
J. Aust. Math. Soc. 98 (2015), 39–53
doi:10.1017/S1446788714000433

SOBOLEV SPACES ON LOCALLY COMPACT ABELIAN
GROUPS AND THE BOSONIC STRING EQUATION
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Abstract

Motivated by a class of nonlinear nonlocal equations of interest for string theory, we introduce Sobolev
spaces on arbitrary locally compact abelian groups and we examine some of their properties. Specifically,
we focus on analogs of the Sobolev embedding and Rellich–Kondrachov compactness theorems. As
an application, we prove the existence of continuous solutions to a generalized bosonic string equation
posed on an arbitrary compact abelian group, and we also remark that our approach allows us to solve
very general linear equations in a p-adic context.
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1. Introduction

In his seminal paper [41], Witten introduced the bosonic string action which contains
an infinite number of fields and yields—via a formal application of the variational
principle—an infinite number of equations in infinitely many variables; see for
instance [8, 9] and references therein. From this principle, physicists [8, 9] have
extracted nonlocal actions such as

L(φ) = φ∆e−c∆φ −U(x, φ), c > 0. (1.1)

The Euler–Lagrange equation arising from (1.1) is

∆e−c∆φ − U(x, φ) = 0, c > 0, (1.2)

where U = ∂U/∂φ. Equation (1.2) is a general type of equation encompassing (in
Lorentzian signature) the bosonic string [27] and a simplified case of the super-
symmetric string [9].
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Nonlocal equations (or equations in infinitely many derivatives) appear not only
in string theory [11, 38, 39, 41], but also as field equations of motion in particle
physics [29] and in gravity and cosmology [2, 4, 5, 28]. Thus, it is clearly necessary to
understand them in detail. In our recent papers [17–19], we have undertaken the study
of nonlinear nonlocal equations such as (1.2) on Euclidean space and also on compact
Riemannian manifolds. For example, we have proven that under some appropriate
growth and symmetry assumptions on the nonlinearity U appearing in (1.2), this
equation admits real-analytic solutions on Euclidean space.

On the other hand, if (1.2) is posed on spaces on which the Laplace operator does
not have a positive-definite symbol, the studies carried out in [17–19] do not apply.
One of the problems which appears is that the standard Sobolev norm, see for example
[36], is no longer well defined. Thus, motivated by the papers [7, 41], we wonder if
it is possible to define a ‘Laplace operator’ and Sobolev spaces in settings other than
Riemannian manifolds. If so, then in such a setting we can hope to be able to consider
nonlinear nonlocal equations rigorously. Topological groups appear as a natural testing
ground due to the existence of the Fourier transform. In this context, if G is a locally
compact abelian group, we simply set ∆(φ) = F −1(γ(·)2F (φ)), in which F indicates
the Fourier transform and γ is a weakly subadditive [0,∞)-valued function on the dual
group of G (functions of this type appear for example in [15]). This definition allows us
to consider ∆ independently of any (pseudo)metric the space G may be equipped with.

Developing this idea, in this paper we define Sobolev spaces on arbitrary locally
compact abelian groups and we examine analogs to the Sobolev embedding and
Rellich–Kondrachov compactness theorems. These results, in turn, allow us to
construct a suitable domain for the operator ∆e−c∆ and to prove rigorously existence
of regular solutions to (1.2) in compact abelian groups, a class of spaces which
is certainly different to the class of compact Riemannian manifolds considered in
[17–19]. For instance, we can consider Equation (1.2) for functions φ ‘depending
on an infinite number of variables’ if we pose it on an infinite product of tori. In fact,
motivated by [19], we are confident that our techniques will allow us to handle very
general nonlocal equations with a finite number of dependent variables and infinitely
many independent variables. We mention that classes of differential equations with
infinitely many independent variables appear in areas of mathematical physics such as
statistical mechanics, fluid dynamics and classical field theory; see [6, 33, 37]. Thus,
we expect that our methods will also apply in these contexts.

Added in proof. A preliminary version of this paper appeared as arXiv.org e-Print
1208.3053 in 2012.

2. Sobolev spaces

Sobolev spaces are well understood on (domains of) Rn, see [1], compact and
complete Riemannian manifolds [24] and metric measure spaces (the so-called
Hajlasz–Sobolev spaces, see [22, 23], and Newtonian spaces [32]). There are also
some works on Sobolev spaces in the p-adic context, see [30] and references therein,

https://doi.org/10.1017/S1446788714000433 Published online by Cambridge University Press

http://www.arxiv.org/abs/1208.3053
http://www.arxiv.org/abs/1208.3053
http://www.arxiv.org/abs/1208.3053
http://www.arxiv.org/abs/1208.3053
http://www.arxiv.org/abs/1208.3053
http://www.arxiv.org/abs/1208.3053
http://www.arxiv.org/abs/1208.3053
http://www.arxiv.org/abs/1208.3053
http://www.arxiv.org/abs/1208.3053
https://doi.org/10.1017/S1446788714000433


[3] Sobolev spaces on locally compact abelian groups and the bosonic string equation 41

and in special cases of locally compact groups such as the Heisenberg group [3].
We also remark that pseudodifferential operators defined on locally compact abelian
groups and compact Lie groups have been studied in [21, 31], respectively.

We start with some standard notation from harmonic analysis [25]. Let us fix a
locally compact abelian group G. We denote by µG the unique Haar measure of G. We
also consider the dual group of the group G (that is, the locally compact abelian group
of all continuous group homomorphisms from G to the circle group T ), and we denote
it by G∧. Lp spaces over G are defined as usual:

Lp(G) =

{
f : G→ C : f is measurable and

∫
G
| f (x)|p dµG(x) <∞

}
,

and the Fourier transform on G is defined as follows: if f ∈ L1(G), then its Fourier
transform is the function f̂ : G∧ → C given by

f̂ (ξ) =

∫
G
ξ(x) f (x) dµG(x).

Next, we denote by Γ the following set:

Γ = {γ : G∧ → [0,∞) : γ is measurable and ∃cγ∀α, β∈G∧γ(αβ) ≤ cγ[γ(α) + γ(β)]},

and we are in position to introduce Sobolev spaces.

Definition 2.1. Let us fix a map γ ∈ Γ and a nonnegative real number s. We shall say
that f ∈ L2(G) belongs to Hs

γ(G) if the following integral is finite:∫
G∧

(1 + γ(ξ)2)s| f̂ (ξ)|2 dµG∧(ξ). (2.3)

Moreover, for f ∈ Hs
γ(G), its norm ‖ f ‖Hs

γ(G) is defined as follows:

‖ f ‖Hs
γ(G) =

(∫
G∧

(1 + γ(ξ)2)s| f̂ (ξ)|2 dµG∧(ξ)
)1/2

. (2.4)

Remark. We note that by taking appropriate functions γ, we obtain the classical
Sobolev spaces on Tn andRn; see [15] and [36, Ch. 4]. The use of the Fourier transform
and the duality theory of locally compact abelian groups is crucial in the present
general context, since we do not have differential calculus at our disposal. A particular
instance of Definition 2.1 appears in the paper [15] by Feichtinger and Werther. The
function γ used in that paper is called by the authors a weakly subadditive weight.
We also note that in p-adic analysis Sobolev spaces are defined in a way analogous to
our Definition 2.1: if we take γ(ξ) = ‖ξ‖p, where ‖ · ‖p is a p-adic norm on Qn

p ' Q
n∧
p ,

then (2.3) and (2.4) allow us to recover the p-adic Sobolev spaces considered in [30].

Remark. In the paper [14], the authors introduce harmonic Hilbert spaces in a way
strongly resembling our definition of Sobolev spaces. What separates the two notions
are the properties of the ‘weights’ (1 + γ(ξ)2)s/2 for γ ∈ Γ. In particular, it is proven in
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[14] that their spaces are embedded in a space of continuous functions if their weights
ω (which are submultiplicative and not subadditive as in our case) satisfy the condition∑

n−2 logω(nξ) <∞ for all ξ ∈ Ĝ. In this paper, we prove a similar embedding result,
see Theorem 3.3 below, but we do not need such an assumption. We also point out
that it is important to take γ ∈ Γ in the definition of our weights because it allows us
to prove that—as happens in standard contexts, see [15, 36]—our spaces Hs

γ(G) are
algebras, see Theorem 3.4 below. The other theorems of Sections 2 and 3 of this paper
hold true without assuming that γ ∈ Γ.

Remark. Our spaces Hs
γ(G) are contained in the Ap

w,ω(G) spaces introduced by
Feichtinger and Gürkanli in [13] in the following sense: if (notation as in [13])
w ∈ L2(G) and we take ω = (1 + γ2)s/2, then Hs

γ(G) ↪→ A2
w,ω(G).

3. Continuous embedding theorems

Embedding properties of Sobolev spaces are essential for proving existence and
regularity of solutions to partial differential equations [36] and for the analysis of
pseudodifferential operators; see for instance [30]. Thus, we begin by proving a
Sobolev embedding type theorem in our general setting.

Let us start with two elementary observations. First, we show in Proposition 3.1
that our spaces Hs

γ(G) are included in L2(G). Then, we prove in Proposition 3.2 that in
fact we have a ‘scale’ of spaces with respect to continuous inclusion.

Proposition 3.1. If G is a locally compact abelian group, then

Hs
γ(G) ↪→ L2(G).

Moreover, for each f ∈ Hs
γ(G), the following inequality holds:

‖ f ‖L2(G) ≤ ‖ f ‖Hs
γ(G).

Proof. By Pontryagin duality and a basic inequality,

‖ f ‖L2(G) = ‖ f̂ ‖L2(G∧) =

(∫
G∧
| f̂ (ξ)|2 dµG∧(ξ)

)1/2

≤

(∫
G∧

(1 + γ(ξ)2)s| f̂ (ξ)|2 dµG∧(ξ)
)1/2

= ‖ f ‖Hs
γ(G). �

Proposition 3.2. If s > σ, then Hs
γ(G) ↪→ Hσ

γ (G). Moreover, the inequality

‖ f ‖Hσ
γ (G) ≤ ‖ f ‖Hs

γ(G)

holds.

Proof. The proof follows from an elementary inequality. �

The classical Sobolev embedding theorem, see for instance [1], reads in our context
as follows.

https://doi.org/10.1017/S1446788714000433 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000433


[5] Sobolev spaces on locally compact abelian groups and the bosonic string equation 43

Theorem 3.3. If 1/(1 + γ(·)2)s ∈ L1(G∧), then

Hs
γ(G) ↪→ C(G),

in which C(G) denotes the space of bounded continuous complex-valued functions on
G. Moreover, there exists a constant C(γ, s) such that for each f ∈ Hs

γ(G), the following
inequality holds:

‖ f ‖C(G) ≤ C(γ, s)‖ f ‖Hs
γ(G).

Proof. First of all, we note that∫
G∧
| f̂ (ξ)| dµG∧(ξ) ≤

(∫
G∧

(1 + γ(ξ)2)s| f̂ (ξ)|2 dµG∧(ξ)
)1/2∥∥∥∥∥ 1

(1 + γ(·)2)s

∥∥∥∥∥1/2

L1(G∧)

and therefore f̂ ∈ L1(G∧). Thus, we can use the inverse Fourier transform:

| f (x)| =
∣∣∣∣∣∫

G∧
f̂ (ξ)ξ(x) dµG∧(ξ)

∣∣∣∣∣ ≤ ∫
G∧
| f̂ (ξ)| dµG∧(ξ)

≤ ‖ f ‖Hs
γ(G)

∥∥∥∥∥ 1
(1 + γ(·)2)s

∥∥∥∥∥1/2

L1(G∧)
.

From [25, Vol. 2, Theorem 31.5], we have f ∈ C(G). �

The following theorem tells us that, under a technical assumption involving our
function γ, the space Hs

γ(G) is an algebra. It is well known that such a property is
important, for instance, for the study of existence of solutions to partial differential
equations. A recent example appears in our paper [20].

Theorem 3.4. If 1/(1 + γ(·)2)s ∈ L1(G∧), then Hs
γ(G) is an algebra. There exists a

constant D(γ, s) such that for each f , g ∈ Hs
γ(G), the following inequality holds:

‖ f g‖Hs
γ(G) ≤ D(γ, s)‖ f ‖Hs

γ(G)‖g‖Hs
γ(G).

Proof. First of all, let us notice that for each ξ, η ∈ G∧, the following inequality holds:

(1 + γ(ξ)2) ≤ (2 + 2c2
γ)(2 + γ(ξη−1)2 + γ(η)2).

Hence,

|(1 + γ(ξ)2)s/2 f̂ g(ξ)|

=

∣∣∣∣∣∫
G∧

(1 + γ(ξ)2)s/2 f̂ (ξη−1)̂g(η) dµG∧(η)
∣∣∣∣∣

≤ 2s/2(1 + c2
γ)

s/2
∫

G∧
(1 + γ(ξη−1)2 + 1 + γ(η)2)s/2| f̂ (ξη−1)̂g(η)| dµG∧(η)

≤ 2s(1 + c2
γ)

s/2
∫

G∧
(1 + γ(ξη−1)2)s/2| f̂ (ξη−1)̂g(η)| dµG∧(η)

+ 2s(1 + c2
γ)

s/2
∫

G∧
(1 + γ(η)2)s/2| f̂ (ξη−1)̂g(η)| dµG∧(η)

= 2s(1 + c2
γ)

s/2(((1 + γ(·)2)s/2| f̂ |) ∗ | ĝ | + | f̂ | ∗ (| ĝ |(1 + γ(·)2)s/2)).
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Thus,

‖ f g‖2Hs
γ(G) = ‖(1 + γ(ξ)2)s/2 f̂ g(ξ)‖2L2(G∧)

≤ 22s+1(1 + c2
γ)

s(‖((1 + γ(·)2)s/2| f̂ |) ∗ | ĝ | ‖2L2(G∧)

+ ‖ | f̂ | ∗ (| ĝ |(1 + γ(·)2)s/2)‖2L2(G∧)).

Next, by the Young inequality, ‖u ∗ v‖L2(G∧) ≤ cy‖u‖L2(G∧)‖v‖L1(G∧),

‖ f g‖2Hs
γ(G) ≤ 22s+1(1 + c2

γ)
sc2

y(‖ f ‖2Hs
γ(G)‖ ĝ ‖2L1(G∧) + ‖ f̂ ‖2L1(G∧)‖g‖

2
Hs
γ(G)).

The result now follows from the proof of the previous theorem. �

Now we prove a second embedding result. While Theorem 3.3 tells us that functions
belonging to Hs

γ(G) are continuous, Theorem 3.5 below tells us that they possess
‘higher integrability properties’.

Theorem 3.5. If α > s and 1/(1 + γ(·)2) ∈ Lα(G∧), then

Hs
γ(G) ↪→ Lα

∗

(G),

where α∗ = 2α/(α − s). Moreover, there exists a constant D(γ, s) such that for each
f ∈ Hs

γ(G), the following inequality holds:

‖ f ‖Lα∗ (G) ≤ D(γ, s)‖ f ‖Hs
γ(G).

Proof. By a standard corollary of the Hausdorff–Young inequality (see [25, Vol. 2]),

‖ f ‖Lα∗ (G) ≤ ‖ f̂ ‖Lp(G∧),

where p is the conjugate of α∗, that is, p = 2α/(α + s). Next, using the Hölder
inequality with exponents 2/p and 2/(2 − p),

‖ f̂ ‖Lp(G∧) =

(∫
G∧
| f̂ (ξ)|p

(1 + γ(ξ)2)sp/2

(1 + γ(ξ)2)sp/2 dµG∧(ξ)
)1/p

≤ ‖ f ‖Hs
γ(G)

(∫
G∧

1
(1 + γ(ξ)2)sp/(2−p) dµG∧(ξ)

)(2−p)/2p
.

Since sp/(2 − p) = α,

‖ f ‖Lα∗ (G) ≤

∥∥∥∥∥ 1
(1 + γ(·)2)

∥∥∥∥∥s/2

Lα(G∧)
‖ f ‖Hs

γ(G). �

4. Compact embedding theorems

In this section, we prove a Rellich–Kondrachov type theorem. As is well known,
this theorem plays a crucial role in proving compactness of operators and in fixed point
arguments. Now, the standard Rellich–Kondrachov theorem [1, 24] is valid only on
spaces with finite measure such as compact Riemannian manifolds. It is then natural to
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assume that in our case the condition µG(G) <∞ holds or, equivalently (see [25]), that
the locally compact abelian group G is actually compact. We stress that even with this
restriction our results go beyond the standard case: besides infinite products of basic
examples of compact abelian groups, other interesting instances of compact groups are
the dyadic group (see for instance [34]) and the compact group appearing in the recent
paper [35].

In the theorem below, we use the following convention: g(h)→ 0 as h→ e means
that for all ε > 0, there exists an open set Uε with e ∈ Uε such that for all h ∈ Uε , we
have |g(h)| ≤ ε. Also, the notation A ↪→↪→ B means that the space A is compactly
embedded into B.

Remark. It is known that in the case of Rn, the Kolmogorov–Riesz–Weil theorem (see
[26, 40]) can be used to prove the Rellich–Kondrachov theorem. Similar compactness
results exist for locally compact abelian groups, see [12], which presumably would
yield another approach to the problem of compact embeddings. We present a direct
proof.

Theorem 4.1. Let 1/(1 + γ(·)2) ∈ Lα(G∧) for some α > s and assume that

|ξ(h) − 1|
(1 + γ(ξ)2)s −→h→e

0 uniformly with respect to ξ ∈ G∧. (4.5)

If G is compact, then, for all p < α∗,

Hs
γ(G) ↪→↪→ Lp(G).

Before proving Theorem 4.1, we note that if G is Rn or Tn, Condition (4.5) is
satisfied. Indeed, if G = Rn, then G∧ = Rn and a straightforward calculation yields

|ξ(h) − 1|
(1 + γ(ξ)2)s =

|eiξh − 1|
(1 + |ξ|2)s ≤

√
2|sin(ξh)|

(1 + |ξ|2)s

and, if G = Tn, then G∧ = Zn; we can show that

|m(h) − 1|
(1 + γ(m)2)s =

|eimh − 1|
(1 + |m|2)s ≤

√
2|sin(mh)|

(1 + |m|2)s .

We also note that a condition similar to (4.5) appears in the characterization of
(pre)compact sets in L2(G) via the Fourier transform (Pego’s theorem, see [16]).

Proof. Let us start with the following lemma.

Lemma 4.2. Let f ∈ Hs
γ(G) and assume that |ξ(h) − 1|/(1 + γ(ξ)2)s −→

h→e
0 uniformly

with respect to ξ ∈ G∧. Then, for each h ∈ G,∫
G
| f (xh) − f (x)|2 dµG(x) ≤ C(h)‖ f ‖2Hs

γ(G),

where C(h) −→
h→e

0 .
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Proof. By Pontryagin duality,∫
G
| f (xh) − f (x)|2 dµG(x) =

∫
G∧
| f̂ (.h)(ξ) − f̂ (ξ)|2 dµG∧(ξ).

Since the measure µG is invariant,

f̂ (.h)(ξ) =

∫
G
ξ(x) f (xh) dµG(x) =

∫
G
ξ(yh−1) f (y) dµG(y)

=

∫
G
ξ(y)ξ(h−1) f (y) dµG(y) = ξ(h) f̂ (ξ).

Hence, ∫
G
| f (xh) − f (x)|2 dµG(x)

=

∫
G∧
| f̂ (ξ)|2|ξ(h) − 1|2 dµG∧(ξ)

=

∫
G∧
| f̂ (ξ)|2(1 + γ(ξ)2)s |ξ(h) − 1|2

(1 + γ(ξ)2)s dµG∧(ξ) ≤ C(h)‖ f ‖2Hs
γ(G),

where C(h) = ‖ |ξ(h) − 1|2/(1 + γ(ξ)2)s‖L∞(G∧) −→
h→e

0. �

We continue the proof of Theorem 4.1. Let I be the set of all symmetric unit
neighborhoods, partially ordered by the inverse inclusion. Then, using the Urysohn
lemma, we can construct the so-called Dirac net (φU)U∈I in Cc(G) (see [10]). Each
function φU is nonnegative, satisfies

∫
G φU(x) dµG(x) = 1 and the support of φU shrinks.

We are in position to formulate the next lemma.

Lemma 4.3. Let (φU)U∈I be a Dirac net and f ∈ Hs
γ(G). Then∫

G
| f ∗ φU(x) − f (x)|2 dµG(x) ≤ ‖ f ‖2Hs

γ(G) sup
y∈U

C(y).

Proof.

| f ∗ φU(x) − f (x)|2

=

∣∣∣∣∣∫
G
φU(y) f (y−1x) dµG(y) − f (x)

∣∣∣∣∣2
=

∣∣∣∣∣∫
G
φU(y)( f (y−1x) − f (x)) dµG(y)

∣∣∣∣∣2 ≤ ∫
G
φU(y)| f (y−1x) − f (x)|2 dµG(y)

=

∫
U
φU(y)| f (y−1x) − f (x)|2 dµG(y).
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Hence, by the Fubini theorem and the invariance of the measure,∫
G
| f ∗ φU(x) − f (x)|2 dµG(x) ≤

∫
G

∫
U
φU(y)| f (y−1x) − f (x)|2 dµG(y) dµG(x)

=

∫
U

∫
G
φU(y)| f (y−1x) − f (x)|2 dµG(x) dµG(y)

=

∫
U
φU(y)

∫
G
| f (z) − f (yz)|2 dµG(z) dµG(y).

By the previous lemma,∫
G
| f ∗ φU(x) − f (x)|2 dµG(x) ≤

∫
U
φU(y)‖ f ‖2Hs

γ(G)C(y) dµG(y)

≤

∫
U
φU(y) dµG(y)‖ f ‖2Hs

γ(G) sup
y∈U

C(y) = ‖ f ‖2Hs
γ(G) sup

y∈U
C(y).

This finishes the proof of the lemma. �

Now we can finish the proof of the theorem. Let us take any sequence fn bounded
in the space Hs

γ(G); then, by Theorem 3.5, the sequence is bounded in Lα
∗

(G). Hence,
there exists a subsequence fnk of fn such that

fnk ⇀ f in Lα
∗

(G).

We claim that fnk → f in Lq(G), where q < α∗: for every f ∈ L2(G), we denote by
f(U) the function f(U) = f ∗ φU . Also, for simplicity, we write fn instead of fnk . By
Lemma 4.3,

sup
n

∫
G
| fn(U) (x) − fn(x)|2 dµG(x) ≤ sup

n
‖ fn‖2Hs

γ(G) sup
y∈U

C(y) ≤ C sup
y∈U

C(y).

Moreover, we can show that ‖ f(U) − f ‖L2(G) → 0 in the sense that for each ε > 0, there
exists Uε such that for each U ∈ I, U ⊂ Uε , the inequality ‖ f(U) − f ‖L2(G) ≤ ε holds.
Next, by the Minkowski inequality,

‖ fn − f ‖L2(G) ≤ ‖ fn − fn(U)‖L2(G) + ‖ fn(U) − f(U)‖L2(G) + ‖ f(U) − f ‖L2(G).

Now we fix ε > 0. There exists Uε ∈ I such that for each U ∈ I, U ⊂ Uε , the following
inequality holds:

‖ fn − f ‖L2(G) ≤
2
3ε + ‖ fn(U) − f(U)‖L2(G).

Thus, in order to show that ‖ fn − f ‖L2(G) → 0, it is enough to check the limit

‖ fn(Uε ) − f(Uε )‖L2(G) −→n→∞
0.

In fact, since fn ⇀ f in Lα
∗

(G),

fn(Uε ) (x) =

∫
G
φUε

(xy−1) fn(y) dµG(y)→
∫

G
φUε

(xy−1) f (y) dµG(y) = f(Uε )(x).
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Moreover, since G is compact,

| fn(Uε ) (x) − f(Uε )(x)|2

=

∣∣∣∣∣∫
G

( fn(y) − f (y))φUε
(y−1x) dµG(y)

∣∣∣∣∣2
≤

∫
G
| fn(y) − f (y)|2φUε

(y−1x) dµG(y) ≤ sup
z∈Uε

φUε
(z)

∫
G
| fn(y) − f (y)|2 dµG(y)

and, finally, since we are assuming that G is of finite measure, we can apply the
Lebesgue theorem and obtain

‖ fn(Uε ) − f(Uε )‖L2(G) −→n→∞
0.

So, we have obtained that fnk → f in L2(G). Finally, since the sequence is bounded
in Lα

∗

(G), we can apply the Vitali convergence theorem and we obtain that fnk → f in
Lp(G), where p < α∗. �

5. An application: the generalized bosonic string

We recall from Section 1 that the generalized bosonic string equation, [9], is

∆e−c∆φ = U(x, φ), c > 0. (5.6)

Suppose for a moment that we are working on Euclidean space and that f is the real
function f (s) = s exp(−cs) so that, formally, the left-hand side of (5.6) is f (∆). We
expand f as a power series, f (s) =

∑∞
n=0 ( f (n)(0)/n!)sn. Then, formally,

f (∆)u =

∞∑
n=0

f (n)(0)
n!

∆nu.

Applying the Fourier transform, we obtain (we set f̂ = F ( f ) for clarity)

F ( f (∆)u)(ξ) =

∞∑
n=0

f (n)(0)
n!
F (∆nu)(ξ)

=

∞∑
n=0

f (n)(0)
n!

(−|ξ|2)nF (u)(ξ) = f (−|ξ|2)F (u)(ξ)

so that, naturally, we may interpret f (∆)u in a way that reminds us of the classical
definitions of pseudodifferential operators (see for instance [31]):

f (∆)u = F −1( f (−|ξ|2)F (u)(ξ)) = −F −1(|ξ|2ec|ξ|2F (u)(ξ)).

Motivated by these remarks, we make two general definitions. First, we write down
the correct domain for the operator Lc = ∆e−c∆ − Id on locally compact abelian groups.
Then, we define the action of Lc.
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Definition 5.1. The spaceHc,∞(G), c > 0, is given by

Hc,∞(G) =

{
f ∈ L2(G) :

∫
G∧

(1 + γ(ξ)2ecγ(ξ)2
)2| f̂ (ξ)|2 dµG∧(ξ) <∞

}
.

Definition 5.2. The operator Lc = ∆e−c∆ − Id is defined as

Lcu = −F −1(F (u) + γ(ξ)2ecγ(ξ)2
F (u))

for any u ∈ Hc,∞(G).

We note that Lc is an isometry fromHc,∞(G) into L2(G); we also remark that related
definitions of pseudodifferential operators in p-adic analysis appear for instance
in [30].

We state two important technical observations on the structure of the space
Hc,∞(G).

Lemma 5.3.

(1) For each nonnegative s ∈ R, the embedding Hc,∞(G) ↪→ Hs
γ(G) holds. In other

words, ‖ f ‖Hs
γ(G) ≤ C(s)‖ f ‖Hc,∞(G) for some constant C(s) > 0.

(2) Assume that 1/(1 + γ(·)2)2 ∈ L1(G∧). Then the embedding Hc,∞(G) ↪→ C(G)
holds.

Proof. The first claim follows immediately from the elementary properties of the map
x 7→ ex. The second claim is a consequence of the first one combined with our Sobolev
embedding result, Theorem 3.3. �

Now we show that the linear problem Lcu = g, g ∈ L2(G), can be solved completely
using our set-up.

Theorem 5.4. For each c > 0 and g ∈ L2(G), there exists a unique solution ug ∈

Hc,∞(G) to the linear problem

Lcu = g. (5.7)

Moreover, the equation

‖ug‖Hc,∞(G) = ‖g‖L2(G) (5.8)

holds.

Proof. It is easy to see that ug, given by

ug = −F −1
(

F (g)
1 + γ(ξ)2ecγ(ξ)2

)
,

is an element of Hc,∞(G) which solves Equation (5.7). Now, applying the Fourier
transform,

(1 + γ(ξ)2ecγ(ξ)2
)F (ug)(ξ) = −F (g)(ξ)

and so the Plancherel theorem implies that ‖ug‖Hc,∞(G) = ‖g‖L2(G). Equation (5.8) tells
us that the operator Lc has trivial kernel. Uniqueness then follows immediately. �
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Remark. Motivated by [7], we remark that it follows from Theorem 5.4 that we are
able to solve completely the linear equation Lcu = g in p-adic analysis. In fact, this
observation can be generalized to a very large class of linear equations over p-adic
fields, reasoning as in [19].

We are ready to show that the generalized bosonic string Equation (5.6) admits
continuous solutions.

Theorem 5.5. Assume that G is a compact abelian group and that 1/(1 + γ(·)2) ∈
Lδ(G∧), where δ > 1. Let U : G × R → R be a function which is differentiable
with respect to its second argument and suppose that there exist constants α > 1,
β ∈ [0, α − 1] and C > 0 and functions h ∈ L2(G) and f ∈ L2α/(α−1)(G) such that the
following two inequalities hold:

|U(x, y) − y| ≤ C(|h(x)| + |y|α),
∣∣∣∣∣ ∂∂y

(U(x, y) − y)
∣∣∣∣∣ ≤ C(| f (x)| + |y|β). (5.9)

If ‖h‖L2(G) is suitably small and |ξ(h) − 1|/(1 + γ(ξ)2)δ−(δ/α) −→
h→e

0 uniformly with

respect to ξ ∈ G∧, then there exists a solution φ ∈ Hc,∞(G) ∩ C(G) to the nonlinear
problem

∆e−c∆φ − U(x, φ) = 0. (5.10)

Proof. Let us set V(·, u(·)) = U(·, u(·)) − u(·). Then the nonlinear Equation (5.10) is
formally equivalent to Lcu = V(·, u). We can easily see that the function V belongs to
L2(G) using (5.9); see (5.11) below. We define the set

Yε = {u ∈ L2α(G) : ‖u‖L2α(G) ≤ ε}

for ε > 0. It is easy to see that Yε is a bounded, closed, convex and nonempty subset of
the Banach space L2α(G). We define a map G as follows:

G : Yε → L2α(G), G(u) = ũ,

where ũ is the unique solution to the nonhomogeneous linear problem

Lcũ = V(·, u).

Theorem 5.4 implies that G is well defined. We show that there exists ε > 0 such that
G : Yε → Yε . Indeed, let us take u ∈ Yε ; then we get, using (5.9),

‖G(u)‖2Hc,∞(G) = ‖V(·, u)‖2L2(G)

≤ C2
∫

G
| |h(x)| + |u(x)|α|2 dµG(x)

≤ 2C2
∫

G
| |h(x)|2 + |u(x)|2α| dµG(x)

≤ 2C2(‖h‖2L2(G) + ‖u‖2αL2α(G)). (5.11)
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Now, let us fix s ∈ (δ − (δ/α), δ). Using again Lemma 5.3 and Theorem 3.5,

Hc,∞(G) ↪→ Hs
γ(G) ↪→ L2α(G).

Hence, since u ∈ Yε , inequality (5.11) implies that there exists a constant D such that

‖G(u)‖2L2α(G) ≤ D(‖h‖2L2(G) + ε2α).

Since we are assuming that ‖h‖L2(G) is suitably small and α > 1, we can find ε such that
‖G(u)‖L2α(G) ≤ ε. This implies that G : Yε → Yε .

Now we apply a fixed point argument. We skip the details, as similar proofs appear
in [18]. First, we note that Theorem 4.1 implies that Hs

γ(G) ↪→↪→ L2α(G) and therefore
the map G is compact. Second, standard reasoning using the mean value theorem
and our assumptions on the derivative of V implies that the map G is continuous.
Application of Schauder’s fixed point theorem finishes the proof. �
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and Sjöstrand’s symbol class’, J. reine angew. Math. 613 (2007), 121–146.
[22] P. Hajłasz, ‘Sobolev spaces on an arbitrary metric space’, Potential Anal. 5(4) (1996), 403–415.
[23] P. Hajłasz and P. Koskela, ‘Sobolev met Poincaré’, Mem. Amer. Math. Soc. 145(688) (2000).
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