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1. Introduction. The development of the theory of absolute integrals derives from certain
key facts. Among them are:

(I) An integral is a positive linear functional on a vector lattice, which is continuous in
a certain sense.

(II) A function equal almost everywhere to a summable function is itself summable.
(III) Every measurable function is the pointwise limit of a sequence of elementary step

functions.

A device that often plays an important role in measure theory, but which has not been
fully exploited in the theory of abstract integrals is that of

(IV) the smallest class containing a given class and having a certain property

(such as being a c-ring of sets). It is our purpose in this paper to examine the theory of
abstract real-valued absolute integrals axiomatically, in such a way as to isolate and clarify
the roles of (I) through (IV).

What emerges is a theory entirely analogous to that of Borel and Lebesgue measure in
Euclidean space but which does not use (III) at all. In this more general presentation,
approximation of measurable functions by L-bounded functions (Lemma 6 (iv)) plays the
role that (III) plays in a measure oriented setting.

The simplest objects of consideration, related only to (I), are triples (X, £?, I) called
integral spaces. Briefly, A" is a set, JS? is a family of extended real-valued functions on X,
called & function lattice, which has the properties one expects of " summable " functions, and
/is a positive linear functional on if which satisfies the " Monotone Convergence Theorem ".
It is not assumed that the structure is obtained by means of an extension procedure. Integral
spaces are defined and the usual " Convergence Theorems " are stated in Section 3B. Null
functions and null sets are defined, and their usual properties obtained, in this generality in
Section 3C. I-complete integral spaces (which satisfy (II)) are considered in Section 3D.

In order to get non-trivial examples of integral spaces, the Daniell extension of an
elementary integral space (X, L, I) is reviewed in Section 3E. The resulting integral space is
denoted by (X, SCj, I) and is called the I-completion of (X, L, I). It is characterized as the
unique smallest /-complete integral space extending {X, L, I) in Section 3G (Corollary 12).
This fact, together with the results of Terpe [7], makes it possible to prove that the Lebesgue
integral space (R", JJjn),^x-dm) is the only possible /-complete integral space extending
the elementary Riemann integral space (Rn, CC(R"), J ^ - d x ) (Example 3G(1)).

In Section 3F, following Loomis [3], we describe the unique smallest integral space
extending (X, L, I) (Theorem 9). It is denoted by (X, Lh I) and is called the Baire extension
of (X, L, I). The family 05L of L-Baire functions, defined as the smallest family containing L
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and closed under monotone pointwise limits (concept (IV)), plays the important role of
measurable functions.

Since many of the results needed for the presentation are well-known, reference is often
made to some recent texts (Loomis [3], Segal and Kunze [4] and Taylor [6]) rather than to
primary sources of these results. This was done for the convenience of the reader, simply
because the presentation given here is similar in spirit and notation to parts of these volumes,
albeit in a more general setting. References of this sort should not be interpreted as reference
to original results (although this sometimes is the case). The extent to which the results given
here are new is discussed in Section 4.

2. Conventions and Notation. Throughout, X will denote an arbitrary non-empty set,
R will denote the set of real numbers and [-oo, oo] will denote the set R u { - o o , oo} of
extended real numbers. In the sequel we shall consider various pointwise operations defined
on families of extended real-valued functions, that is, functions which assume values in
[ - oo, oo]. We must therefore agree upon an interpretation for " indeterminate " expressions
such as 0-oo and oo — oo which can occur when considering 0-g(x) and/(^c)+^(x) i f /and g
can assume the values +oo. It will be convenient to adopt the convention 0-(+oo) = 0.
Since there is no compelling advantage to fixing the value of +(oo — oo), we will leave this
expression undefined. We thus adopt the following conventions for extended real numbers.
(These conventions are the same as [4] but differ from those of [5] and [6].)

Order. Define —oo < a < oo i faeR, and — oo < oo. If we take

inf 0 = oo and sup0=—oo,

where 0 denotes the empty set, then [— oo, oo] is a totally ordered set with respect to ^ , in
which every subset A of [ —oo, oo] has a least upper bound (written sup ,4) and a greatest
lower bound (written inf A). We also take | - oo | = | oo | = oo. We give [ - oo, oo] the order
topology.

Multiplication.

±oo, if ae(0, oo];

a(±oo) = (±oo)a = • + co, if ae [ -co ,0) ;

0, if a = 0.

Addition, a+co — co+a = oo, if ae(— oo, oo];

a - o o = - o o + a = — oo, if a e [ - o o , oo).

We do not define +(oo — oo).

It is important to observe that addition is continuous when defined; i.e.

(1) If an, bne[—co, oo], tfn-»aand bn^b, where an+bn and a+b are defined, then
an+bn-+a+b.
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Unless otherwise specified, any function on X will tacitly be assumed extended real-valued.
A function which can assume only values in R will be called a real function. I f /and g are
functions on X, the functions / v #, / A #, and | / 1 are defined at x e X by

(2) (/v<0(x) = max (/(*), <?(*)),
(3) ( / A <?)(*) = min(/(*), <?(*)),

(4) | /1 (*) = | / t t |.
Similarly, (cf)(x) = c-f{x) defines the function cf on X, for any ce[— oo, oo]. However, in
light of our conventions for addition, the function f+g defined by (f+g)(x) =f(x)+g(x) is
only defined on the set

Df+g = {xeX:f(x) and g{x) are not oppositely infinite},

which might easily be a proper subset of X. We shall say tha t /+# is defined iff Df+g = X.
The relation/^ g defined pointwise on A'is taken as the partial order on [— oo, oo]*. Then
/ v g a n d / A g are respectively the supremum and infimum of the set {/, g}.

The subscript n will always run through the positive integers. Thus if ^ is a family of
functions on X, we will simply say " / n e F " instead of " / n e J , n = 1, 2 , . . . " . We write
"/„ -> / " or " / = lim/n" if the sequence of functions {/„} converges pointwise to / . We

also write " / n t / " to mean"/! Sfz ^ . . . , and/„->/"; " / „ ! / " is interpreted analogously.
The functions inf/n, sup/n, lim/n and lim/n are likewise interpreted pointwise, where for

n n

ane [-00,00],

lim an = lim (inf ak), lim an = Urn (sup ak).
n-»oo k£n n-»oo fcgn

The characteristic function of the set A c X will be denoted by XA-

3A. Function lattices.

DEFINITION 3A. The non-empty family if of extended real-valued functions on X is
called a. function lattice (on X) if for any/, g<=2?

If a, beR and af+bg is defined on X, then af+bgetf.
[.27]/v g and /A g are also in if.

It follows from [if 1] (with a = b = 0) that Oeif. Since if is closed under the lattice
operations v and A defined by (2) and (3), the functions/"1" and/" defined by

(5) / + = / v 0 and/" = ( - / ) v 0

are in ^ whenever/eif. Finally, since | / | = / + v / ~ , we see that any function lattice is
closed under the operation of forming absolute values. Note that 0 ̂ / + = ( - / ) " and
0 g / " = ( - / ) + and the identities

hold identically on X.
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A function lattice which consists of real functions only (i.e. a linear space of real functions
on X which is closed under the lattice operations) will be called a real function lattice.

Unlike the case of a real function lattice, it is not true that [if 1] and closure under the
formation of absolute values implies [if 2] if if is a family of extended real-valued functions.
For if we consider the set X = {a, b} and take

if = {/:*-> [ -oo ,oo] : /=0 or | / (* ) | = oo},
these conditions are satisfied, but ̂  is not a function lattice since the function / defined by
f(a) = \,f{b) = -oo is in & bu t / + £ if.

3B. Integral spaces.

DEFINITION 3B. If if is a function lattice on X, the functional / : if -> R is called an
integral (on if) if the following hold.

[L] (Linearity) For all a, fceR and all/, geJ? such that af+bg is defined on X, we have
I(af+bg) = a-If+b-Ig.

[M] (Monotonicity) If/, g e ̂  and fS g then If£ Ig.
[MC] (Monotone convergence property) If/, e i f , / . l / a n d lim//n < oo, then

(7) fz<£ and lim//. = / / = J(lim/n).
n n

The triple (X, £?, I) is then called an integral space.

By applying [L] to the identity 0+0 = 0, we see that 7(0) = 0. Thus any integral is
positive in the sense that/e £^ a n d / ^ 0 implies / / ^ 0. Property [MC] is an abstract formu-
lation of the " Monotone Convergence Theorem " of the theory of Lebesgue integration.

EXAMPLES 3B. Take X = {a, b, c}, any three point set.

(i) if = R*; If=f(a)+f(b)+f(c) (for/6if),
(ii) <£ = {feRx:f(c) = 0}; If=f(a)+f(b).
(iii) <e = {/e[-oo, oof:/(a) =/(&)eR,/(c)e{-oo, 0, oo}}; If= 3/(a).
(iv) SS = {/e[-oo, oo]x:/(a) =f(b)eR,f(c) = oo/(a)if/(a) # 0 and/(c) is unrestricted

if/O) = 0}; If=3f(a).
(v) ^ = {/6[-oo, oo]*:/(fl) =/(*)eR}; V= 3/(«).
(vi) if={/e[-oo,oo]x:/(a),/(£)<ER}; If=f(a)+2f(b).
(vii) if = {/6[-oo, oo]x:/(a)eR and/(6) =/(c)}; //=/(a).

The following results, commonly known as the convergence theorems, are true in any
integral space (X, &, I), for they follow from [L], [M], and [MC]. (See 6-3 IV of [6].)

FATOU'S LEMMA, (a) If fne<£ and {/„} is bounded below in &, then inf/n6if and

7(inf/J ^ inf //„.
n n

(b) If in addition lim Ifn < oo, then lim/ne SP and /(lim/J _ Y\mlfn.

DOMINATED CONVERGENCE THEOREM. ///„ e i£ and \ fn \ _ g, for some geSC, then

/ . -»/=»/e if am/ /(lim/n) = / / = lim //„.
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LEVI'S THEOREM. # 0 ^ /„ e i? W £ //„ < OO ///e/t £ /„ e i?

3C. Null functions and null sets. Let (X, J£f, I) be an integral space.

DEFINITION 3C. For any function/on X, define the set Kf by

Kf={xeX:f(x)*0}.

A function h is an (I-)null function if heSC and 7(| A|) = 0. A set A c Xis an {I-)null set
if either A = 0 or y4 = Kh for some null function A. The proposition P(x) about xe X is said
to be true almost everywhere (abbreviated a.e.) if there is a null set N such that P(x) is true for
all x not in N.

If A cz X and/" = XA 'S a n u ' l function, then A ( = ATy) is a null set. The converse is false,
for in Example 3B(iii), the set {c} is a null set but %{c}$&. However, if A is a null set, the
function oo;^ (which assumes the value oo on A and the value 0 elsewhere) must be in ££, and
provides a useful device for investigating null sets.

PROPOSITION 1. Let (X, S£, I) be an integral space.

(i) IfN <= X, then N is a null seto COXN is a null function.
(ii) ///eJSf then A = {xeX: \f(x)\ = oo} is a null set.

(iii) Countable unions of null sets are also null sets.

Proof, (i) I f / = ooXN is a null function, then N = Kf is a null set by Definition 3C.
Conversely, suppose N = Kh where h is a null function. By replacing h by | A | if necessary,
we may assume h ̂  0. Then 0 ̂  «• /; | ooxKh = 00/,, and lim/(« • h) = lim (n • 0) = 0. [MC]

then asserts that oox^eif (and is a null function).
(ii) Define /„ = \f\jn. Then 0 ̂ / n for each « and OeJ?, so inf/n = ooiAeS? by Fatou's

n

Lemma (a) of the previous section, and the result now follows from (i).
(iii) Suppose {A n̂} is a sequence of null sets. Form

Then by (i) and [L], /„ e jSf and Ifn = 0 for each n. Since

n and

we conclude from [MC] that ooXuiv,,ei?, so uAfn is a null set by (i).
We see from (i) that the /-null sets can be obtained from an examination of S£ (cf.

Examples 3B). The following result shows that an integral cannot distinguish between functions
in i f which differ on at most a null set.
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PROPOSITION 2. Let (X, S£, I) be an integral space.

(i) If f(x) ^ g(x)a.e. then If£ Ig.
(ii) ///(*) = g(x)a.e. then If= Ig.
(iii) Iffe& then f is a null function oKf is a null set of (x) = Oa.e.

Proof, (i) We first suppose/^ 0 and g ^ 0. Let N be a null set such that/(x) g g(x)
whenever x$N. Proposition l(i) assures us that ooxNe£C and /(oo/N) =0. Bu t /S g + <X>XN
(which is defined on all of X), so by [M] and [L], If£ I(g + oo/N) = Ig. In the general case,

/(x)gj(x)a.e. implies f+(x) ^ g+(x)a.e. and f~(x) ^ g~(x)a.e.

Applying [L] to (6) we get If— If* —If~ ^ Ig + —Ig~ = Ig, where the inequality follows
from the first case considered.

(ii) follows from (i) since f(x) = g(x)a.e. implies that/(x) ^ g(x)a.e. and g(x) Sf(x) a.e.
(iii) is a direct consequence of the definitions and (ii).

3D. /-complete integral spaces. We know from Proposition 2(ii) that two functions
in if which differ on at most a null set must have the same integral. This does not mean that
we are free to arbitrarily adjust the values of a function in if on a null set, for there need not
be a guarantee that the new function formed will be in if. The following discussion should
make this clear.

DEFINITION 3D. An integral space {X, &, I) is called I-complete if

(8) for any function g, tffeSP and/(x) = 0(jc)a.e. then ge£P.
Taking/= 0 in (8) gives

(9) g e [— oo, oo]x and g{x) = Oa.e. => g is a null function.

As an immediate consequence of (9) we have

(10) N c X is a null set<=>XN is a nuU function.
(11) Every subset of any null set is also a null set.

Thus (8) => (9), (9) => (10) and (9) => (11). The following examples show that the converses of
these implications are false.

EXAMPLES 3D. Consider Examples 3B. (i) and (ii) are trivially /-complete since 0 is the
only null set. (v) and (vi) are also /-complete and each has 0 and {c} as null sets. In (iii),
(11) holds but (9) and (10) fail. In (vii), (10) holds but (9) and (11) fail, (iv) satisfies (9}-{l 0
but is not /-complete, for iff (a) =f(b) = 1 and /(c) = oo, / G if and f{x) - 1 a.e. but 1 £ ^.
There are integral spaces for which all of (9)-(ll) fail.

If/, g, he [— oo, oo]x, we say that h extends f+g if

(12) h[x) =f(x)+g(x) whenever f(x)+g(x) is defined.

PROPOSITION 3. The integral space (X, <£, I) is I-complete iff

(13)/, fifeif and h extends f+g => he Se and Ih = If+Ig.

Proof. Suppose (X, X, I) is /-complete,/, g e S£ and h extends/+ g. The set N on which
/and g assume oppositely infinite values is null by Proposition l(ii) and (11), so if we define/'
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and g' by /'(*) = / « and g'(x) = #(*) if x $N, f'(x) = £'(*) = 0 if x e JV, we have / ' ,
by (8). Thus/ '+# ' , which is denned on X, must be in if by [if 1]. But A(x) = (f+g)(x) =
( / ' + #')(*) for x$N, so heSe by (8). Furthermore //> = I(f'+g') = If'+Ig' = //"+/#, by
Proposition 2(ii) and [L], so (13) holds.

Conversely, suppose (13) holds,/e <£ and g is any function on A'satisfying g(x) =f(x) a.e.
We may assume t h a t / ^ 0 and g ^ 0. If N is a null set such that/(x) = g{x) if x$ N, then

# extends (/+ooxN) + (-ooxN)

so that #e if by (13), and the proof is complete.
/-complete integral spaces have the desirable property that the assumption of pointwise

convergence in the convergence theorems can be replaced by the even weaker assumption of
convergence a.e. For example, [MC] takes the following form.

Suppose (X, S£, I) is an I-complete integral space. Iffis a function on X and there exist
fneSe which satisfy f^x)^ fix) a.e. and limIJ„ < oo thenfetf and IfnTIf.

n

3E. Elementary integral spaces, the Daniell extension. In this section we review the
problem of extending an elementary integral (such as the Riemann integral) on a given function
lattice to an integral (satisfying [MQ] on a larger function lattice.

DEFINITION 3E-1. If S£ and & are families of real or extended real valued functions on
X, and / and 1 are functionals on if and & respectively, we say (X, &,1) extends (X, £?, I)
and write (X, &, I) ^ (X, &, 1) if <£ c £, and / is the restriction to if of 1. We write
(X, <£,I) = (X,£,l)if& = £ and 1 = 1.

DEFINITION 3E-2. If L is a real function lattice on X, the functional / : L -* R is called an
elementary integral on L and the triple (X, L, I) is called an elementary integral space, if for
any/, g,fneL and any a, beR the following hold:

[L] I(af+bg) = alf+blg;
[M] i f /g g then If^Ig;
[E)if / n j0then/ / n j0 .

Conditions [L] and [M] simply assert that / is a positive linear functional on the real
function lattice L. Clearly, condition [E] may be replaced by the condition

[E'] If /„!/where feL, then Ifn\If

It follows from [MC] that [E]', hence [E], is a necessary condition for there to be an
integral extending the positive linear functional /. The importance of the Daniell extension
to be reviewed next, is that it shows (Theorem 5) that [L], [M] and [E] are actually sufficient
to guarantee the existence of an integral space extending {X, L, I).

The construction of an integral from an elementary integral was first carried out by
Young [9], Daniell [2] and others at the beginning of this century, and further investigated by
Stone [5]. The presentation summarized below is essentially that given in Taylor [6].

For the remainder of this section, (X, L, I) will denote a fixed elementary integral space.
We first define the family
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(14) Lu= {<p:X->(-ao, oo]: there existfneL such that/„!>}•

Clearly Lc L" and, for any (p,\l/eLu and any ce [0, oo), cp v \f>, q> A ij/ and cp + cij/ are also
in .L". Note that cp + c^i is defined on all of X because cp{x) and \j/{x) cannot be -oo. If
cpeL", define

(15) I(p = limIj„, where fneL an

This definition doesn't depend on the sequence {/„} in L which converges to <p ([6], Lemma
6-2II), so / / = If whenever feL. Moreover, for any (p,\j/eLu and all ce[0, oo),

(16) <p £ \j/=>I<p £ III/, and

Finally, we use / of (15) to define two functionals on the family of all functions on X.
Hf:X-> [—oo, oo], define the upper and lower integrals of/by

(17) 7/=inf{/(p:<pe£uand<p=/},
(18) //= -/(-/),

respectively. (The conventions sup0 = — oo, inf0 = oo are needed here.) It is easy to see
that (15) and (17) yield the same value I<p when cpeL".

DEFINITION 3E-3. Define the family SCj of I-summable functions by

(19) if; = {/e [ - oo, oo f : / /= 7/eR}.

For any /-summable function/, we define If to be

(20)//=//=//.

The triple (X, <£u I) is called the I-completion of {X, L, I).

THEOREM 5. (X, £Ct, I) is an I-complete integral space which extends the elementary
integral space {X, L, I).

Proof. Theorems 6—311 and III of [6] combine to prove that (X, £CIt I) is an integral
space. To see that it is /-complete, suppose that/, geSfr and that h extends f+g. Then for
any <p, ipeL" such that (p _ / and \j/ ^ g, we have <p + \\isLu and (p + i// = / + ^ , so Ih _ If+Ig
by (17), (16), and (20). Similarly, -h extends - / + -g, and we conclude Ih ^If+Ig^ Ih.
But we always have Ih = Ih (see Lemma 3.3.2 of [4]), so we see by (19) that h e ifx and Ih =
If+Ig. {X, £CI} I) is therefore /-complete by Proposition 3.

3F. The Baire extension of (X, L, I). It is well known that there exist larger integral
spaces than (X, 2?h I) which extend (X, L, I) (see Scholium 3.10 of [4]), and maximal ones
have been investigatedf (see Terpe [8]). It is our purpose in this section to construct the
unique smallest integral space, denoted by (X, Lu I), which extends (X, L, I). To do this,
we consider small families from which the functions in Lt must come. The approach is much
like that of Loomis (Section 12 of [3]), where a less extensive discussion is carried out for real
functions only.

t This was kindly brought to my attention by Professor A. C. Zaanen.
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DEFINITION 3F-1. Suppose SF and L are arbitrary families of functions on X. SF is
called a monotone family if

fnef and either fn\f or fn\f implies fzSF;

i.e. SF is closed under monotone pointwise limits. A function fe!F is L-bounded if | / | ^ h
for some h e L. The smallest monotone family of functions which contains & will be denoted
by &$&. Functions in 08& will be called (!F-)Baire functions. It will be convenient to let SF*
denote the family of non-negative functions in OF, i.e.

We observe that the smallest monotone family containing & exists, for it is given by the
non-void intersection

S&r — c\{Jl:Jt is a monotone family and Jl => SF}.

LEMMA 6. Let L be a family of functions on X, which is closed under v and A and which
contains the function 0.

(i) 38 L is closed under v and A .
(ii) 3SL is closed under arbitrary pointwise limits.

(iii) (3SL)+ = 38L+, i.e. (&8L)+ is the smallest monotone family containing L + .
(iv) For anyfeSSl there exist L-bounded functions fne (%£ such thatfn\f.
(v) IfL+ c SF c $ £ and SF satisfies the condition

(21) fne&,fn L-bounded andfjf or fn\f implies fe^, then SF = @£.

Proof. See Section 12H and Section 121 of [3]. The relevant proofs are valid when the
functions in L are extended real-valued.

Theorem 12H of [3], proved there for real functions, generalizes as follows.

THEOREM 7. If L is a real function lattice, then 3SL is a function lattice satisfying the
condition

(22) / / / , geS8L, there exists an he@L which extends f+g.

Proof. @L is closed under the lattice operations by Lemma 6(i). Also, for any ceR,
the family {fe@L: cfeSSL) is monotone and contains L, so 38L is closed under multiplication
by real scalars. To complete the proof we must show that

Ms = {ge38L: there is a.nhe08L extending/-!-g}

is all of 88L, for any fe3SL. An immediate consequence of (1) is

whenever all the sum functions involved are defined on X, and provided that lim^n exists. It
n

follows that if / i s real-valued (so t h a t / + ^ is defined on X for any function g) then M s is a
monotone family. I f / e L then L c Jls and so Jts = 38L; that is,
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(*) f+ffG&L whenever feL and ge&L.

Next, if ge3SL and is L-bounded, then g is real-valued; hence J{g is monotone and contains
L by (*), so Mg = 3$L in this case too, whence

(**) f+ffe@L whenever/, gs38L and g is L-bounded.

Finally, for arbitrary/, gs3SL, we use Lemma 6(iv) to get L-bounded functions grn
+, g~

such that 0 g g+ T g+ and 0 ̂  #~ | #~. If we define gn = gt ~9n< t n e n t n e functions #„ are
in 38 L and are /.-bounded. Also, gn -> g, whence by (**),

(**•) f+ffn£@L and h = lim (/+#„) exists.

Also, by (1), h(x) =f(x)+g(x) whenever (f+g)(x) is defined; that is, h extends f+g. But
(***) and Lemma 6(ii) imply that he3SL, proving that geJif and completing the proof.

(The conclusion of the above theorem is also true with the weaker hypothesis that L is an
arbitrary function lattice satisfying the condition (22). However the proof is rather more
technical and we shall not need it, so we omit it. It is not known whether the condition of (22)
is true for every function lattice.)

We can now describe the smallest integral space extending the given elementary integral
space {X, L, I).

DEFINITION 3F-2. The family Lt of Baire summable functions is defined by

L, =

where (X, i?7, / ) is the /-completion of (X, L, I). If / also denotes the restriction to Lt of
the integral on JSPJ (Definition 3E-3), the triple (X, Lh I) is called the Baire extension of
(X, L, I).

Clearly Lu being the intersection of two function lattices (Theorem 7 and Theorem 5), is
itself a function lattice. Also, since 38 L is monotone, [MC] holds; that is, / i s an integral on
Lr The Baire extension {X, LIy I) is thus an integral space satisfying (X, L, I) ^ {X, Llt I) ^
(X, y?Iy I). The following strong uniqueness result implies that (X, Lr, I) is the minimal
extension of (A', L, I) we are looking for.

THEOREM 8. If (X, &, I) and (X, £, 1) are integral spaces, L c <£n£, where L is a
lattice containing 0, and l\L = 1\L, then for anyfe3$£

(23) either fe&ng and If=lf, or there exist fne&n£ such that 0^ / n f / and
\iralfn = limf/n = oo.

n n

Proof. Let & = {fe3§t: (23) holds}. Clearly L+ c &. Suppose t h a t / n e ^ and are
L-bounded, say 0 ^fn ^ hneL. Since by hypothesis Ihn = lhn < oo and hn^.fne^,we must
h a v e / n e ^ n ^ and Ifn = lfn by (23). Iffn\f, then an application of [MC] implies t h a t /
satisfies (23). On the other hand, if/n 1 / then/e i f n £ and If= If by the Dominated Con-
vergence Theorem of 3B, sofe^ in this case too, proving that & satisfies (21). We conclude
from Lemma 6(v) that !F = 38^, and this completes the proof.
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If in Theorem 8 we take if = L, (Definition 3F-2), we get the next result.

THEOREM 9. If {X, &,I) is any integral space extending the elementary integral space
(X, L, I), then for allfeSSt

either / / = / / = oo or fe^ng and If=If,

whence (X, Lj, I) ^ (X, &, 1). (X, Lt, I) is thus the unique minimal integral space extending
(X,L,I).

3G. Uniqueness of (X, 3?u I). Here again (X, L, I) denotes a fixed elementary integral
space.

LEMMA 10. Suppose (X, if, / ) is an I-complete integral space, and that f is a function on
X for which there exist h, h'e&, such that h' g,f^h and Ih' = Ih. Then feSC and f(x) =
h(x) a.e.

Proof. Define g on X by
if defined,(h(X)-h'(X), if

(0 otherwise.

Then g ^ 0 and g extends h-h', so by Proposition 3

geSe and O^Ig = Ih-Ih' = 0.

g is thus an /-null function, so by Definition 3C,

Kg = {xeX:g(x) * 0} = {xeX:h(x) * h'(x)}

is an /-null set. This implies that h(x) = h'(x) a.e. But (11), together with the fact that
/»' g / ^ h, implies that/(x) = h(x) a.e., so that feSC by (8).

THEOREM 11. {Approximating functions in S£t by L-Baire functions.) /SJS?/ if and only if
there exist h, h' e Lt such that

and Ih' = Ih.

Proof {X, &!, I) is /-complete so the sufficiency follows from Lemma 10. The converse
is Corollary 3.5.2 of [4].

(One can actually show that in the above result {xeX:h(x) # h'(x)} is a null set in
(X, Lj, I) but we will not need this stronger result here.)

COROLLARY 12. (Uniqueness of (X,Z£U I). If {X, &j, 1) is any I-complete integral space
extending [X, L, / ) , then (X, $,1) extends (X, &h I). Thus (X, <£u I) is the unique smallest
I-complete integral space extending (X, L, I).

Proof. Use Theorem 11, Theorem 9 and Lemma 10 to show that

j implies fe&, and If=lf.

Corollary 12 justifies the use of the name /-completion. A slight refinement of the
above argument gives the following results:
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COROLLARY 13. (Uniqueness of I on i?7.) If (X, &,1) is any integral space extending
(X, L, I) andfeSelc\&, then Jf= If.

COROLLARY 14. (Null functions of(X, <£u I).) fis a null function of(X, if/, / ) iff there
is a null Baire function heLj such that 0 ^ | / 1 j£ h.

COROLLARY 15. (Null sets of (X, &h I).) The null sets of (X, if/( / ) are precisely the
subsets of null sets of(X, Lh I).

EXAMPLES 3G.
(1) The Lebesgue integral in Euclidean space. Take X = R, L = CC(R), the real function

lattice of continuous functions with compact support, and I = j-x-dx, the (improper)
Riemann integral which is clearly a positive linear functional on L. That it satisfies [E ] (see
Example 4, p. 284 of [6]) is a consequence of Dini's Theorem.

It is clear that the family &L of Definition 3F-1 coincides with the family of Baire fundions
on R, i.e. the smallest family containing the continuous real functions on R and closed under
pointwise limits. But these in turn coincide with the Borel measurable functions on R.

If (R, JSf/, / ) denotes the /-completion of the elementary integral space (R, CC(R), J ^ • dx)
then it is easy to see that (R, if,, / ) = (R, L(m), J • dm), where m denotes Lebesgue measure
on R, L(m) is the function lattice of Lebesgue summable functions on R, and J • dm is the usual
Lebesgue integral on L(m). Indeed, since (R, L(m), J • dm) is well known to be /-complete, we
have (R, if/; / ) ^ (R, L(m), J • dm), by Corollary 12. But every Lebesgue summable function
is equal a.e. to a summable Borel measurable function (i.e. a function in L, — J^jn^8L) so it
must be in t£j by (8). Combining this fact with the maximality of (X, L(m), J • dm) proved by
Terpe (Beispiel of Section 2 and Satz 1 of [9]), we see that (R, L(m), J • dm) is the only possible
I-complete integral space extending the elementary Riemann integral space (R, CC(R), J™^ • dx).
A similar discussion applies to n-dimensional Euclidean space.

(2) The abstract Lebesgue integral. Let (X, £?, n) be any a-finite measure space. (That
is, n is a <7-finite, and countably additive non-negative measure on the <r-ring y of subsets of
X.) If L denotes the real function lattice of summable step functions s of the form

s= 2J ciXAt> where CjeR, A^Sf and n(At) < oo,

and we take

\sdni)= \s

then / is well defined and (X, L, I) is an elementary integral space. In this case, SBL coincides
with the ^-measurable functions. For a non-negative ^-measurable function/on X, take

where s varies over all such summable step functions. Finally, L(n) denotes the family of
fi-summable functions, i.e. those ^"-measurable functions for which J|/ |rf/z<oo. (These
definitions are more or less standard.) In this case the integral space (X, L(ii), j • dfi) coincides
with (X, Lu I) and, letting ji denote the completion of (i, we have (X, L(ji), \-dp) = (X, &It I).
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4. Discussion of related results. The abstract integral space postulated in Section 3B
(using [if 1]) seem to be new. They are certainly more general than any extension of some
elementary integral space; Examples 3B(iii) and (v) illustrate this. Taylor ([6], Section 6-4)
obtains the results of Section 3C by methods similar to ours but only for /-completions and
using a more restrictive definition of null sets.

Loomis (Section 12 of [3]) constructed what we call the Baire extension {X, Lu I) of the
elementary integral space {X, L, J), considering real functions only. The minimality
characterization of (X, Lj, I) (Theorem 9) seems to be new as does the characterization of its
/-completion as the unique, smallest, /-complete extension of (X,L,I) (Corollary 12).
Bogdanowicz [1] describes the minimal extension of (X, L, / ) , but his argument depends
heavily upon the fact that L satisfies the hypothesis: / e L = > / A 1 eZ- (due to Stone).

Corollary 12 (or Theorem 8) renders unnecessary a direct verification that two given
extensions of a smaller integral structure coincide. The uniqueness of the Lebesgue integral
on R" asserted in Example 3G(i) illustrates this.
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