HOMOGENEOUS POLYNOMIALS, CENTRALIZERS AND DERIVATIONS IN RINGS

ONOFRIO MARIO DI VINCENZO AND ROSA SAGONA

Abstract

Let d be a non-zero derivation on a primitive ring R and $f\left(x_{1}, \quad, x_{n}\right)$ a homogeneous polynomial of degree m We prove that the condition $d\left(\begin{array}{ll}f\left(r_{1},\right. & \left.\left., r_{n}\right)^{t}\right)= \\ \text { h }\end{array}\right.$ 0 , for all $r_{1}, \quad, r_{n} \in R$, with t dependıng on r_{1}, \quad, r_{n}, forces R to be a finite dimensional central sımple algebra and f power-central valued on R We also obtain bounds on $\left[\begin{array}{ll}R & Z(R)] \text { in terms of } m\end{array}\right.$

Let C be a fixed commutative ring with 1 and let $C\{X\}$ be the free algebra over C generated by a countable set X of noncommutative variables. If R is a C-algebra then given a polynomial $f=f\left(x_{1}, \ldots, x_{n}\right)$ in $C\{X\}$ in n variables, f induces a map $R^{n} \rightarrow R$ which is said to be algebraic valued.

The study of such functions includes as a special case the theory of algebras with polynomial identities or with central polynomials (see [10]).

Many results have been proved concerning the relationship between a ring R and the valuations in R of some nonzero polynomial in $C\{X\}$ (see [1], [4], [5] and [9]).

We recall that the polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is said to be power-central valued in R if for all r_{1}, \ldots, r_{n} in R there exists an integer $t=t\left(r_{1}, \ldots, r_{n}\right) \geq 1$ such that $f\left(r_{1}, \ldots, r_{n}\right)^{t}$ is in $Z(R)$, the center of R.

The main result of this paper is the following:
Theorem 2. Let R be a primitive ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a homogeneous polynomial of degree m. Suppose that d is a non-zero derivation on R such that, for all $r_{1}, \ldots, r_{n} \in R$, there exists $t \in \mathbb{N}, t=t\left(r_{1}, \ldots, r_{n}\right)$, such that $d\left(f\left(r_{1}, \ldots, r_{n}\right)^{t}\right)=0$. If $\operatorname{char} R=p>0$ we assume that f is not an identity for $p \times p$ matrices in characteristic p. Then $f\left(x_{1}, \ldots, x_{n}\right)$ is power-central valued and R is a finite dimensional central simple algebra. Moreover, iff is not a polynomial identity on R then either d is an inner derivation on R or $Z(R)$ is infinite of characteristic $p \neq 0$.

We also obtain bounds on $[R: Z(R)]$ in terms of m.
The hypothesis that f is not an identity for $p \times p$ matrices in characteristic $p \neq 0$ is required in the result of [9], that if D is a division ring and f power-central valued on D then D is finite dimensional over its center. Since that result is fundamental in what we do, we assume this hypothesis throughout this paper.

[^0]As a consequence of our result we also obtain a characterization of the subring $T(R)$ of R of those elements which commute with some power of the valuations of $f\left(x_{1}, \ldots, x_{n}\right)$. More precisely as in [3] let

$$
\begin{aligned}
& T(R)= \\
& \quad\left\{a \in R \mid a f\left(r_{1}, \ldots, r_{n}\right)^{t}=f\left(r_{1}, \ldots, r_{n}\right)^{t} a ; r_{1}, \ldots, r_{n} \in R, t=t\left(a, r_{1}, \ldots, r_{n}\right) \geq 1\right\} .
\end{aligned}
$$

Then either $T(R)=Z(R)$ or R is a finite dimensional central simple algebra and f is power-central valued.

Notice that in the special case when f is multilinear it was proved in [2] and [3] that if R is a prime ring with no non-zero nil right ideals then f must be power-central valued and R satisfies the standard identity of degree $n+2$.

In all that follows $f=f\left(x_{1}, \ldots, x_{n}\right)$ will denote a homogeneous polynomial of degree m, we assume also that d is a non-zero derivation on R which is C-linear (i.e. for all $c \in C, r \in R d(c r)=c d(r))$ and satisfies the following condition:

$$
d\left(f\left(r_{1}, \ldots, r_{n}\right)^{t}\right)=0
$$

for all $r_{1}, \ldots, r_{n} \in R, t=t\left(r_{1}, \ldots, r_{n}\right) \geq 1$. Moreover, if char $R=p$ we assume that f is not a polynomial identity for $p \times p$ matrices in characteristic p. Finally, since throughout R will be a prime ring, we may assume that C is a domain and R is torsion free over C.

We begin with the case when f is power-central valued. We set as in [9]

$$
\phi(m)=\left[\frac{\log (m[m / 2]+1)}{\log 2}\right]([m / 2]+1)
$$

where $[x]$ is the integral part of the real number x.
We have the following theorem.
THEOREM 1. Let R be a primitive ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a homogeneous polynomial of degree m. If char $R=p$ we also assume that f is not a polynomial identity for $p \times p$ matrices in characteristic p. If f is power-central valued in R then R is a finite dimensional central simple algebra. Let $N^{2}=[R: Z(R)]$, then

1) either f is a polynomial identity for $(N-1) \times(N-1)$ matrices over $Z(R)$ and $N \leq \frac{1}{2}(m+2)$ or
2) $Z(R)$ is a finite field with $|Z(R)| \leq \phi(m) m$ and $N \leq \phi(m)+1$.

Proof. Since R is primitive, R is a dense ring of linear transformations on a vector space V over a division ring D.

Suppose that V is infinite dimensional over D; then, for every integer k, f is powercentral valued on D_{k}, the ring of $k \times k$ matrices over D. We can regard D_{k-1} as the subring of D_{k} consisting of all $k \times k$ matrices with zero in the last row and last column. Thus $f\left(x_{1}, \ldots, x_{n}\right)$ is nil-valued on D_{k-1}. By [9] (Theorem 1.7, Corollary 1.8) either f is an identity of D_{k-1} or D_{k-1} is a finite ring and $f\left(x_{1}, \ldots, x_{n}\right)^{\phi(m)}$ is a polynomial identity on D_{k-1}. In any case we must have $2 k \leq \phi(m) m+2$ for all k, and this is a contradiction.

Therefore $\operatorname{dim}_{D} V=t$ and so $R \simeq D_{t}$
If $t=1$ then $R \simeq D$ is a division ring and by Theorem 32 of [9] R is finite dimensional over its center $Z(R)$ Also of $N^{2}=\left[\begin{array}{ll}R \quad Z(R)\end{array}\right], f$ is an identity for $(N-1) \times(N-1)$ matrices over $Z(R), f\left(x_{1}, \quad, x_{n}\right)^{N}$ is a central polynomial on R and $N \leq \frac{1}{2}(m+2)$

Suppose now $t>1$ The previous argument shows that f is nil-valued in D_{t}, hence f is an identity on D Thus $\left[\begin{array}{ll}D & Z(D)\end{array}\right]=r^{2}$ and $R \simeq D_{t}$ is a central simple algebra and $N^{2}=(r t)^{2}=\left[\begin{array}{ll}R & Z(R)\end{array}\right]$ Since f is power-central valued on R and the center of R is a field, f also has multınomial degree one on R (see Definition 02 of [9])

If $Z(R)$ is not algebrac over a finite field, then by Theorem 38 of [9] we can conclude that $N \leq \frac{1}{2}(m+2), f$ is an identity on $(N-1) \times(N-1)$ matrices over $Z(R)$, and $f\left(x_{1}, \quad, x_{n}\right)^{N}$ is central on R

Finally suppose that $Z(R)=Z(D)$ is algebracc over a finite field P As $\left[\begin{array}{ll}D & Z(D)\end{array}\right]=r^{2}$ one has that every element a of D is algebracic over P Hence $P(a)$ is a finte field and so there exists an integer $s=s(a)$ greater than 1 such that $a^{s}=a$ By a result of Jacobson, this suffices to conclude that D is commutative ([6] Theorem 312) Therefore, in this case, $r=1, N=t$ and $R \simeq Z_{N}$ As we sard above f is nil-valued on $Z_{N} 1$ and so Theorem 17 of [9] again implies that either f is a polynomial identity on Z_{N-1} or Z is a fintte field of order $|Z| \leq \phi(m) m$ and $N-1 \leq \phi(m)$

In any case N is bounded by an explicit function of the degree m of $f\left(x_{1}, \quad, x_{n}\right)$ This completes the proof

REmARK 1 Let F be a finte field of order q and $R=F_{N}$ Assume $f\left(x_{1}, \quad, x_{n}\right)$ is power-central valued on R and let $a=f\left(r_{1}, \quad, r_{n}\right)$ for $r_{1}, \quad, r_{n} \in R$ If $a^{s(a)} \in F$ then we have

1) etther a is nulpotent, hence $s(a) \leq N$, or
2) a is invertible, and by Lagrange's Theorem $a^{|\mathrm{GL}(N F)|}=I$

As a result $f\left(x_{1}, \quad, x_{n}\right)^{M}$ is a central polynomial on F_{N}, where

$$
M=N|\operatorname{GL}(N, F)|=N \quad q^{\frac{1}{2} N(N-1)} \quad \prod_{i=1}^{N}\left(q^{i}-1\right)
$$

Moreover, etther $f\left(x_{1}, \quad, x_{n}\right)$ is a polynomial identity on F_{N-1} and so $N \leq \frac{1}{2}(m+2)$ or $N \leq \phi(m)+1$ and $q \leq \phi(m) m$ with $m=$ degree of f

Notice that if d is the inner derivation induced by an element a of R then the condition $d\left(f\left(r_{1}, \quad, r_{n}\right)^{t}\right)=0$ for all $r_{1}, \quad, r_{n} \in R, t=t\left(r_{1}, \quad, r_{n}\right) \geq 1$ implies that a is in $T(R)$ which is $T(R)=\left\{a \in R \mid a f\left(r_{1}, \quad, r_{n}\right)^{t}=f\left(r_{1}, \quad, r_{n}\right)^{t} a, t=t\left(a, r_{1}, \quad, r_{n}\right)\right\}$ As quoted in [3], $T(R)$ is a subring of R contanning $Z(R)$, invariant under all automorphisms of R, moreover we notice that the proof of Lemma 1 in [3] holds also for homogeneous polynomials, hence we have the following

Lemma 1 If D is a division ring then ether $T(D)=Z(D)$ or $\left[\begin{array}{ll}D & Z(D)\end{array}\right]=N^{2}$, $f\left(x_{1}, \quad, x_{n}\right)^{N}$ is central in D and $N \leq \frac{1}{2}(m+2)$

REmARK 2 If $T(R)=R$ and R is an algebra finte dimensional over its center Z, then for $r_{1}, \quad, r_{n} \in R$ there exists $t \geq 1$ such that $f\left(r_{1}, \quad, r_{n}\right)^{t}$ centralızes a fixed basis of R over Z

Hence $f\left(r_{1}, \ldots, r_{n}\right)^{t} \in Z$, that is f is power-central valued.
We continue with:
LEMMA 2. Let $R=\mathrm{GF}(2)_{2}$ be the ring of 2×2 matrices over $\mathrm{GF}(2)$. Then either $T(R)=Z(R)$ or $f\left(x_{1}, \ldots, x_{n}\right)^{6}$ is central in R.

Proof. We consider the following set-partition of R :

$$
\begin{gathered}
Z=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I\right\} \text { the center of } R, \\
\mathcal{E}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\right\} \\
\text { the set of non-central idempotents, } \\
\mathcal{N}=\left\{\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\} \text { the set of nilpotent elements and } \\
\left.\mathcal{A}=\left\{\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], b=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], c=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], u=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right], v=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\right\} \\
\text { the set of non-central invertible elements of } R .
\end{gathered}
$$

We remark that the 6-th power of all elements of L lies in the center of R; in fact $a^{2}=b^{2}=c^{2}=I$ and also $u^{3}=v^{3}=I$.

Hence, if $f\left(x_{1}, \ldots, x_{n}\right)$ is not power-central valued then there exist $s_{1}, \ldots, s_{n} \in R$ such that $f\left(s_{1}, \ldots, s_{n}\right)=e \in \mathcal{E}$.

If $a \in T(R)$, then a commutes with $f\left(s_{1}, \ldots, s_{n}\right)^{l}=e$ and for any automorphism β of R we also have $a f\left(s_{1}^{\beta}, \ldots, s_{n}^{\beta}\right)^{t}=f\left(s_{1}^{\beta}, \ldots, s_{n}^{\beta}\right)^{t} a$, where t depends on a, s_{1}, \ldots, s_{n} and β.

Since any two distinct elements of \mathcal{E} are conjugate in R this implies that a centralizes all of \mathcal{E}. Let $\hat{\mathcal{E}}$ be the subring of R generated by \mathcal{E}; then the previous argument shows that either $f\left(x_{1}, \ldots, x_{n}\right)^{6}$ is a central polynomial in R or $T(R) \subseteq C(\mathcal{E})=C(\hat{\mathcal{E}})=Z(R)$ and this proves the lemma.

Now, we extend the previous result to primitive rings with a nontrivial idempotent. More precisely we have:

LEmmA 3. Let R be a primitive ring with a nontrivial idempotent, $f\left(x_{1}, \ldots, x_{n}\right) a$ homogeneous polynomial of degree m. Then either $T(R)=Z(R) \operatorname{or} f\left(x_{1}, \ldots, x_{n}\right)$ is powercentral valued in R (and the conclusion of Theorem 1 holds).

Proof. $\quad T(R)$ is a subring of R invariant under all automorphisms of R; also, by Lemma 2, we may assume that $R \neq \mathrm{GF}(2)_{2}$. Hence, since R is a prime ring with a non-trivial idempotent, by [8, Theorem] either $T(R)=Z(R)$ or $T(R) \supset I$, a non-zero two-sided ideal of R.

Suppose then $T(R) \neq Z(R)$.
Since R is primitive, R is a dense ring of linear transformations on a vector space V over a division ring D; also I, as an ideal of R, is dense on V over D. Moreover $T(R) \supset I$ implies $T(I)=I$.

If V is finite dimensional over D, then $R \cong D_{k}$ and so $R=I$ and $T(R)=R$. Hence $T(D)=D$ and, by Lemma $1, D$ is finite dimensional over its center. It follows that R is
finite dimensional central simple algebra and by Remark 2, f is power-central valued, as required

Suppose now that V is not finite dimensional over D If ϕ is the function described before Theorem 1, define an integer M as follows

$$
M= \begin{cases}\frac{1}{2}(m+2)+1 & \text { if } Z(D) \text { is an infinite field } \\ \phi(m)+2 & \text { otherwise }\end{cases}
$$

Now, by [6, Theorem 214] D_{M} is a homomorphic image of a subring S of I Clearly $T(S)=S$ and so, $T\left(D_{M}\right)=D_{M}$ As above this imples that f is power-central valued in D_{M} and this, by Theorem 1, contradicts the choice of M

Next we are going to examine the general case concerning an arbitrary derivation d The first result is the following lemma, (see [2], [3] and Lemma 1)

Lemma 4 If R is a division ring then $f\left(x_{1}, \quad, x_{n}\right)$ is power-central valued and R is finite dimensional over its center

PROOF Let $S=\{r \in R \mid d(r)=0\}$, then for $x \in S$ we have

$$
0=d(1)=d\left(x x^{1}\right)=d(x) x^{1}+x d\left(x^{1}\right)=x d\left(x^{1}\right)
$$

which implies $d\left(x^{-1}\right)=0$, that is $x^{1} \in S$, so that S is a proper subdivision ring of R, moreover for all $r_{1}, \quad, r_{n} \in R$ there exists $t=t\left(r_{1}, \quad, r_{n}\right) \geq 1$ such that $f\left(r_{1}, \quad, r_{n}\right)^{t} \in S$

Let $r=f\left(r_{1}, \quad, r_{n}\right)$, if $x \in R-S$ we can choose $t \geq 1$ such that $r^{t} \in S,\left(x r x^{-1}\right)^{t}=$ $\left(x f\left(r_{1}, \quad, r_{n}\right) x^{-1}\right)^{t}=f\left(x r_{1} x^{-1}, \quad, x r_{n} x^{1}\right)^{t} \in S$ and $\left((1+x) r(1+x)^{1}\right)^{t} \in S$

Thus, using a Brauer-Cartan-Hua type argument, for some $a, b \in S$ we have

$$
\begin{align*}
x r^{t} & =a x \tag{I}\\
(1+x) r^{t} & =b(1+x)
\end{align*}
$$

Subtractıng we get $r^{t}=b+(b-a) x$, hence $(b-a) x \in S$ Since S is a subdivision rıng of R and $x \notin S$ then $a=b$

From (I) we deduce $x r^{t}=r^{t} x$
Let now $y \in S$ By the first part of the proof we have $(x+y) r^{t^{t}}=r^{t}(x+y)$ for a suitable t^{\prime} Sunce $x r^{t t^{\prime}}=r^{t t^{\prime}} x$ we get $y r^{t t}=r^{t t^{\prime}} y$ Therefore $T(R)=R$ and by Lemma $1 f$ is power-central valued and $[R \quad Z(R)] \leq \frac{1}{2}(m+2)$

We contınue with
LEmma 5 Let R be a prime ring and suppose that $T(R)=Z(R)$ If $t \in R$ is such that $t^{2}=0$ then $d(t)=0$

Proof Let $0 \neq t \in R$ be such that $t^{2}=0$, then the map $\eta_{t} R \rightarrow R$ defined by $\eta_{t}(r)=r+t r-r t+t r t$ is an automorphism of R Even if R does not have a unit element we write $\eta_{t}(r)=(1+t) r(1-t)$ and also $(1+t) r=r+t r$ or $r(1+t)=r+r t$

Let $x=f\left(r_{1}, \ldots, r_{n}\right)$; there exists $s \geq 1$ such that $d\left(x^{s}\right)=0$ and $d\left((1+t) x^{s}(1-t)\right)=$ $d\left(((1+t) x(1-t))^{s}\right)=0$. Thus $d\left((1+t) x^{s}(1-t)(1+t)\right)=d\left((1+t) x^{s}\right)=d(t) x^{s}$ and $d\left((1+t) x^{s}(1-t)(1+t)\right)=(1+t) x^{s}(1-t) d(t)$. Therefore $(1-t) d(t) x^{s}=x^{s}(1-t) d(t)$, that is $(1-t) d(t)=z$ for some $z \in T(R)=Z(R)$, and so $d(t)=z(1+t)$.

It follows that $0=d\left(t^{2}\right)=t d(t)+d(t) t=2 z t$. If char $R \neq 2$ then $z t=0$. Moreover since $z \in Z(R)$ either $z=0$ or z is not a zero divisor in R; in any case $d(t)=0$.

Now we suppose that char $R=2$ and we split the proof into two different cases: $Z(R) \neq \mathrm{GF}(2)$ or $Z(R)=\mathrm{GF}(2)$.

CASE $1: Z(R) \neq \mathrm{GF}(2)$. Let $\gamma \in Z(R)-\{0,1\}$. Then $d\left(\gamma^{2} t\right)=z^{\prime}\left(1+\gamma^{2} t\right)$ for some $z^{\prime} \in Z(R)$. Since $d\left(\gamma^{2}\right)=\gamma d(\gamma)+d(\gamma) \gamma=2 \gamma d(\gamma)=0$ we also have $d\left(\gamma^{2} t\right)=\gamma^{2} d(t)=$ $\gamma^{2} z(1+t)$. So we get $z^{\prime}\left(1+\gamma^{2} t\right)=\gamma^{2} z(1+t)$. Hence $\gamma^{2}\left(z^{\prime}-z\right) t \in Z(R)$. As t is not a central element of the prime ring R, this implies $z=z^{\prime}$. Thus $z=\gamma^{2} z$ and so $\left(\gamma^{2}+1\right) z=0$. Since $\gamma^{2}+1 \neq 0$ we get $z=0$ and, once again, $d(t)=0$.

CASE 2: $Z(R)=\operatorname{GF}(2)$. Suppose that $d(t) \neq 0$ for some $t \in R$ with $t^{2}=0$. By the first part of the proof, $d(t)=1+t$. If $r \in R$ then $(t r t)^{2}=0$. Hence $d(t r t)=0$ or $d(t r t)=1+t r t$ again. But $d(t r t)=d(t r) t+\operatorname{trd}(t)=d(t r) t+t r(1+t)$; hence $d(t r t) t=t r t$. However, as we mentioned above, $d(t r t)=0$ or $d(t r t)=1+t r t$. Hence $t r t=d(t r t) t=0$ or $t r t=t$.

As a consequence $t R t=\mathrm{GF}(2) t$.
If $0 \neq a \in t R$ then $0 \neq a R t \subseteq t R t=\mathrm{GF}(2) t$ and so $t \in a R t$. Hence $a R=t R$ for all $0 \neq a \in t R$ and this says that $t R$ is a minimal right ideal of R. Thus R is a primitive ring with minimal right ideal $t R$. Moreover its commuting ring is $\mathrm{GF}(2)$ as $t R t=\mathrm{GF}(2) t$. If $I \neq 0$ is an ideal of R then $t I t \neq 0$. Hence tit $\neq 0$ for some $i \in I$; thus $t i t=t$ and so $t \in I$. Since I^{2} is a nonzero ideal of $R, t \in I^{2}$. Hence $1+t=d(t) \in d\left(I^{2}\right) \subseteq d(I) I+I d(I) \subseteq I$. Together with $t \in I$ this implies that $1 \in I$ and so $I=R$. In other words R is simple. Since R is simple with 1 and has a minimal right ideal, R is simple artinian and since the commuting ring of R is $\operatorname{GF}(2)$, by Wedderburn's theorem we conclude that $R \simeq \operatorname{GF}(2)_{k}$ for some $k \in \mathbb{N}$ [7]. But in this case, as proved by Jacobson, any derivation is an inner derivation (see p. 100 of [6]) and by Lemma 3 we obtain $d=0$ which is a contradiction.

We now settle the case when R contains a nontrivial idempotent.
Lemma 6. Let R be a primitive ring with a nontrivial idempotent. Then $f\left(x_{1}, \ldots, x_{n}\right)$ is power-central valued.

Proof. Suppose that $R=\mathrm{GF}(2)_{2}$. Then, as we quoted above, d is the inner derivation induced by a certain element a of R. As $d \neq 0, a \notin Z(R)$. Hence $T(R) \neq Z(R)$ and by Lemma $2 f\left(x_{1}, \ldots, x_{n}\right)^{6}$ is a central polynomial on R.

Assume now that $R \neq \mathrm{GF}(2)_{2}$ and let A be the subring generated by all square zero elements of R. A is invariant under all automorphisms of R. Since R is a prime ring with a nontrivial idempotent, by [8, Theorem], A contains a nonzero ideal I of R. On the other hand, by Lemma 3 either $T(R)=Z(R)$ or f is power-central valued.

In the first case by Lemma $5 d(x)=0$ for all $x \in A$ and so $d(I)=0$. Now, since $0=$ $d(I) \supseteq d(I R)=I d(R)$, by the primeness of R we obtain $d(R)=0$ which is a contradiction. Hence in any case f is power-central valued on R and R is a finite dimensional central simple algebra.

Finally we have:
ThEOREM 2. Let R be a primitive ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a homogeneous polynomial of degree m. Suppose that d is a nonzero derivation on R such thatfor all $r_{1}, \ldots, r_{n} \in R$ there exists $t \in \mathbb{N}, t=t\left(r_{1}, \ldots, r_{n}\right)$, with $d\left(f\left(r_{1}, \ldots, r_{n}\right)^{t}\right)=0$. If $\operatorname{char} R=p>0$ we assume thatf is not an identity for $p \times p$ matrices in characteristic p. Then $f\left(x_{1}, \ldots, x_{n}\right)$ is powercentral valued and R is a finite dimensional central simple algebra. Let $N^{2}=[R: Z(R)]$; then

1) either f is a polynomial identity for $(N-1) \times(N-1)$ matrices over $Z(R)$ and $N \leq \frac{1}{2}(m+2)$ or
2) $Z(R)$ is a finite field with $|Z(R)| \leq \phi(m) m$ and $N \leq \phi(m)+1$.

Moreover, if $f\left(x_{1}, \ldots, x_{n}\right)$ is not a polynomial identity on R then either d is an inner derivation or $Z(R)$ is infinite of characteristic $p \neq 0$.

Proof. Let V be a faithful irreducible right R-module with endomorphism ring D a division ring. First we assume that V is infinite dimensional over D and R does not contain a nontrivial idempotent. This says that R does not have nonzero linear transformations of finite rank.

We will prove that these assumptions lead to a contradiction.
Let $v r=0$ for some $v \in R$ and $r \in R$, and suppose that $v d(r) \neq 0$. Since r has infinite rank, there exist $w_{1}, \ldots, w_{n} \in \operatorname{Im} r$ such that $v d(r), w_{1}, \ldots, w_{n}$ are linearly independent and let $v_{1}, \ldots, v_{n} \in V$ such that $w_{l}=v_{t} r, i=1, \ldots, n$.

Let $M=M\left(x_{1}, \ldots, x_{n}\right)$ be a nonzero monomial of $f\left(x_{1}, \ldots, x_{n}\right)$ and let $\operatorname{deg}_{x_{1}} M\left(x_{1}, \ldots, x_{n}\right)=m_{l} \geq 1$, hence $m_{1}+\cdots+m_{n}=m=\operatorname{deg} f$.

By considering the order of the x_{l} 's in $M\left(x_{1}, \ldots, x_{n}\right)$ we construct a partition of $\mathcal{A}=\{1, \ldots, m\}$ in n disjoint subsets, one for each x_{l}. More precisely we define, for $i=1, \ldots, n$, the subset \mathcal{A}_{1} of \mathcal{A} in the following way:

$$
j \in \mathcal{A}_{t} \Leftrightarrow M=M_{J} x_{l} M_{J}^{\prime}
$$

where $M_{J}=M_{J}\left(x_{1}, \ldots, x_{n}\right)$ has degree $j-1$ and $M_{J}^{\prime}=M_{J}^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ has degree $m-j$. In other words, in the ordered monomial M, \mathcal{A}_{t} is the set of positions in which x_{l} occurs.

We can assume that $1 \in \mathcal{A}_{1}$, that is $M=\alpha x_{1} M_{1}^{\prime}$, where $M_{1}=\alpha \in C$, and we let for convenience $v_{n+1}=v_{1}$. By the Jacobson density theorem there exist $a_{1}, \ldots, a_{n} \in R$ such that, for $i=1, \ldots, n$

$$
w_{j} a_{l}= \begin{cases}v_{j+1} & \text { if } j \in \mathcal{A}_{l} \\ 0 & \text { otherwise }\end{cases}
$$

and moreover, since $v d(r), w_{1}, \ldots, w_{n}$ are linearly independent, we can set $v d(r) a_{1}=v_{2}$ and $v d(r) a_{\imath}=0$ for $i=2, \ldots, n$.

We remark that if $j \in \mathcal{A}_{t}$ then

$$
\begin{gathered}
M_{\jmath+1}\left(x_{1}, \ldots, x_{n}\right)=M_{\jmath}\left(x_{1}, \ldots, x_{n}\right) x_{l} \text { and } \\
M_{\jmath-1}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=x_{l} M_{j}^{\prime}\left(x_{1}, \ldots, x_{n}\right) .
\end{gathered}
$$

Hence $v_{J} M_{j-1}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)=v_{J} r a_{t} M_{J}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)=w_{j} a_{t} M_{J}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)=$ $v_{j+1} M_{j}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)$. Therefore we have

$$
\begin{aligned}
v_{1} M\left(r a_{1}, \ldots, r a_{n}\right) & =\alpha v_{1} r a_{1} M_{1}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
& =\alpha v_{2} M_{1}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
& =\alpha v_{3} M_{2}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
& \vdots \\
& =\alpha v_{n} M_{n-1}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
& =\alpha v_{n} r a_{s} \\
& =\alpha v_{1} .
\end{aligned}
$$

In a similar way we can prove that

$$
v_{1} M_{J}\left(r a_{1}, \ldots, r a_{n}\right)=\alpha v_{J} \text { for } j=1, \ldots, n
$$

On the other hand if $N\left(x_{1}, \ldots, x_{n}\right)$ is a monomial of f different from M then $v_{1} N\left(r a_{1}, \ldots, r a_{n}\right)=0$. In fact, let $1 \leq j \leq m$ be the smallest integer such that $N=M_{J_{1}} x_{t} N^{\prime}$ and $M=M_{J_{l}} x_{l} M_{j}^{\prime}$ with $t \neq i$. Since $j \in \mathcal{A}_{t}$ and $\mathcal{A}_{i} \cap \mathcal{A}_{t}=\emptyset$ we have $j \notin \mathcal{A}_{t}$ and so $w_{j} a_{t}=0$. Hence

$$
\begin{aligned}
v_{1} N\left(r a_{1}, \ldots, r a_{n}\right) & =v_{1} M_{j}\left(r a_{1}, \ldots, r a_{n}\right) r a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
& =\alpha v_{j} r a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)=\alpha w_{j} a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)=0
\end{aligned}
$$

Therefore $v_{1} f\left(r a_{1}, \ldots, r a_{n}\right)=\alpha v_{1}$.
Now we will calculate $v d\left(f\left(r a_{1}, \ldots, r a_{n}\right)\right)$. As above, since $1 \in \mathcal{A}_{1}$,

$$
\begin{aligned}
v d\left(M\left(r a_{1}, \ldots, r a_{n}\right)\right) & =\alpha v d\left(r a_{1} M_{1}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)\right) \\
& =\alpha v d(r) a_{1} M_{1}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)+\alpha v r d\left(a_{1} M_{1}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)\right) \\
& =\alpha v d(r) a_{1} M_{1}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
& =\alpha v_{2} M_{1}^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
& \vdots \\
& =\alpha v_{1} .
\end{aligned}
$$

Let $N\left(x_{1}, \ldots, x_{n}\right)$ be another monomial of f and let $1 \leq j \leq m$ be the smallest integer such that $N=M_{j} x_{t} N^{\prime}$ and $M=M_{j} x_{t} M_{j}^{\prime}$ with $t \neq j$.

If $j=1$, then

$$
\begin{aligned}
v d\left(N\left(r a_{1}, \ldots, r a_{n}\right)\right) & =v d\left(\alpha r a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)\right) \\
& =\alpha v d(r) a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)+\alpha v r d\left(a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)\right) \\
& =0,
\end{aligned}
$$

as $v r=0$ and $t \neq 1$. If $j>1$, then we can write

$$
M_{j}\left(x_{1}, \ldots, x_{n}\right)=x_{1} M_{J}^{\prime \prime}\left(x_{1}, \ldots, x_{n}\right)
$$

with $\operatorname{deg} M_{J}^{\prime \prime}\left(x_{1}, \ldots, x_{n}\right)=j-2$; hence

$$
\begin{aligned}
v d\left(N\left(r a_{1}, \ldots, r a_{n}\right)\right)= & v d\left(\alpha r a_{1} M_{J}^{\prime \prime}\left(r a_{1}, \ldots, r a_{n}\right) r a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)\right) \\
= & \alpha v d(r) a_{1} M_{J}^{\prime \prime}\left(r a_{1}, \ldots, r a_{n}\right) r a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
& \quad+\alpha v r d\left(a_{1} M_{J}^{\prime \prime}\left(r a_{1}, \ldots, r a_{n}\right) r a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right)\right) \\
= & \alpha v_{2} M_{J}^{\prime \prime}\left(r a_{1}, \ldots, r a_{n}\right) r a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
= & \alpha v_{j} r a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
= & \alpha w_{j} a_{t} N^{\prime}\left(r a_{1}, \ldots, r a_{n}\right) \\
= & 0,
\end{aligned}
$$

as $w_{j} a_{t}=0$.
This proves that $v d\left(f\left(r a_{1}, \ldots, r a_{n}\right)\right)=\alpha v_{1}$. Now, let $s \geq 1$ be such that $d\left(f\left(r a_{1}, \ldots, r a_{n}\right)^{s}\right)=0$. Hence we have

$$
\begin{aligned}
0 & =v d\left(f\left(r a_{1}, \ldots, r a_{n}\right)^{s}\right) \\
& =\sum_{p+q=s-1} v f\left(r a_{1}, \ldots, r a_{n}\right)^{p} d\left(f\left(r a_{1}, \ldots, r a_{n}\right)\right) f\left(r a_{1}, \ldots, r a_{n}\right)^{q} \\
& =v d\left(f\left(r a_{1}, \ldots, r a_{n}\right)\right) f\left(r a_{1}, \ldots, r a_{n}\right)^{s-1} \\
& =\alpha v_{1} f\left(r a_{1}, \ldots, r a_{n}\right)^{s-1} \\
& \vdots \\
& =\alpha^{s} v_{1},
\end{aligned}
$$

a contradiction.
Thus if $v r=0, v d(r)=0$.
Let $0 \neq v \in V$ and suppose that $v r$ and $v d(r)$ are linearly dependent for all $r \in R$. Let $x, y \in R$ be such that $v x$ and $v y$ are linearly independent. Then $v d(x)=\lambda_{x} v x, v d(y)=\lambda_{y} v y$ and $v d(x+y)=\lambda_{x+y} v(x+y)$, where $\lambda_{x}, \lambda_{y}, \lambda_{x+y}$ are in D. Therefore $\lambda_{x+y} v x+\lambda_{x+y} v y=$ $\lambda_{x} v x+\lambda_{y} v y$, and thus $\lambda_{x}=\lambda_{y}$. As a result there exists $\lambda \in D$ such that $v d(x)=\lambda v x$ for all $x \in R$, with $v x \neq 0$. On the other hand, as we proved above, if $v r=0$ then $v d(r)=0$. Hence $v d(x)=\lambda v x$ for all $x \in R$.

Since V is infinite dimensional over D, there exist $v_{2}, \ldots v_{n} \in V$ such that v, v_{2}, \ldots, v_{n} are linearly independent, and we let for convenience $v=v_{1}=v_{n+1}$. By the Jacobson density theorem again, there exist $b_{1}, \ldots, b_{n} \in R$ such that, for $i=1, \ldots, n$

$$
v_{j} b_{l}= \begin{cases}v_{j+1} & \text { if } j \in \mathcal{A}_{i} \\ 0 & \text { otherwise }\end{cases}
$$

where the $\mathcal{A}_{\text {' }}$'s are the sets defined above. As above we can easily prove that $v f\left(b_{1}, \ldots, b_{n}\right)=\alpha v$ and so $v f\left(b_{1}, \ldots, b_{n}\right)^{s}=\alpha^{s} v$ for all $s \in \mathbb{N}$.

Now, for some $s \in \mathbb{N}, f\left(b_{1}, \ldots, b_{n}\right)^{s} \in S=\{x \in R \mid d(x)=0\}$. Hence there is $x \in S$ such that $v x \neq 0$ and we obtain $0=v d(x)=\lambda v x$ and so $\lambda=0$.

Thus if $v r$ and $v d(r)$ are linearly dependent for all $v \in V$ and $r \in R$, then $V d(R)=0$ and so $d=0$.

Therefore we may assume that there exist $v \in V, r \in R$ such that $v r$ and $v d(r)$ are linearly independent. Let $a \in R$ such that ($v r) a=0$ and $(v d(r)) a \neq 0$. By the above $0=(v r) a=v(r a)$ implies $(v r) d(a)=0$ and also $v d(r a)=0$; hence $0=v d(r a)=$ $v d(r) a+v r d(a)=v d(r) a \neq 0$, a contradiction. Thus either V is finite dimensional over D and $R \simeq D_{k}$ or R contains a nontrivial idempotent.

This, together with Lemma 4 and Lemma 6, suffices to prove that $f\left(x_{1}, \ldots, x_{n}\right)$ is power-central valued on R and R is a finite dimensional central simple algebra. Moreover $[R: Z(R)]$ is bounded as in Theorem 1 by an explicit function of the degree of $f\left(x_{1}, \ldots, x_{n}\right)$.

Finally, by a result of Jacobson [6, p. 100], either d is an inner derivation or $d(Z(R)) \neq 0$. In this case, for all $r_{1}, \ldots, r_{n} \in R$ and z in $Z(R)$, we can choose $t \geq 1$ such that $d\left(f\left(z r_{1}, \ldots, z r_{n}\right)^{t}\right)=0$ and $d\left(f\left(r_{1}, \ldots, r_{n}\right)^{t}\right)=0$. Thus

$$
\begin{aligned}
0 & =d\left(f\left(z r_{1}, \ldots, z r_{n}\right)^{t}\right) \\
& =d\left(z^{m t} f\left(r_{1}, \ldots, r_{n}\right)^{t}\right) \\
& =d\left(z^{m t}\right) f\left(r_{1}, \ldots, r_{n}\right)^{t}+z^{m t} d\left(f\left(r_{1}, \ldots, r_{n}\right)^{t}\right) \\
& =d\left(z^{m t}\right) f\left(r_{1}, \ldots, r_{n}\right)^{t} .
\end{aligned}
$$

Since R is primitive this implies that either $f\left(x_{1}, \ldots, x_{n}\right)$ is nil-valued on R or $d\left(z^{m t}\right)=0$ for all $z \in Z(R)$ with $t=t(z)$.

If $f\left(x_{1}, \ldots, x_{n}\right)$ is not a polynomial identity on R, by Theorem 1.7 of [9], we must have that $Z(R)$ is a finite field and so $d(Z(R))=0$.

Therefore we obtain that $d\left(z^{s}\right)=0$ for all $z \in Z(R)$, and $s=s(z)$ depends on z. Of course this implies that $Z(R)$ is infinite of characteristic $p \neq 0$; and this completes the proof.

As quoted above we can interpret the case of the inner derivations in terms of elements of $T(R)$. Hence we obtain the following result which is of some independent interest:

COROLLARY. Let R be a primitive ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a homogeneous polynomial of degree m. If char $R=p>0$ we assume that f is not an identity for $p \times p$ matrices in
characteristic p. Then either $T(R)=Z(R)$ or $f\left(x_{1}, \ldots, x_{n}\right)$ is power-central valued and R is a finite dimensional central simple algebra. In the last case let $N^{2}=[R: Z(R)]$, then

1) either f is a polynomial identity for $(N-1) \times(N-1)$ matrices over $Z(R)$ and $N \leq \frac{1}{2}(m+2)$ or
2) $Z(R)$ is a finite field with $|Z(R)| \leq \phi(m) m$ and $N \leq \phi(m)+1$.

REFERENCES

1. J Bergen and A Giambruno, f-radical extensions of rings, Rend Sem Mat Unıv Padova 77(1987), 125133
2. O M Dı Vincenzo, Derıvatıons and multilinear polynomıals, Rend Sem Mat Unıv Padova 81(1989), 209-219
3. B Felzenszwalb and A Giambruno, Centralizers and multulinear polynomials in non-commutative rings, J London Math Soc (2) 19(1979), 417-428
4. Periodic and nil polynomials in rings, Canad Math Bull (4) 23(1980), 473-476
5. A Giambruno, Ringsf-radıcalover P I subrings, Rend Mat Roma (1) (VI) 13(1980), 105-113
6. I N Herstenn, Noncommutative rings, Carus Mathematical Monographs, Math Assoc Amer 1968
7. __ Rings with involutoon, Unıv Chicago Press, Chicago, 1976
8. _ A Theorem on invariant subrings, J Algebra 83(1983), 26-32
9. I N Hersteın, C Procesı and M Shacher, Algebraic valued functions on noncommutative rings, J Algebra 36(1975), 128-150
10. L H Rowen, Polynomial identittes in ring theory, Academic Press, New York, 1973

Dipartimento dı Matematıca
Universita della Basilicata
via N Sauro 85
85100 Potenza
Italy
Dipartımento dı Matematıca
Unıversità dı Palermo
via Archirafi 34
90123 Palermo
Italy

[^0]: The first author's work was done within the activity of GNSAGA of CNR with the support of M U R S T (Italy)

 Received by the editors January 30, 1991, revised May 29, 1991
 AMS subject classtfication 16A38, 16A72
 (C) Canadian Mathematical Society 1993

