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We present a model for the force acting to fragment a biofilm-seeded microbial aggregate in

shear flow, which we derive by coupling an existing model for the shape and orientation of

a deforming ellipsoid with one for the surface force density on a solid ellipsoid. The model

can be used to simulate the motion, shape, surface force density, and breakage of colloidal

aggregates in shear flow. We apply the model to the case of exhaustive fragmentation of

microbial aggregates in order to compute a post-fragmentation density function, indicating

the likelihood of a fragmenting aggregate yielding daughter aggregates of a certain size.
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1 Introduction

Fragmentation is an important dispersion strategy for bacterial biofilms, in which new

colonies are eventually seeded from pieces of the original biofilm that have broken off.

Once they are free-floating, such fragments can be treated as flocs. Microbial flocculation,

the process whereby single-celled microbes in suspension persist as multicellular aggregates

for a portion of their life-cycle, is ubiquitous in nature and industry, and considerable

attention has, therefore, been devoted to modelling the dynamics of these systems [4,5,14,

18]. One popular approach is to solve some variation of a population-balance equation

(PBE) for the size distribution of aggregates as a function of space and time [15,16]. Such

models generally account for the fact that the microbial aggregates can break apart, for

example, with the inclusion of a fragmentation kernel and post-fragmentation distribution

in the population balance equation. Microbial aggregate fragmentation, however, remains

a relatively poorly understood phenomenon. There exists a rich literature in rheology

devoted to the study of fluid-fluid emulsions, and in particular to modelling the breakage

and resulting size distributions of dispersed droplets (see [20], for a review), and for
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this reason microbial aggregates are sometimes treated like ellipsoidal (hydrodynamically

equivalent) droplets for the purposes of approximating their shape and motion [1,2,10,12,

13]. It is not clear, though, that the corresponding breakage and size-distribution models

from the rheology literature on emulsions are equally applicable. The inhomogenous

nature of microbial aggregates may mean that some breakage patterns are more likely

than others, and we may wish to use knowledge about the structure and composition of

the colloid, when modelling how and where they break.

This current work is a part of our long term efforts to develop a more accurate

fragmentation model for use in PBE-based models. We have approached this problem

using both bottom-up microscale modelling of individual flocs (this work and [6]) as well as

a complementary top-down inverse problem methodology. The top-down approach takes

time series of aggregate size-distributions and infers a post-fragmentation distribution [17]

but does not incorporate any information about the heterogeneities in individual flocs.

Here, we extend the bottom-up approach that we initially proposed in [6]. As described

in [6], we have used confocal microscopy to identify three-dimensional (3D) positions

of bacteria in a small number (39) of suspended aggregates. However, it is infeasible to

experimentally obtain these types of 3D images for large populations of flocs. In [21],

we used the 3D positions of bacteria in an aggregate to simulate the tumbling and

deformation of bacterial flocs in laminar flow. However, it is also infeasible to perform

large numbers of these simulations. Accordingly, we have pursued a hybrid approach

merging models for the physics of viscous ellipsoids in flow with an analysis of the

locations of high negative Gaussian curvature in the polysaccharides encapsulating the

microbes.

Towards this end, we present a model to compute the force acting to break a microbial

aggregate at a specified location. We call aggregate fragmentation the process in which

a parent aggregate containing m microbes (its size) breaks into two daughters of sizes

k and m − k. This is an extension of our earlier work in which we began to develop a

framework for identifying likely breakage locations [6], and the present work expands

upon this by introducing deformation to the model and by refining the computation of

the fragmentation force. We construct our model by coupling a model for the deformation

of a fluid droplet [9, 22] (hereafter, the Deformation Constituent Model or DCM) with

one that computes the surface force density on a solid ellipsoid [3] (hereafter, the Force

Constituent Model or FCM). We restrict ourselves to the case of viscous shear under the

assumption of Stokes’ flow, and our choice of deformation model is further guided by the

requirements that (1) the surface remain ellipsoidal and (2) there be a restorative force (in

this case interfacial tension) acting to oppose the deformation imposed by the shear field.

We then apply the model to the problem of generating a post-fragmentation density

function Γ (k | m), a conditional distribution giving the probability that an aggregate

fragmentation event will yield a daughter aggregate of size k given that a parent of size

m fragments. This density is often assumed to be normal or log-normal in the literature.

The normal distribution is a model for the single event of an aggregate fragmenting

into two (roughly) evenly-sized daughters. The log-normal distribution is a model for the

cumulative effect of repeated fragmentation events (all with a normal post-fragmentation

distribution) exhaustively until no more events are possible. We refer to these forms

of fragmentation as splitting. In our previous work, we obtained a form of Γ (k | m)
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Figure 1. Example post-fragmentation density functions corresponding to erosion and splitting

fragmentation mechanisms.

corresponding to fragmentations yielding one daughter much larger than the other, which

we refer to as erosion [6]. Example distributions following each of these fragmentation

mechanisms can be seen in Figure 1. In our previous simulations, we found that larger

aggregates tended to fragment by erosion, whereas smaller ones tended to fragment by

splitting. Here, we reproduce and expand upon these simulations with the improved

fragmentation force model.

The paper is organised as follows. In Section 2, we present the methods: first describing

the DCM and FCM constituent models and how we couple them (Section 2.1), then using

the coupled models to define the concept of fragmentation force (Section 2.2), and last

explaining how we apply this concept to microbial aggregate fragmentation (Section 2.3).

In Section 3, we present the results of our simulations, beginning with an exploration of

the motion and orientation of an aggregate under the DCM (Section 3.1), followed by

a discussion of the fragmentation force (Section 3.2), and the application of this model

to microbial aggregate fragmentation and the generation of post-fragmentation density

functions (Section 3.3). We finish with some concluding remarks as well as a brief outline

of our plans for upscaling these results for use in a PBE equation (Section 4).

2 Methods

2.1 Constituent models

Deformation constituent model (DCM)

The DCM is the model, which we use to describe the deformation and rotation motion

of a fluid ellipsoid in simple shear flow. This model is developed in [9, 22], to which the

reader is referred for a full development. Here, we present only the material necessary for

the coupling of the models. An arbitrary ellipsoid centred at the origin can be represented

by a shape tensor, a symmetric 3 × 3 tensor G such that xTGx = 1 for any point x on
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the surface of the ellipsoid. The shape tensor is orthogonally diagonalisable, so that

D = RTGR, (2.1)

where D is diagonal and R is a rotation. We can choose to construct G such that

the diagonal entries of D (the eigenvalues of G) λi are defined by λi = 1/a2
i , where

a = (a1, a2, a3) are the axes lengths of the ellipsoid.

The DCM consists of an ODE we can solve for such a shape tensor G(t). Assuming

constant volume and Stokes flow in an incompressible Newtonian fluid, the governing

equation for shape of the ellipsoid is

Ġ + LT
d · G + G · Ld = 0, (2.2)

where G is the shape tensor of the ellipsoid, as described above, Ġ is the material

derivative of G, and Ld is the droplet velocity gradient.

To solve equation (2.2) for G, an expression for Ld is required; this expression must

depend only on the external velocity gradient L, the shape and orientation of the ellipsoid,

and the input parameters. The reader is referred to [9, 22] for derivations and the precise

form of Ld. For our purposes, it suffices to note that the output of solving the DCM will

be a time-series of shape tensors G(ti) satisfying equation (2.2).

Force Constituent Model (FCM)

Here, we describe the FCM developed in [3]. Given an ellipsoid with axes lengths ai such

that a1 � a2 � a3, under the assumption of Stokes’ flow, the force density on the surface

of a solid ellipsoid in simple shear can be written as

f =

⎛
⎝−p0I − 4μ

3∑
j=0

χjA
j
jI +

8μ

a1a2a3
AT

⎞
⎠ n, (2.3)

where p0 is the external pressure, μ is the matrix viscosity, ai are the axes lengths, and n

is normal to the surface of the ellipsoid. The matrix A is in turn defined by

Ai
k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3χ′′i E
i
i −

∑3
l=1 χ

′′
l E

l
l

6(χ′′1 χ
′′
2 + χ′′1 χ

′′
3 + χ′′2 χ

′′
3 )

for i = k,

χiE
i
k + a2

k

∑3
l=1 ε

iklχ′l(ε
iklΩi

k + ωl)

2(a2
kχk + a2

i χi)
∑3

l=1 |εikl |χ′l
for i� k,

(2.4)

where E = 1
2
(L+LT) is the rate-of-strain tensor, Ω = 1

2
(L−LT) is the vorticity tensor, and

ωl is the lth component of the angular velocity ω of the ellipsoid. The elliptic integrals χj
used are defined by

χj =

∞∫
0

dξ

(a2
j + ξ)

√
(a2

1 + ξ)(a2
2 + ξ)(a2

3 + ξ)
, (2.5)
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with

χ
′

i =

∑3
k,l=1 ε

ikl(χl − χk)∑3
k,l=1 ε

ikl(a2
k − a2

l )
(2.6)

and

χ′′i =

∑3a
k,l=1 ε

ikl(a2
kχk − a2

l χl)∑3
k,l=1 ε

ikl(a2
k − a2

l )
. (2.7)

Coupling the constituent models

The matrix A in equation (2.4) depends upon the matrix velocity gradient L and the

angular velocity ω of the ellipsoid, both of which must be expressed in a frame of

reference relative to the centre of the ellipsoid; i.e., one that rotates with respect to the

external frame of reference. In the case of a solid ellipsoid in shear flow, there are analytic

representations for both of these quantities [3], but in our model, the motion of the

ellipsoid is dictated by the DCM, and we must therefore compute L and ω numerically as

they do not have closed-form solutions. The rotation connecting the two reference frames

is represented by the matrix R(t) in equation (2.1), which we obtain by diagonalising the

solution G(t) to the DCM, equation (2.2). In simple shear flow, the velocity gradient L

is constant in time in an external frame of reference. If the ellipsoid rotates according to

R(t) in the external frame, then the shear field rotates according to RT (t) in the ellipsoid

frame. Thus, we set LR(t) = R(t)LRT (t), and use LR in equation (2.3). Expressing the

angular velocity in the anti-symmetric matrix

[ω(t)]× ≡

⎛
⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎠ , (2.8)

a straightforward calculation tracking the motion of an arbitrary point on the ellipsoid

surface yields the relation

[ω(t)]× =
(
R(t)R′(t)

)T
. (2.9)

We approximate R′(t) using the discretised solution R(ti) to equation (2.2), and then use

equation (2.9) to compute [ω(t)]×, giving ω, the angular velocity of the ellipsoid in the

external frame. In the ellipsoid frame, the shear field is rotating in the opposite direction,

with angular velocity −ω. This is the quantity we use in equation (2.3).

2.2 Fragmentation force

In this section, we develop the concept of the fragmentation force, an approximation to

the force acting to pull apart a deformable ellipsoidal particle in shear flow. To do so,

we will use the coupled models described in the preceding section to compute an integral

of the force density on the surface of the ellipsoid. We define the fragmentation force

in such a manner as to permit us to specify where we think breakage will occur by

way of a fragmentation plane, P , which intersects the ellipsoid. We introduced a similar

concept in our previous work [6] for use on non-deformable ellipsoidal approximations to
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Figure 2. A sample ellipsoid shown at four characteristic time points. The ellipsoid is undergoing

periodic tumbling with mild deformation. First row: view from an external reference frame, with

surface forces and flow field. D = (a1 − a3)/(a1 + a3) is the Taylor deformation parameter, θ is the

angle through which the ellipsoid has rotated. Second row: view from the ellipsoid reference frame,

with components of the surface force acting to push into (blue) and pull against (red) a sample

fragmentation plane. F is the relative fragmentation force with respect to the plane, and ωz is the

relative angular velocity.

microbial aggregates. In practice, the location and orientation of P is to be chosen based

upon structural information about the aggregate. In our aforementioned application, for

example, we preferentially chose planes corresponding to locations where we expected the

surface of the microbial aggregate to exhibit a more negative Gaussian curvature.

Suppose that we have chosen some plane P defined by a normal vector np and interior

point xp, so that np · (xp − x) = 0. Let f (x) be the force density at point x on the surface

E(t) to an ellipsoid at time t, computed from equation (2.3) as described the preceding

section. Define the fragmentation force as defined as

F =

∫
E(t)

s(x, P ) |f (x) · np| dx, (2.10)

where

s(x, P ) =

{
1 if f (x) acts to pull against P

−1 if f (x) acts to push into P
. (2.11)

The integrand is, thus, the signed magnitude of the component of f acting against P ,

where s indicates whether this component acts to pull against or push into the plane.

Thus, s explicitly accounts for the fact that some of the surface force density may in

fact compress against the plane and thus oppose breakage. Figure 2 shows snapshots of

an ellipsoid in flow along with sample force density vectors, as well as with a sample

fragmentation plane and components of the surface force density acting normal to it. As
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Figure 3. Two illustrations of a bacterial aggregate in the dataset described in [6]. There are 253

bacteria in this aggregate. (a) Bacterial aggregate reconstructed from confocal microscopy slices.

Green surface is the cell wall. Blue surface is the approximate edge of the extracellular polymeric

substance (EPS) surface. (b) Same bacterial aggregate as in Figure 3(a). Colours correspond to the

Gaussian curvature computed on the EPS surface. The regions with the most negative curvature

are energetically unfavourable and are the best candidates for separation.

can be seen in the second row of the figure, sometimes the force density acts to compress

against the plane (blue arrows) and sometimes to pull against it (red arrows).

2.3 Aggregate fragmentation

Having defined the fragmentation force, we now wish to apply it to the case of ag-

gregate fragmentation. To do so, we begin with a dataset indicating the coordinates

of bacterial centres of mass in 39 Klebsiella pneumoniae aggregates (dataset described

in [6]). Depicted in Figure 3 are two visualisations of a 3D reconstruction of one of

the bacterial aggregates. In Figure 3(a), the green surface is the Klebsiella pneumoniae

cell wall and the blue surface is an estimated location of the edge of the extracellu-

lar polymeric substance (EPS) surrounding the bacteria (1 micron away from the cell

wall). Practically speaking, the edge of the EPS is not well-defined and as described

in [7], the density of the EPS is highest near the wall and decays within a few microns

of the wall. In Figure 3(b), the same floc is shown with the Gaussian curvature (K)

computed on the approximate EPS surface. The regions with large negative K are ener-

getically unfavourable for soft matter [11], and are thus the best candidates for potential

breakage.

To compute the forces on a tumbling and deforming aggregate is non-trivial1. We choose

to approximate the forces on the aggregate surface with the forces on a hydrodynamically

equivalent ellipsoid. Thus, the first task is to approximate an aggregate’s surface with an

ellipsoid, which can then rotate and deform over time according to the DCM, equation

1 See [8,21] for illustrations of the challenges of simulating the biomechanics of communities of

bacteria.
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Figure 4. Mathematical representation of an aggregate. Bacterial centres of mass (blue and red

points) are connected by a minimum spanning tree and sample force density vectors are shown on

the ellipsoidal surface. An intersecting plane bisects the (yellow) highlighted edge of the MST. The

centres of mass are colour-coded (red and blue) to indicate the two daughter aggregates that would

result from a fragmentation at this edge.

(2.2). At any particular time point, we further wish to specify a fragmentation plane

P based on some structural property of the aggregate, and then use equation (2.10) to

compute the force acting to break the aggregate along P . If the force is large enough,

the aggregate will fragment into two daughters. We proceed to describe the details of this

process. Figure 4 shows the various constructs derived below.

Ellipsoidal representation

In order to apply the model we have developed above, we must represent the surface of

an aggregate as a hydrodynamically equivalent ellipsoid. The justification for this process

is detailed in [6]. Beginning with the coordinates of an aggregate’s bacterial centres of

mass, we first translate them so they are centred about the origin. We then rotate the

coordinates using a principal components decomposition so that the maximal variation

lies along the x-axis, then the y-axis, and finally the z-axis of the coordinate system. We

take an ellipsoid with axes lengths equal to twice the standard deviation along each axis.

The ellipsoid axes lengths specify the initial shape tensor G0 for the governing equation

(2.2), and given the remaining parameters we can then solve this equation to obtain the

shape and orientation of the ellipsoid over time, which is fully specified by the axes lengths

a(t) and a rotation R(t).

Location of fragmentation plane

In order to check for fragmentation, we must specify the intersecting plane used to

compute the force in equation (2.10). To rapidly identify candidate breakage locations,

we will create a spanning tree connecting the bacterial centres of mass. If we let M be
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a minimum spanning tree (MST), then longer edges in the tree will coincide with regions

of the most negative Gaussian curvature. As any fragmentation of the aggregate must

sever at least one edge of M, we choose these edges as potential fragmentation locations.

Given an edge e of M, we define the plane Pe that bisects e and is normal to it. Thus, Pe

is normal to x− y and passes through 1
2
(x− y), where x and y are the coordinates of the

nodes of e. Supposing that we have chosen an edge e, then at any time point t we can

compute the fragmentation force using equation (2.10), which we now denote as F(e, t).

This procedure is illustrated in Figure 4. The red and blue dots are the centres of mass

of each bacteria in the aggregate, and the grey lines are the edges of a MST connecting

them. The highlighted edge near the centre of the aggregate is an example candidate edge

for fragmentation. The blue plane is the fragmentation plane that bisects this edge and is

normal to it. The bacterial centres of mass are then colour-coded according to which side

of the MST they belong to, so that if the aggregate were to fragment at this edge, the red

centres of mass would form one daughter aggregate and the blue centres of mass would

form the other daughter.

Fragmentation of an aggregate

If the force F(e, t) exceeds some threshold fcrit, then the aggregate will fragment. We

remove the edge e from the MST M, which will result in two new trees. Each tree will

become a new aggregate, which we construct by rotating and scaling the original bacterial

centres of mass according to the shape and orientation of the ellipsoid E at time t. If

x(0) are the coordinates of a bacterial centre of mass at time t = 0, R(t) is the rotation

specifying the orientation of E(t), and a(t) are the axes lengths of the ellipsoid, then the

location of the centre of mass at time t is

x(t) = R(t) · a(t)

a(0)
,

where the division is taken element-wise. In this manner, we can transform the centres of

mass in each of the two new aggregates.

We have not yet specified how we wish to choose the edge e. Ultimately, we will check

all of the edges, but the order in which we do so matters. We use three different methods

for comparison. In our simulations, the ellipsoid shape and orientation is cyclic in time,

and hence it suffices to compute the fragmentation force over a single period T . Suppose

the edges in the MST are sorted by their lengths at time t = 0. The first edge method

gives the longest edge in the MST the chance to break before checking any other edges,

so that if at some time t in T we find that F(e1, t) > fcrit, then the aggregate fragments at

e1 at time t. Should F(e1, s) never exceed fcrit, then we check e2 at all time points, and so

on. This is the method we employed in our previous work [6], arguing that longer edges

ought to be associated with surface regions possessing large negative Gaussian curvature,

which in turn would thus be more likely to break. The next method, first time, still gives

preferential treatment to longer edges, but checks the force on each edge at time s before

moving on to time s+Δt, so that a shorter edge ej (j > 1) has the opportunity to break at

time s before any edge at time s + Δt. Last, the global maximum method computes F(e, t)

for all edges and all times in the discretisation, and chooses the largest one, Fmax, which
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Table 1. Model parameters

Symbol Parameter Model Range Units

a(t) Axes lengths D, F 1–1,000×10−6 m

ω(t) Angular velocity F 0–100 1/s

L(t) Velocity gradient D, F 0–10 1/s

μ Matrix viscosity D, F 8.95 × 10−4 Pa s

λ Viscosity ratio D 1–100 –

Γ Interfacial tension D 10−9 − 10−7 N/m

occurs at some edge d and time t. If Fmax > fcrit, then the aggregate fragments along edge

d and at time t. This method gives no preferential treatment to either time or edge length.

Post-fragmentation density function

Given an aggregate and a fragmentation method, we can check for fragmentation as

described above. If the aggregate fragments, we then have two new aggregates that we

can submit to the same procedure. Eventually fragmentation will stop, either because

all of the aggregates are reduced to singletons, which cannot fragment, or because all

remaining aggregates experience a maximum fragmentation force below the critical force

fcrit. We refer to this process as exhaustive fragmentation. Keeping track of the sizes of all

intermediate flocs, we can then compute the density of fragmentations by the size of the

parent aggregate. This in turn permits the construction of a post-fragmentation density

function Γ (k | m), which gives the probability of a fragmentation resulting in daughters of

size k and m− k given that an aggregate of size m fragments. We will construct Γ (k | m)

for each of the three fragmentation methods described above.

Model parameters

The model parameters are described in Table 1. The DCM depends upon the initial axes

lengths ai of the ellipsoid, the velocity gradient L, the matrix viscosity μ, the viscosity

ratio λ, which is the ratio of the droplet viscosity over the matrix viscosity, and the

interfacial tension Γ . The FCM depends upon the axes lengths ai(t) at each time point,

the angular velocity of the ellipsoid ω(t), and the velocity gradient L(t), which now also

has a dependence on time due to the rotating frame of reference. In all of our simulations,

we set the external pressure p0 to 0. Under this parameter regime, taking the external

(matrix) fluid to be water, the Reynolds number is typically of order 10−2, although

adversarial choices of the length scale and velocity can give a Reynolds number of order

1. Reducing the shear rate by an order of magnitude results in very little deformation of

the ellipsoids, which effectively reproduces our earlier simulations of the fragmentation of

solid ellipsoids. We use γ̇ ∼ 1s−1 to enforce some deformation, even though this increases

the Reynolds number beyond a desirable order for Stokes’ flow simulations.

We must make a further cautionary remark regarding the interpretability of the para-

meter values in our model. The viscosity ratio and interfacial tension parameters serve

to induce a particular behaviour in the system (oscillating deformation with tumbling,
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as we will discuss below), but the mechanisms physically responsible for this behaviour

are more likely viscoelastic. There are attractive and repulsive forces between the cells in

the aggregates, for example, and the cohesion and retraction of the ellipsoidal shape is

surely due to these rather than interfacial tension. We will later observe the qualitative

dependence of our model’s behaviour on its parameters, and in so doing we must be

careful not to overstate the physical interpretability of the specific values these parameters

take. Their ranges were chosen to induce the oscillating behaviour we expect to see, and

should not be taken as representative of a physical regime of interest.

3 Results

3.1 Motion under the DCM

Characteristic behaviours of the DCM

An ellipsoid evolving according to the DCM follows one of three characteristic behaviours:

it can (1) collapse smoothly to a steady-state orientation and shape (Figure 5(a)), (2)

collapse while oscillating to a steady-state orientation (Figure 5(b)), or (3) oscillate

periodically (Figure 5(c)). The angular velocity of the oscillating collapse (Figure 5(b))

can often exhibit a sudden ‘flip’ in which the direction of rotation of the ellipsoid changes.

This occurs when two of the axes lengths are close in magnitude. In the remainder

of the present work, we restrict ourselves to the case of periodic tumbling (see Figure

5(c)), which we believe to be the most physically accurate for the case of microbial

aggregates.

Futhermore, we expect it is unphysical for such an aggregate to become too elongated,

and even if it were to, there is no reason to expect under such a circumstance that the model

we employ here would accurately capture the physics responsible for such deformation. In

such circumstances, we might instead turn to a viscoelastic model of suspended colloids,

such as in [19]. We therefore wish to restrict the maximum magnitude of axes length

oscillations, which we can characterise with the parameter dmax = max a1(t)/min a1(t).

The magnitude of the axes length oscillations depends primarily on the viscosity ratio

and the shear rate, and we observe in practice that the other restrictions we impose on

these parameters (Table 1) result in bounding dmax < 2.

Limiting viscosity

In the oscillatory regime shown in Figure 5(c), the behaviour of the deforming ellipsoid

approaches that of a solid ellipsoid. In simple shear defined by du/dy = γ̇, the angle θ(t)

in the xy plane of a solid ellipsoid is given ( [23] c.f. [3]) by

θsolid(t) = − arctan
a1

a2
tan

(
2πt

T

)
, (3.1)

where

T =
2π(a2

1 + a2
2)

a1a2γ̇
, (3.2)
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Figure 5. Characteristic behaviours of ellipsoids evolving in the DCM: (a) collapse (Ca ∼ .294),

(b) oscillating collapse (Ca ∼ 13.2), and (c) periodic tumbling (Ca ∼ 3441). Here, Ca is the capillary

number, defined by Ca = μV/Γ , where μ is the dynamic viscosity of water, V ∼ ‖a‖γ̇ is a

characteristic velocity, and Γ is the interfacial tension.

Figure 6. Asymptotic behaviour of the DCM as λ → ∞ (dashed lines) compared to the behaviour

of a solid ellipsoid with angular velocity given by equation (3.3) (solid line). Left: second axis length

(a2) over time, right: angular velocity component ωz over time.

is the period of the rotation. From this, we can compute the angular velocity component

ωz as

ωz,solid = −2π

T

a1a2 sec2
(
2πt/T

)
a2

2 + a2
1 tan2

(
2πt/T

) . (3.3)

In the limit λ → ∞, a fluid droplet becomes a solid, in which case we expect that the

axes lengths will become constant and the angular velocity computed using equation (2.9)

will approach that given in equation (3.3). This is indeed what we observe; as the viscosity

ratio increases, the axis length oscillations decrease (Figure 6(a)) and the angular velocity

converges to that of a solid ellipsoid (Figure 6(b)).
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3.2 Fragmentation force

Qualitative behaviour

Figure 2 shows the evolution in time of a generic ellipsoid at four time-points, including

the surface force density as well as the component of this density acting normal to a

sample fragmentation plane. This ellipsoid is undergoing periodic tumbling, as in Figure

5(c), with mild deformation. In the first frame, at the initial time, we observe that the

surface force density points both outwards and inwards. This feature is responsible for

the fact that at the third time-point, when the angular velocity is maximised which in turn

causes the surface force density magnitudes to be maximised, we nevertheless observe a

net fragmentation force of 0. The maximum fragmentation force is observed at the second

time-point, when all of the force vectors act against the plane, and the minimum, which is

negative, occurs at the fourth time-point, when all of the surface force vectors push into

the plane.

Parameter dependence

Intersecting a generic ellipsoid E with a plane P defined by the normal np = (1, 0, 0) and

interior point xp = (0, 0, 0), i.e., a plane in the yz plane passing through the origin and

normal to the longest major axis of E . We first explore the dependence of the fragmentation

force, equation (2.10), on the system parameters. We compute the maximum fragmentation

force as a function of the shear rate γ̇, the viscosity ratio λ (which we vary while holding

the matrix viscosity μ constant, changing only μ∗), and the interfacial tension Γ . As can

be seen in Figure 7(a), the fragmentation force increases with the shear rate. The shear

rate appears directly in the computation of the surface force density in equation (2.3),

and indirectly as it affects the angular velocity ω. At higher shear rates, there is a greater

dependence of fmax on the viscosity ratio, and its dependence on λ is non-linear, changing

more for smaller values of λ while being constant at higher values of λ. The dependence

of fmax on Γ and λ is shown in Figure 7(b). Again, fmax increases with λ; in addition,

it can be seen to decrease with Γ . Neither of these terms appear directly in the force

equation (2.3), and so their influence on fmax manifests through their role in shaping the

motion and deformation of the ellipsoid as in equation (2.2).

Maximising fragmentation force as a function of plane location

We next consider the fragmentation force as a function of time and position of the

intersecting plane. We construct the ellipsoid as above, except that now we will slide

the intersecting plane along the x-axis. These results are shown in Figure 8. The x-axis

corresponds to the position of the interior point on the intersecting plane, so that at a point

x on this axis, the intersecting plane is defined by normal np = (1, 0, 0) and xp = (x, 0, 0).

The y-axis corresponds to time. The fragmentation force is anti-symmetric about its

horizontal centre, which corresponds to the point in time at which the ellipsoid has

rotated through an angle of π/2. Past this point, the symmetry of the system results in the

surface forces being equal in magnitude but opposite in sign. As the plane slides along the
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Figure 7. Maximum normalised fragmentation force experienced by a sample ellipsoid as a function

of the shear rate γ̇ and the viscosity ratio λ (a) and the interfacial tension Γ and the viscosity ratio

(b). In (a), Γ = 40 × 10−6 N/m, and in (b) γ̇ = 10 m/s.

Figure 8. Normalised fragmentation force with respect to a plane normal to (1, 0, 0) and intersecting

a sample ellipsoid at x = (x, 0, 0) (horizontal axis) over time (vertical axis). a0 = (180, 140, 100) μm.

x-axis to the midpoint, the fragmentation force increases, and then decreases again as the

plane moves from the centre to the other end; again due to the symmetries of the system.

3.3 Aggregate fragmentation

Figure 9 shows the results of exhaustive fragmentation on the initial set of 39 aggregates

for each of the three fragmentation methods. Each subplot shows a two-dimensional

histogram of the normalised frequency of fragmentations, in which the horizontal axis

corresponds to the size of the parent aggregate, and the vertical axis to the ratio of the
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size of a daughter aggregate to its parent. Because, a fragmentation of an aggregate of

size m into a daughter of size k also necessarily gives rise to a daughter of size m− k, the

plots are symmetric about the horizontal line r = 0.5. The probabilities are normalised

by parent size, so that the entry corresponding to x = m on the horizontal axis and r = k

on the vertical axis indicates the probability that an aggregate of size m fragments into

daughters of size k and m− k, given that the parent is of size m and fragments.

Figure 9(a) shows the results for the first edge fragmentation method. Recall that this

method computes the fragmentation force for each edge, in order of length, over the

entire period of motion before proceeding to the next edge. As the parent size increases,

erosion quickly becomes the dominant fragmentation mechanism. This can be seen by the

larger probabilities along the vertical boundaries of the plot: parents fragment into one

small and one large daughter. This is the same pattern we observed in our original work

on this problem, in which we used the first edge method and treated the aggregates as

non-deformable solids [6].

Figure 9(b) shows the results for the first time fragmentation method, in which the

fragmentation force is computed at each time point for each edge before moving on

to the next longest edge. We still observe a tendency towards erosion as parent size

increases, but it is less dominant than in the first edge method, which is to say that we

observe an increase in the frequency of fragmentations into more evenly-sized daughters.

Finally, Figure 9(c) shows the post-fragmentation density function for the global maximum

method, which computes the fragmentation force at all times for all edges and chooses

the largest one. This method shows a significant shift towards splitting in comparison to

the other two methods, although erosion often still dominates.

We can make sense of these results as follows. The bacterial centres of mass tend be

clustered in a central area, so that the density of these points decreases with distance from

the origin. A MST taken on such a such a set of points is likely to have its longest edges

towards the periphery of the aggregate. These edges are in turn more likely to connect

singletons or smaller aggregates to the parent aggregate, as opposed to more central,

shorter edges, which will tend to separate the tree into two more evenly sized subtrees. An

example of this can be observed in Figure 4: the relatively short highlighted edge splits

the tree into two subtrees of comparable size (red and blue centres of mass) and is buried

near the centre of the aggregate.

4 Conclusions and future plans

We have presented a method to check for fragmentation in free-floating aggregates in

simple shear flow, which combines a model for the forces on the surface an ellipsoid with

one for the deformation of an ellipsoid in flow. We then used this method in a simulation of

exhaustive fragmentation on an initial dataset based on images of 39 microbial aggregates.

We compared three different methods for checking for fragmentation, one which we have

used previously in a simpler fragmentation simulation. The post-fragmentation density

functions we obtain for each method are different than the normal and log-normal

distributions, which are widespread in the literature. In particular, the functions exhibit a

range of behaviours from almost pure erosion in the case of the first edge method to an

erosion/splitting mix in the case of the global maximum method. Even in the latter case,
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Figure 9. Post-fragmentation density functions for (a) the first edge method, (b) the first time

method, and (c) the global maximum method. The horizontal axis corresponds to the size of the

fragmenting aggregate, and the vertical axis to the ratio of daughter size to mother size.

erosion remains an important fragmentation mechanism. These results can inform the

choice of fragmentation kernels in population-balance models, primarily by suggesting a

more important role for erosion than is generally assumed.

With this hybrid methodology, we are now ready to proceed with upscaling these results

to a population level model as well as comparing the predictions with experimental size-

structured population data.
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