we also have af(s^,..., SnY = f(sv..., s% )'a, where t depends ona,s\,...,sn and (5. 
Since any two distinct elements of *E are conjugate in R this implies that a centralizes 

all of *E. Let *E be the subring of R generated by *£; then the previous argument shows 
that either f(xu... ,*n)6 is a central polynomial in R or 7(7?) Ç C(E) = C(È) = Z(R) 
and this proves the lemma. 

Now, we extend the previous result to primitive rings with a nontrivial idempotent. 
More precisely we have: 

LEMMA 3. Let R be a primitive ring with a nontrivial idempotent, f(x\,..., xn) a 
homogeneous polynomial of degree m. Then either T(R) = Z(R) orf(x\,... ,xn) is power-
central valued in R (and the conclusion of Theorem 1 holds). 

PROOF. T(R) is a subring of R invariant under all automorphisms of R\ also, by 
Lemma 2, we may assume that R ^ GF(2)2- Hence, since R is a prime ring with a 
non-trivial idempotent, by [8, Theorem] either T(R) = Z{R) or T(R) D /, a non-zero 
two-sided ideal of R. 

Suppose then T(R) ^ Z(R). 
Since R is primitive, R is a dense ring of linear transformations on a vector space V 

over a division ring D\ also /, as an ideal of/?, is dense on V over D. Moreover T(R) D I 
implies T(I) — I. 

If V is finite dimensional over D, then R = Dk and so R = I and T(R) = R. Hence 
T(D) = D and, by Lemma 1, D is finite dimensional over its center. It follows that R is 
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26 O. M. DI VINCENZO AND R. SAGONA 

finite dimensional central simple algebra and by Remark 2 , / is power-central valued, as 
required. 

Suppose now that V is not finite dimensional over D. If </> is the function described 
before Theorem 1, define an integer M as follows: 

M = [\(m + 2) + 1 if Z(D) is an infinite field 
\ (t>{m) + 2 otherwise 

Now, by [6, Theorem 2.1.4] DM is a homomorphic image of a subring S of /. Clearly 
T(S) — S and so, T(DM) — DM- AS above this implies that/ is power-central valued in 
DM and this, by Theorem 1, contradicts the choice of M. 

Next we are going to examine the general case concerning an arbitrary derivation d. 
The first result is the following lemma, (see [2], [3] and Lemma 1). 

LEMMA 4. IfR is a division ring thenf(x\,..., xn) is power-central valued and R is 
finite dimensional over its center. 

PROOF. Let S = {r G R | d(r) = 0}, then for x G S we have 

0 = d{\) = d(xx~x) = d(x)x'[ + xd(x~x) = xd(x~l) 

which implies d(x~l) = 0, that is x~x G S, so that S is a proper subdivision ring 
of R\ moreover for all n , . . . , rn G R there exists t — t(r\,..., rn) > 1 such that 
f(ru...,rny G S. 

Let r = f(r\,..., rn)\ if x G /? — 5 we can choose f > 1 such that r1 G 5, (jcrx-1 )' = 
(jt/Xn,..., r j jc - 1) ' =f(xrxx-\..., jcjvr1)' G 5 and ((1 + x)r(l + JC) - 1) ' G 5. 

Thus, using a Brauer-Cartan-Hua type argument, for some a, Z? G S we have: 

(I) x^ = ax 

( l + * y = fc(l+*). 

Subtracting we get r* = Z? + (b — a)x, hence (2? — a)x G 5. Since S is a subdivision ring 
of R and x ^ S then a — b. 

From (I) we deduce xr' = r'x 
Let now y G 5. By the first part of the proof we have (x + y)/ — / (x + y) for a 

suitable t'. Since jcr^ = r*1'x we get yr̂ r = r^y. Therefore T(R) — R and by Lemma 1 / 
is power-central valued and [R : Z(R)] < \{m + 2). 

We continue with: 

LEMMA 5. Let Rbe a prime ring and suppose that T(R) — Z(R). IftGRis such that 
t2 = 0 then d{t) = 0. 

PROOF. Let 0 7̂  t e R be such that t2 = 0, then the map rjt:R —> R defined by 
r\t(r) — r + tr — rt+trt is an automorphism of R. Even if R does not have a unit element 
we write 77,(7) = (1 + t)r{\ — t) and also (1 + t)r — r + tr or r(l + t) — r + rf. 
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Let x = / ( n , . . . , r„); there exists s > 1 such that dix5) = 0 and d((l + f)r*(l - f)) = 

</(((l + 0*0 - t))S) = 0. Thus d{(\ + 0^(1 - 0(1 + 0) = ^((1 + Ox5) = difrf and 

J((l + 0^(1 - r)(l + 0) = (1 + 0^(1 - t)d{i). Therefore (1 - t)d{t)x" = Xs(I - t)d(t\ 
that is (1 - 0^(0 = z for some z G T(R) = Z(R), and so d(t) = z(l + *)• 

It follows that 0 = d(t2) = fr/(0 + dO)/1 = 2#. If char/? ^ 2 then zt = 0. Moreover 
since z G Z(7?) either z = 0 or z is not a zero divisor in R; in any case d(Y) = 0. 

Now we suppose that char/? = 2 and we split the proof into two different cases: 
Z(R) ^ GF(2) or Z(R) = GF(2). 

CASE 1: Z(R) ^ GF(2). Let 7 G Z(#) - {0,1}. Then d(l2t) = z'(l + 720 for some 
z' G Z(R). Since d(72) = 7d(7) + </(7)7 = 27d(7) = 0 we also have d(720 = l2d(t) = 
72z(l+0- Sowegetz /(1+720 = 72z(l+0- Hence 72(z'-z)f G Z(R). As ns not a central 
element of the prime ring R, this implies z = z'. Thus z = 72z and so (72 + l)z = 0. Since 
72 + 1 ̂  0 we get z = 0 and, once again, d(t) = 0. 

CASE 2: Z(R) = GF(2). Suppose that d(t) ^ 0 for some t G R with f2 = 0. By 
the first part of the proof, d(t) = 1 + t. If r G R then (Yrt)2 = 0. Hence d(trt) = 0 or 
d(Yr0 = 1 + trt again. But d(M) = d(tr)t + trd(t) = d(fr)f + fr(l + t)\ hence dOrt)/1 = trt. 
However, as we mentioned above, d{trt) — 0 or d(trt) = 1 + trt. Hence M = d(tri)t — 0 
or trt = r. 

As a consequence tRt — GF(2)r. 
If 0 ^ a G tR then 0 ^ aRt Ç tRt = GF(2)f and so t G a/fr. Hence aR = tf? for all 

0 ^ a G tR and this says that tR is a minimal right ideal of R. Thus /? is a primitive ring 
with minimal right ideal tR. Moreover its commuting ring is GF(2) as tRt = GF(2)t. If 
/ ^ 0 is an ideal ofR then tit ^ 0. Hence tit ^ 0 for some i G /; thus tit = t and so t G /. 
Since 72 is a nonzero ideal of #, f G /2. Hence 1 + f = d(r) G J(/2) Ç d(I)I + 7d(7) Ç /. 
Together with t G I this implies that 1 G / and so I — R. In other words R is simple. 
Since R is simple with 1 and has a minimal right ideal, R is simple artinian and since the 
commuting ring of R is GF(2), by Wedderburn's theorem we conclude that R ~ GF(2)^ 
for some k G N [7]. But in this case, as proved by Jacobson, any derivation is an inner 
derivation (see p. 100 of [6]) and by Lemma 3 we obtain d — 0 which is a contradiction. 

We now settle the case when R contains a nontrivial idempotent. 

LEMMA 6. Let Rhea primitive ring with a nontrivial idempotent. Thenf(x\,..., xn) 
is power-central valued. 

PROOF. Suppose that R = GF(2)2. Then, as we quoted above, d is the inner deriva
tion induced by a certain element a of R. As d ^ 0, a $ Z(R). Hence T(R) ^ Z(R) and 
by Lemma 2f(x\,... ,xn)6 is a central polynomial on R. 

Assume now that R ^ GF(2)2 and let A be the subring generated by all square zero 
elements ofR. A is invariant under all automorphisms of R. Since R is a prime ring with 
a nontrivial idempotent, by [8, Theorem], A contains a nonzero ideal / ofR. On the other 
hand, by Lemma 3 either T(R) = Z(R) o r / is power-central valued. 
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In the first case by Lemma 5 d(x) = 0 for all x G A and so d(I) = 0. Now, since 0 = 
d(J) 2 d(IR) — /d(/?),bytheprimenessof/?weobtahW(7?) = 0 which is a contradiction. 
Hence in any case / is power-central valued on R and R is a finite dimensional central 
simple algebra. 

Finally we have: 

THEOREM 2. Let R be a primitive ring, f(x\,..., xn) a homogeneous polynomial of 
degree m. Suppose that d is a nonzero derivation on R such that for allr\,... ,rn G R there 
exists t G N, t = t(r\,..., rn), with <i(/(n,... , r„)f) = 0. If char R — p > 0 we assume 
thatf is not an identity for p xp matrices in characteristic p. Thenf(x\,. ,.,xn) is power-
central valued and R is a finite dimensional central simple algebra. LetN2 = [R : Z(R)]; 
then 

1) either f is a polynomial identity for (N — 1) x (N — 1) matrices over Z(R) and 
N< \{m + 2)or 

2) Z(R) is a finite field with \Z(R)\ < (j)(m)m andN < </>(ra) + 1. 
Moreover, iff(x\,... ,xn) is not a polynomial identity on R then either d is an inner 

derivation orZ(R) is infinite of characteristic p ^ 0. 

PROOF. Let V be a faithful irreducible right /^-module with endomorphism ring D a 
division ring. First we assume that V is infinite dimensional over D and R does not contain 
a nontrivial idempotent. This says that R does not have nonzero linear transformations 
of finite rank. 

We will prove that these assumptions lead to a contradiction. 
Let vr — 0 for some v £ R and r G R, and suppose that vd(r) ^ 0. Since r has infinite 

rank, there exist w\,...,wn G Im r such that vd(r), w\,..., wn are linearly independent 
and let v i , . . . , vn G V such that w/ = v r̂, / = 1, . . . , n. 

Let M = Af(jti,... ,JC„) be a nonzero monomial of /Qq, . . . ,JC„) and let 
degx M(x\,..., xn) = mx > 1, hence m\ + • • • + mn —m — deg/. 

By considering the order of the JC/'S in M{xu...,xn) we construct a partition of 
A — {1,..., m} in n disjoint subsets, one for each JC,. More precisely we define, for 
/ = 1, . . . , n, the subset 5^ of A in the following way: 

j G S\i& M = MjXtMj 

where Mj = Mj(x\,... ,xn) has degree j — 1 and M- = Afj(jci,... ,xn) has degree m —j. 
In other words, in the ordered monomial M, J3,- is the set of positions in which xt occurs. 

We can assume that 1 G -#i, that is M = ax\M[, where M\ = a G C, and we let for 
convenience vn+i = vi. By the Jacobson density theorem there exist a\,...,an G R such 
that, for i = 1 , . . . , n 

"/Ho" if7'G '̂ otherwise 

and moreover, since vJ(r), wi , . . . , wn are linearly independent, we can set vd{r)a\ = V2 
and vd{r)ai = 0 for / = 2 , . . . , n. 
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We remark that if j G J^ then 

Mj+i(xu. • • ,xn) = Mj{xu... ,xn)Xi and 

Mj^ixu... 9xn) = XiMj(xu... ,*„). 

Hence VjM'-_x{ra\,..., ran) = v/ra/MjCrai,..., ra„) = WjCiiM'-{ra\,..., ran) = 

v/+ iM-(rai , . . . , ran). Therefore we have 

v\M(ra\9... >ran) — av\ra\M[{ra\,... ,ran) 

= av2M[(ra\,..., ra„) 

= av3Af2(rai, . . . ,ra„) 

= ocvnras 

— av\. 

In a similar way we can prove that 

v\Mj(ra\,..., ran) = av, for j = 1 , . . . , n. 

On the other hand if N(x\,... 9xn) is a monomial of / different from M then 

v\N(ra\,..., ra„) = 0. In fact, let 1 <j<m be the smallest integer such that N = MjXtN' 

and M = MjXtMj with r ^ /. Since j 6 J3,- and j\f\!At — 0 we have./ ^ J^ and so w/a, = 0. 

Hence 

v\N(rau • •, ra„) = v\Mj(rau • • •, ran)ratN'(rau . . . , ra„) 

= avjratN'(ra\,..., ra„) = awjatN'(ra\,..., ran) = 0 

Therefore v\f(ra\,..., ran) = avi. 

Now we will calculate vd(f(ra\9..., raw)J. As above, since 1 E J^i, 

vd(M(ra\,..., ran)) = ctvd(ra\M[(rau • • •, ra„)J 

= cra/(r)aiA/J(rai, . . . , ran) + avrd\a\M[(ra\9..., ra„)) 

= avd(f)a\M\{ra\,..., ra„) 

= av2M /
1(ra1 , . . . , ra„) 

= avi . 

Let N ( * i , . . . , Xn) be another monomial of/ and let 1 <j<m be the smallest integer 

such that N = M^AT' and M = M/jc/Mj with f ^ j . 
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If 7 = l,then 

vd\N(ra\,..., ran)J = vd(aratN
f(ra\,..., ran)) 

= avd(r)atN
f(ra\,..., ran) + avrd(atN'(ra\,..., ran)\ 

= 0, 

as vr — 0 and f ^ 1. If j > 1, then we can write 

Mj(xU • • • ,**) = XlMJ'Oi, . . . ,Xn) 

with degMjf(x\,...,xn) = y — 2; hence 

vd(N(ra\,..., ran)) = vd(otra\M'j'(ra\,..., ran)ratN'(ra\,..., ra„)) 

= avd(r)a\Mjf(ra\,..., ran)ratN\ra\,..., ran) 

+ avrd{a\M"(ra\,..., ran)ratN'(ra\,..., raw)) 

= av2Mj'(ra\,..., ran)ratN
f(ra\,..., ran) 

= avjratN
f(ra\,..., ran) 

= awjatN'(ra\,..., ran) 

as w/a, = 0. 
This proves that vd(f(ra\,... ,ran)) = avi. Now, let s > 1 be such that 

d(f(ra\,..., ra„)5) = 0. Hence we have 

0 = vd(/Xra1,...,ran)') 

= Z) v / ( r a i ' • • • » ranfd{f(rau . . . , ran))f{rau . . . , ra„)* 
p+q—s— 1 

= vd(f(rau . . . , ran))f(rau .. •, ra„)5_1 

= avi/(rai,...,ran)5_1 

= « 5 v i , 

a contradiction. 
Thusifvr = 0, vd(r) = 0. 
Let O ^ v G V and suppose that vr and vd(r) are linearly dependent for all r G /?. Let 

JC, y G /? be such that vx and vy are linearly independent. Then vd(x) = Â VJC, vd(y) = Â vy 
and vd(x + y) = A^vC* + y), where A*, A ,̂ Xx+y are in D. Therefore \x+yvx + A^vy = 
A v̂x + Xyvy, and thus A* = Xy. As a result there exists A G D such that vd(x) = Xvx for 
all JC G #, with VJC ^ 0. On the other hand, as we proved above, if vr = 0 then vd(r) = 0. 
Hence vd(x) — Xvx for all x G R. 
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Since V is infinite dimensional over D, there exist V2,... . v„ G V such that v, V2,..., vn 

are linearly independent, and we let for convenience v = vi = vn+\. By the Jacobson 
density theorem again, there exist b\,...,bn G R such that, for / = 1, . . . , n 

y 0 otherwise 

where the JVs are m e s e t s defined above. As above we can easily prove that 
vf(b\,..., bn) = av and so vf(b\,..., bn)

s = asv for all s G N. 
Now, for some s G N,/(fti,..., fcrt)

5 G S = {JC G R \ d(x) = 0}. Hence there is x G S 
such that VJC ^ 0 and we obtain 0 = vd(x) — Xvx and so A = 0. 

Thus if vr and vd(r) are linearly dependent for all v G V and r G /?, then Vtf(/?) = 0 
and so d = 0. 

Therefore we may assume that there exist v G V, r e R such that vr and vd(r) are 
linearly independent. Let a E R such that (vr)# = 0 and (vd(rfja ^ 0. By the above 
0 = (vr)a = v(ra) implies (yr)d(a) — 0 and also vd{rd) = 0; hence 0 = vd(ra) = 
vd(r)a + vrd(tf) = vd(r)a ^ 0, a contradiction. Thus either V is finite dimensional over 
D and R ~ Dk or R contains a nontrivial idempotent. 

This, together with Lemma 4 and Lemma 6, suffices to prove that/(jci,. ..,*„) is 
power-central valued on R and R is a finite dimensional central simple algebra. More
over [R : Z(R)] is bounded as in Theorem 1 by an explicit function of the degree of 
f(x\,...,xn). 

Finally, by a result of Jacobson [6, p. 100], either d is an inner derivation or 
d(Z(R)) ^ 0. In this case, for all n , . . . , rn G R and z in Z(R), we can choose t>\ such 
that d(f(zru..., zr„)') = 0 and d(f(ru..., rj) = 0. Thus 

0 - ^ ( z n , . . . , z r n / ) 

= d(zrtf(ru...9rny) 

= d(f")f{ru • •., rn)
f + ̂ ^ ( / ( n , . . . , rn)') 

= d(Zw/)/(ri,...,rn) /. 

Since /? is primitive this implies that either f(x\,... ,jcn) is nil-valued on /? or 
J ( ^ ) = 0 for all z G Z(R) with r = t(z). 

If/(jci,..., xn) is not a polynomial identity on /?, by Theorem 1.7 of [9], we must have 
that Z(R) is a finite field and so d(Z(R)) = 0. 

Therefore we obtain that d(z0 = 0 for all z G Z(R), and ^ = s(z) depends on z. Of 
course this implies that Z(R) is infinite of characteristic p ^ 0; and this completes the 
proof. 

As quoted above we can interpret the case of the inner derivations in terms of elements 
of T(R). Hence we obtain the following result which is of some independent interest: 

COROLLARY. Let R be a primitive ring, f(x\,..., xn) a homogeneous polynomial of 
degree m. If char R — p > 0 we assume thatf is not an identity for p x p matrices in 
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characteristic p. Then either T(R) = Z(R) orf(x\,. ..,xn) is power-central valued and R 
is a finite dimensional central simple algebra. In the last case letN2 = [R : Z(R)], then 

1) either f is a polynomial identity for (N — 1) x (TV— 1) matrices over Z(R) and 
N< ±(m + 2)or 

2) Z(R) is a finite field with \Z(R)\ < <j>(m)m andN < <p(m) + 1. 
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