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Criteria for Very Ampleness of Rank Two
Vector Bundles over Ruled Surfaces

Alberto Alzati and Gian Mario Besana

Abstract. Very ampleness criteria for rank 2 vector bundles over smooth, ruled surfaces over rational

and elliptic curves are given. The criteria are then used to settle open existence questions for some

special threefolds of low degree.

1 Introduction

A vector bundle E over a smooth algebraic variety Y is said to be very ample if the

tautological line bundle OP(E)(1) is very ample on the projectivized bundle P(E).
Very ampleness of E is therefore equivalent to the existence of a projective smooth

manifold X = P(E) embedded as a linear scroll on Y.

Although it is in general impossible to give a numerical characterization of very

ampleness, one can try to find sufficient numerical conditions to guarantee it when

the Picard group of Y is particularly simple.

In this paper some classical ideas are revisited in order to give some very ample-

ness criteria for rank 2 vector bundles E over smooth, ruled surfaces on rational and

elliptic curves.

In Section 3, classical ideas on obtaining very ampleness criteria by lifting of sec-

tions from appropriately chosen divisors are revisited in our context. They are ap-

plied to obtain the very ampleness of a family of rank 2 vector bundles over P
2, see

Corollary 3.2 , and, in particular, an existence result for 3-dimensional scrolls over

P
2, of degree 11 and genus 6, left as an open question in [B-B-1], see Remark 3.3.

Section 4 presents a purely numerical very ampleness criterion for rank 2 vector bun-

dles over rational ruled surfaces, see Theorem 4.3, with an example of its application.

Section 5 deals with the case of ruled surfaces over elliptic curves. Section 6 con-

tains a very ampleness criterion for a very special class of vector bundles E on F1,

the Hizebruch surface with invariant e = 1. The criterion is partially based upon a

new observation that relates the very ampleness of E with whether points in the zero

locus of a generic section of E are in general position on Y. Results from Section 6 are

applied to establish further existence and non existence results for threefolds scrolls

over F1, of low degree, previously left as open problems in [F-L-2] and [B-B-1].
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2 Notation and Background Material

The ground field is fixed to be C, and P
n denotes the n -dimensional complex projec-

tive space. The focus of this work is on rank 2 vector bundles over smooth surfaces.

In this context we fix the following notation:

• E : a rank r vector bundle over a smooth variety Y, dim Y ≥ 2;
• ci(E) : the i-th Chern class of E;
• X = P(E) : the projectivization of E;
• π : P(E) → Y the natural projection onto the base;
• T : the tautological line bundle of X, i.e., OX(T) = OP(E)(1);
• Γ : projectivization of the restriction E|γ , where γ is a smooth curve on Y ;
• Fe : rational ruled surface of invariant e ≥ 0, i.e., P(OP1 ⊕ OP1 (−e));
• ρ : Fe → P

1 : the natural projection onto the base;
• C0, f : standard generators of Num(Fe) ≃ Pic(Fe);
• F : projectivization of the restriction E| f where f is a fibre of Y when Y = Fe;
• (σ)0 : zero locus of the section σ of a vector bundle;
• ≡ : numerical equivalence of divisors;
• KS : canonical divisor of the smooth surface S;
• X[t] : the Hilbert scheme of zero-subschemes of X of length t.
• TP(M) : the holomorphic tangent space to an analytic manifold M at a point P.

Cartier divisors on smooth projective varieties, their associated line bundles, and

invertible sheaves of their holomorphic sections are used with no distinction. Mostly

additive notation is used for their group. Given a divisor (line bundle) D on a smooth

projective variety, |D| denotes the complete linear system of effective divisors linearly

equivalent to (associated with) D. Given any subvariety S in X and a line bundle

L ∈ Pic(X), we denote by L|S
the restriction of L to S, i.e., L|S

= L ⊗ OS.
Let X and T be as above. For any smooth surface Σ contained in X, let |T|Σ| be

the complete linear system associated to T|Σ, i.e., given by H0(T ⊗ OΣ). Let |T||Σ
be the restriction of the linear system |T| to Σ, i.e., given by the image of the re-

striction map r : H0(X, T) → H0(Σ, T|Σ ). Then |T|Σ| ⊇ |T||Σ and equality holds if

h1(X, T − Σ) = 0.

If Σ is reducible as the union of two smooth surfaces S1 ∪ S2 intersecting trans-

versely only along a smooth (possibly reducible) curve C, it is

{(σ1, σ2) : σi ∈ |T|Si
|, i = 1, 2, σ1|C = σ2|C} = |T|Σ| ⊆ |T|S1

| ⊕ |T|S2
|

= {(σ1, σ2) : σi ∈ |T|Si
|, i = 1, 2},

while |T||Σ = {(σ1, σ2) : σi ∈ |T|Si
|, i = 1, 2 and there exists τ ∈ |T| such that

τ|Si
= σi , i = 1, 2}.

Let ξ ∈ X[t]. A subvariety S is said to pass through ξ if and only if S contains

ξ scheme theoretically. If t = length(ξ) = 2 and Supp(ξ) consists of two dis-

tinct points, scheme theoretic inclusion is equivalent to ordinary inclusion. If t =

length(ξ) = 2, Supp(ξ) consists of one point P, and X and S are smooth at P, let

q ∈ TP(X) denote the tangent direction at P specified by ξ. Then scheme theoretic

inclusion is equivalent to P ∈ S and q ∈ TP(S).
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Let L be a line bundle on a variety X and let ξ ∈ X[t]. Let V ⊂ H0(L) be a subspace

of sections and let |V | be the associated linear system. The expression |V | separates

ξ is used to mean that the restriction map V → H0(L ⊗ Oξ) is surjective. In this

language a line bundle L is very ample if and only if the associated complete linear

system separates every ξ ∈ X[2] .

If ξ ∈ X[t] is a reduced zero-scheme, we often identify the scheme itself with its

support. For example we refer to “points of ξ” to mean points of Supp(ξ).

Lemma 2.1 Let Y be a ruled surface of invariant e over a smooth curve C of genus g.
Let x be an integer and assume the line bundle C0 + x f is very ample. If ℓ ⊂ Y is a line

on Y in the embedding given by |C0 + x f |, then either ℓ = f or g = 0, x = e + 1, and

ℓ = C0.

Proof As C0 + x f is very ample, it is in particular ample, and therefore (see [H,

Corollary V.2.18, Proposition V.2.20, Proposition V.2.21]), it must be that

(2.1) x >

{
e if e ≥ 0,
e
2

if e < 0.

For an irreducible divisor ℓ ∈ |aC0 + b f | to be a line in the embedding given by

C0 + x f , it must be (C0 + x f )(aC0 + b f ) = 1, i.e.,

(2.2) 1 = ax − ae + b.

By considering that the arithmetic genus of ℓ must be zero, one can easily check that

the necessary conditions for ℓ to be an irreducible divisor, contained in [H, Corollary

2.18, Proposition 2.20, Proposition 2.21], are incompatible with (2.1), (2.2), and the

very ampleness of C0 + x f , unless ℓ is as in the statement.

3 Classical Ideas

The following notation will be fixed throughout the paper. Let Y be a smooth al-

gebraic surface. Let E be a rank 2 vector bundle over Y , and let X = P(E). Let

π : X → Y be the natural projection and let T be the tautological line bundle. Let

A ∈ Pic(Y ) and let D = T + π∗A ∈ Pic(X). The first proposition in this section is

a simple adaptation to our context of a classical lifting of sections approach to prove

very ampleness.

Proposition 3.1 With the notation fixed in this section, let Dǫ = ǫT + π∗(A), where

ǫ = 0, 1 and assume:

(i) for all ξ ∈ X[2] there exists a smooth irreducible element S ∈ |Dǫ| passing through

ξ;

(ii) h1(X, (1 − ǫ)T − π∗(A)) = 0;

(iii) T|S is very ample on S.

Then T is very ample on X.
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Proof Given any ξ ∈ X[2], assumption (i) gives an element S ∈ |Dǫ| passing through

it. By assumption (iii) we can separate ξ on S by elements of |T|S|. Consider the

sequence 0 → H0(X, T − Dǫ) → H0(X, T) → H0(S, T|S) → H1(X, T − Dǫ) =

H1(X, (1 − ǫ)T − π∗A) = 0. Assumption (ii) allows us to lift the separating sections

on S to sections of T separating ξ on X. Notice that when ǫ = 1, assumption (ii) can

be restated as h1(Y,−A) = 0.

As an immediate application of Proposition 3.1, when ǫ = 0, one obtains the very

ampleness of a family of rank-2 vector bundles over P
2.

Corollary 3.2 There exists very ample vector bundles E of rank 2 over Y = P
2 given

by non-trivial extensions

0 → OP2 (1) → E → OP2 (4) ⊗ Iη → 0,

where η ∈ P
2[10]

consists of 10 distinct points in general position.

Proof Let η ∈ P
2[10]

consist of 10 distinct points in general position. Notice that

Ext1(OP2 (3) ⊗ Iη,OP2 ) 6= 0 and there exists a locally free extension

(3.1) 0 → OP2 → E
′ → OP2 (3) ⊗ Iη → 0,

because KY ⊗ OP2 (3) = OP2 , so that, for any point w ∈ η, the natural map

0 = H0(Y, Iη) = H0(Y, KY ⊗ OP2 (3) ⊗ Iη) → H0(Y, KY ⊗ OP2 (3) ⊗ Iη\w)

= H0(Y, Iη\w) = 0

is an isomorphism as required, see [D-L, Theorem 3.13] and its proof. Twisting (3.1)

by OP2 (1) and setting E = E ′(1) gives

(3.2) 0 → OP2 (1) → E → OP2 (4) ⊗ Iη → 0.

Notice that c1(E) = OP2 (5), and c2(E) = 14. Let D = π∗(OP2 (1)), i.e., ǫ = 0 and

A = OP2 (1) in the notation of Proposition 3.1. Let E|ℓ be the restriction of E to any

line ℓ. From (3.2) one gets:

(3.3) 0 → Oℓ(1 + ε) → E|ℓ → Oℓ(4 − ε) → 0,

where ε = 0, 1, 2, respectively, if ℓ passes through 0, 1, 2 points of η. Sequence (3.3)

shows that E|ℓ is very ample, so that Proposition 3.1(i) and (iii) are satisfied. To verify

Proposition 3.1(ii), notice that h1(X, T − D) = h1(P
2,E(−1)) = h1(P

2,E ′), which,

looking at sequence (3.1), vanishes if and only if h1(P
2,OP2 (3) ⊗ Iη) vanishes. As

η consists of 10 points in general position it is H0(OP2 (3) ⊗ Iη) = 0, and thus the

sequence

0 → OP2 (3) ⊗ Iη → OP2 (3) → OP2 (3) ⊗ Oη → 0

gives the required vanishing.
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Remark 3.3 Corollary 3.2 implies the existence of a family of 3-dimensional scrolls

(X, L) = (P(E),OP(E)(1)) embedded by |OP(E)(1)| in P
7 with deg(X) = [c1(E)]2 −

c2(E) = 11, and sectional genus g(X) = 6 (see also Section 7). The existence of such

threefolds was left as an open question in [B-B-1, Proposition 4.2.3]. The Hilbert

scheme of a threefold X ⊂ P
7, as in Corollary 3.2, has an irreducible component of

dimension 83, of which X is a smooth point. See [B-F, Proposition 3.1, Corollary 3.3

and Remark 3.4], for details.

Without any assumption on the positivity of D it would be very difficult to es-

tablish whether assumption Proposition 3.1(i) is satisfied or not. If D is very ample

it is well known, [B-S], that if there is a zero scheme ξ for which (i) fails, then the

ambient variety is a surface containing a D-line ℓ through ξ such that all divisors in

|D| passing through ξ are reducible as ℓ + D ′. In our particular situation, keeping in

mind that we are striving for sufficient numerical criteria, we can relax conditions on

D as in the following proposition. Before proving it we need a lemma.

Lemma 3.4 With the notation fixed in this section, let F be the class of a generic fibre

of π in the Chow ring of X. Let Σ be a singular element in |T|. Then Σ is reducible,

more precisely, Σ = π−1(Z) ∪ Σ
′ where Z is an effective divisor on Y and Σ

′ · F = 1,
and if Z is maximal with respect to the previous decomposition then, Σ

′ is smooth and

irreducible.

Proof Let R be a singular point of Σ and let FR be the fibre of π passing through R.
Then FR ≃ P

1 should intersect Σ in R with multiplicity at least 2. As Σ · FR = 1 in

the Chow ring of X, this is possible only if FR is contained in Σ. If FR is an isolated

fibre contained in Σ, then Σ would be, locally, the blow up of Y at π(R), hence it

would be smooth at R. It follows that there are infinitely many fibres of π contained

in Σ. Therefore, we can write Σ = π−1(Z)∪Σ
′, where Z is a suitable effective divisor

on Y . Obviously 1 = Σ · F = Σ
′ · F. If Σ

′ is smooth and irreducible, we are done.

Otherwise, we can argue as before for Σ
′ until we get a decomposition with a smooth

Σ
′ ∈ |T − π∗Z|. Such a Σ

′ is also irreducible thanks to the maximality of Z.

Proposition 3.5 With the notation fixed in this section, assume:

(i) h0(X, D) > 3;

(ii) for all B ∈ Pic(Y ) such that T + π∗B is effective and A − B is effective, then

max{h0(X, T + π∗B), h0(Y, A − B)} < h0(X, D) − 2.

Then Proposition 3.1(i) is satisfied with ε = 1.

Proof As h0(X, D) > 3, for all ξ ∈ X[2] the linear system |V | = |D⊗Iξ| is not empty.

Let S be an element of |V |. If S is smooth, we have nothing to prove; otherwise, by

applying Lemma 3.4 to E ⊗ OY (A), we can write S = π−1(A ′) ∪ S ′ where S ′ ∈ |T +

π∗B| is effective, irreducible, and smooth for some B ∈ Pic(Y ) and where A ′ ∈ |A−B|
is effective on Y.

Notice that dim(|V |) ≥ dim(|D|)−2. It is enough to show that not every element

of |V | is singular. By contradiction, let us assume that all elements S of |V | are sin-

gular. By Bertini’s Theorem, |V | has a base locus E and for any generic S ∈ |V | we

have that Sing(S) ⊆E. On the other hand we know that S = π−1(A ′) ∪ S ′ as above,
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and S is singular along π−1(A ′)∩S ′, which cannot be the union of a finite number of

fibres and cannot contain isolated fibres (see the proof of Lemma 3.4), so that there

is a maximal curve CS ⊆ Sing(S) ⊆E such that π[Sing(S)] = π(CS), dim π(CS) = 1,
π(CS) ⊆ A ′ and π−1[π(CS)] = π−1(A ′); hence dim(E) ≥ 1 and dim[π(E)] ≥ 1. Let

us consider π(E).

If dim[π(E)] = 2, then dim(E) = 2 and |V | = (T + π∗B) + |π∗A− π∗B|, where B

is a suitable divisor of Y such that T + π∗B is effective on X, where A − B is effective

on Y and where (T + π∗B) is in the fixed part of |V |. But this is not possible, by

assumption (ii), as dim(|π∗A − π∗B|) = dim(|V |) ≥ dim(|D|) − 2.

If dim[π(E)] = 1, let us consider the above curves CS ⊆E for any generic S ∈ |V |.

If CS = CS for some fixed S = π−1(A
′
) ∪ S

′
∈ |V | then π−1(A

′
) = π−1[π(CS)] ⊆E.

If not, the curves CS ⊆E fill some surface π−1(Z) for some effective divisor Z of Y ,

otherwise dim[π(E)] = 2. Hence, in any case, E contains some surface π−1(Z). By

choosing Z maximal we have that |V | = |T + π∗B| + (π∗A − π∗B), where B is a

suitable divisor of Y such that T + π∗B is effective on X, where Z = A− B is effective

on Y and where (π∗A − π∗B) is the fixed part of |V |. But this is not possible, by

assumption (ii), as dim(|T + π∗B|) = dim(|V |) ≥ dim(|D|) − 2.

Proposition 3.1, in case ǫ = 1, still requires the very ampleness of a line bundle,

T|S
, on a surface section S of X. Even in the most simple situation, when S is isomor-

phic to the blowing up of Y at c2(E ⊗ OY (A)) distinct points, the very ampleness of

T|S depends on the position of these points on Y , and in general we know nothing

about it. The following proposition circumvents this difficulty by directly showing

separation of length-2 zero-schemes on X. The basic technique is the construction of

separating elements as reducible divisors. They are constructed as sums of a horizon-

tal component and a vertical one.

Proposition 3.6 With the notation fixed in this section, let B ∈ Pic(Y ) be effective.

Assume:

(i) for all pairs of distinct points {P, Q} ⊂ X

(a) there exist Σ ∈ |T + π∗A + π∗B|, which is reducible as the union of a smooth

surface S2 ∈ |T + π∗A| passing through P and not through Q, and a smooth

surface S1 ∈ |π∗B| passing through Q;

(b) there exist σ1 ∈ H0(T|S1
), such that σ1(Q) 6= 0 and σ1(P) = 0 in case

P ∈ S1 ∩ S2;

(c) there exist σ2 ∈ H0(T|S2
), such that σ2(P) = 0;

(d) there exist σ ∈ H0(T|Σ), such that σ|S1
= σ1 and σ|S2

= σ2;

(ii) for any point P ∈ X and for any direction q ∈ TP(X)

(a) there exists Σ ∈ |T + π∗A + π∗B|, which is reducible as the union of a smooth

surface S2 ∈ |T +π∗A| and a smooth surface S1 ∈ |π∗B|, both passing through

P;

(b) there exists σ1 ∈ H0(T|S1
) such that σ1(P) = 0 and (σ1)0 is smooth at P with

tangent vector t∈ TP(S1);

(c) there exists σ2 ∈ H0(T|S2
) such that ∈ σ2(P) = 0 and (σ2)0 is smooth at P

with tangent vector v∈ TP(S2) in such a way that q/∈ 〈t, v〉;
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(d) there exists σ ∈ H0(T|Σ), such that σ|S1
= σ1 and σ|S2

= σ2;

(iii) h1(Y,−A − B) = 0.

Then T is very ample on X.

Proof For any reduced length-2 zero-scheme {P, Q} ∈ X[2], assumption (i) gives a

section σ ∈ H0(T|Σ) such that σ(P) = 0, σ(Q) 6= 0, and, reversing the roles of P

and Q, a section σ ′ ∈ H0(T|Σ ′) such that σ ′(Q) = 0, σ ′(P) 6= 0. As in the proof

of Proposition 3.1, assumption (iii) allows such σ and σ ′ to be lifted to elements of

H0(T) separating {P, Q}.
For any point P ∈ X and for any direction q ∈ TP(X), assumption (ii) gives

σ ∈ H0(T|Σ) such that σ(P) = 0, and such that TP((σ)0) does not contain q. Once

again, assumption (iii) allows σ to be lifted to τ1 ∈ H0(T) with τ1|Σ = σ such that

τ1(P) = 0. Notice that (τ1)0 is smooth at P; in fact (τ1)0 can be singular at P only if

it contains the fibre of π through P, but in this case it could not cut (σ1)0 on S1, as in

our assumptions, because (σ1)0 is smooth at P. Hence TP((τ1)0) = 〈t, v〉 and it does

not contain q. Assumption (i) guarantees the existence of a section τ2 ∈ H0(T) such

that τ2(P) 6= 0. Thus {τ1, τ2} separate the zero scheme {P, q}.

We conclude this section with a simple very ampleness criterion for line bundles

on surfaces. The idea of this proof will be used in Section 4 to give a criterion for our

vector bundles.

Proposition 3.7 Let S be a smooth projective surface. Let D, A ∈ Pic(S) and let z ≥ 1

be a positive integer such that zA is very ample. Assume:

(i) for any ξ ∈ S[2] there exists a smooth, irreducible curve γ ∈ |zA| passing through ξ;

(ii) DA ≥ (z − 1)A2 + 2pa(A) + 1;

(iii) h1(S, D − zA) = 0.

Then D is very ample.

Proof Let ξ ∈ S[2] and let γ be as in assumption (i). Assumption (ii) implies that

D|γ is very ample. In fact 2g(γ)−2 = (zA+KS)zA, hence 2g(γ)+1 = (zA+KS)zA+3

and deg(D|γ) = zDA ≥ 2g(γ) + 1 = (zA + KS)zA + 3 because

DA ≥ (z − 1)A2 + 2pa(A) + 1 = (zA + KS)A + 3.

As D|γ is very ample we have two sections {σ1, σ
′
1}, in H0(γ, D|γ), that separate ξ

on γ. Assumption (iii) guarantees that we can separate ξ on S by lifting σ1 and σ ′
1 to

sections in H0(S, D).

Remark 3.8 The existence of certain surfaces S ⊂ P
4 of degree 14 that are ruled

over a genus 2 curve, with invariant e = −2, is a long standing open problem, see for

example [H-R]. The candidate very ample line bundle giving the embedding of S is

predicted to be of numerical class 7C0 − 6 f . As an application of Proposition 3.7 one

can prove that D ≡ 7C0 + 2 f is very ample on S by setting A ≡ C0 + 5 f and z = 1.
One could then try to solve the original problem by embedding S with D and finding

a suitable projection.

https://doi.org/10.4153/CJM-2010-066-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-066-5


1208 A. Alzati and G. M. Besana

4 A Numerical Very Ampleness Criterion

As indicated in the introduction, when the base surface Y has a simple Picard group,

one can hope to obtain sufficient conditions to characterize very ampleness of vector

bundles over Y.
The heart of this section is Theorem 4.3. It is obtained using the same approach

described in Section 3 with an interesting twist. The divisor D, chosen through the

length 2 zero-scheme that needs separation, is obtained as a sum of a number of

components, all chosen as pull backs of suitable sections of the base surface. Simi-

larly, the global sections of the tautological line bundle T, performing the required

separation are lifted from sections glued together from well behaved sections on each

of the components of D.
First, we have the following.

Lemma 4.1 Let Y = Fe and let A ≡ C0 + b f be a very ample divisor on Y. Let

P1, . . . , Pr be r distinct points on Y such that no two of them lie on the same fibre. Let

F := { fi} where fi = ρ∗(ρ(Pi). If h0(Y, A) ≥ 2r, then there exists at least an element

γ ∈ |A| passing smoothly through P1, . . . , Pr and intersecting transversely any fixed

finite set of fibres Φ := {ϕ j} with Φ ∩ F = ∅.

Proof First of all, let us consider the case in which the set Φ is empty. For any point

Pi let us choose a vector qi ∈ TPi
(Y ) pointing towards a direction different from

that of fi. By assumption, there exists at least one element γ ∈ |A| passing through

P1, . . . , Pr and having tangent direction qi at Pi i = 1, . . . , r (2r linear conditions).

If γ is singular at, say, P1, . . . , Ph, then γ must be reducible into an element γ ′ ∈
|A−b1 f1 −b2 f2 −· · ·−bh fh| and the union of fibres f1, f2, . . . , fh with multiplicities

b1, b2, . . . , bh (see also the proof of Proposition 3.5). Now γ ′ is smooth at any Pi and,

by our assumptions, γ ′ has tangent vector qi at any Pi . One can choose a set of h

generic fibres { f ′
1 , f ′

2 , . . . , f ′
h } ∩ F = ∅ so that γ ′ + b1 f ′

1 + b2 f ′
2 + · · · + bh f ′

h ∈ |A|
satisfies our request; recall that b1 f ′

1 + b2 f ′
2 + · · · + bh f ′

h is linearly equivalent to

b1 f1 + b2 f2 + · · · + bh fh.

Now let us assume that Φ is not empty and let us proceed as in the previous case. If

γ ′ cuts every fibre of Φ tranversally, we are done. Otherwise γ ′ must be reducible into

an element γ ′ ′ ∈ |A−b1ϕ1−b2ϕ2−· · ·−bhϕh| and the union of fibres ϕ1, ϕ2, . . . , ϕh

with multiplicities b1, b2, . . . , bh. One can then argue as in the previous case.

Definition 4.2 Let W be a reduced zero-scheme on a ruled surface Y. For any fixed

fibre f of Y we can compute length(OY (f ) ⊗ OW ). Let lmY (W ) be the maximun of

these lengths as f varies among the fibre of Y.

We can now prove prove the main theorem of this section.

Theorem 4.3 Let Y = Fe and let L = alC0 +bl f and M = amC0 +bm f be line bundles

over Y. Let E be a rank 2 vector bundle over Y such that there exists a non-trivial exact

sequence 0 → L → E → M ⊗ IW → 0, where IW is the ideal sheaf of a reduced

zero-scheme W ⊂ Y of length w. Let X = P(E) and let T be the tautological line bundle

on X.
Assume that there exist integers x ≥ e + 2 and z ≥ 1 such that
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(i) L(C0 + x f ) > 0, M(C0 + x f ) > 2,

(ii) L f > 0, M f > lmY (W ),

(iii) h1(Y, L − zC0 − zx f ) = 0, h1(Y, M − zC0 − zx f ) = 0,

(iv) h1(Y, L − zC0 − zx f − f ) = 0, h1(Y, M − zC0 − zx f − f ) = 0,

(v) the support of W is in general position with respect to the linear systems |M −
z(C0 + x f )| and |M − z(C0 + x f ) − f | (i.e., the following natural maps

H0(Y, M − z(C0 + x f )) → H0(Y, (M − z(C0 + x f )) ⊗ OW ) and

H0(Y, M − z(C0 + x f ) − f ) → H0(Y, (M − z(C0 + x f ) − f ) ⊗ OW )

are surjective),

(vi) (L + M)(C0 + x f ) ≥ 2(z − 1)(2x − e).

Then T is very ample.

Proof Let us consider the linear system |C0 +x f | on Y and notice that it is very ample

by the assumption x ≥ e+2 and [H, p. 169]. Moreover, there are no |C0 +x f |-lines by

Lemma 2.1 (other than fibres). Let γ ∈ |C0 + x f | be a smooth rational curve passing

through at most 2 points of W. Let us consider the restriction E|γ . By assumption (i)

E|γ is ample, hence very ample because γ is a smooth rational curve.

A similar argument shows that, for any fibre f of the ruling of Y, the restriction

E|f is also very ample, by assumption (ii).

Let us consider the following exact sequences:

0 → L − zγ → E ⊗ OY (−zγ) → (M − zγ) ⊗ IW → 0,

0 → (M − zγ) ⊗ IW → M − zγ → (M − zγ) ⊗ OW → 0.

By using assumptions (iii) and (v) it is easy to see that h1(Y,E ⊗ OY (−zγ)) = 0.
Let us consider the following exact sequences:

0 → L − zγ − f → E ⊗ OY (−zγ − f ) → (M − zγ − f ) ⊗ IW → 0,

0 → (M − zγ − f ) ⊗ IW → M − zγ − f → (M − zγ − f ) ⊗ OW → 0.

By using assumptions (iv) and (v) it is easy to see that h1(Y,E⊗ OY (−zγ − f )) = 0.
Given a divisor D ≡ zπ∗γ on X and the exact sequence 0 → T − D → T →

T ⊗ OD → 0, the above vanishings give that the natural map

(4.1) |T| → |T|D| → 0

is surjective. A similar argument shows that if D ≡ zπ∗γ + π∗ f , the map in (4.1) is

surjective too.

To show that T is very ample we have to prove that |T| separates all zero schemes

ξ ⊂ X[2]. The proof is divided into two cases, according to the nature of ξ. When ξ
is not reduced, and Supp(ξ) = {P}, we denote by q ∈ TP(X) the tangent direction

specified by ξ.
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Case 1: P ∈ Supp(ξ) and ξ * F (scheme theoretically), where F = P(E| f ) and

f = ρ−1(ρ(π(P)).

If Supp(ξ) = {P, Q}, as |C0 + x f | is very ample, [B-S, Theorem 1.7.9], and

Lemma 2.1 imply that there exists a smooth rational curve γ1 ∈ |C0 + x f | containing

π(P) and π(Q). If ξ is not reduced, again very ampleness of |C0 + x f |, [B-S, Theorem

1.7.9], and Lemma 2.1 imply that there exists a smooth rational curve γ1 ∈ |C0 + x f |
passing through π(P), with q ∈ TP(Γ1), where Γ1 = P(E|γ1

). By choosing a suit-

able γ1 we can assume that γ1 contains at most two of the points of W (π(P) and

π(Q) if it is the case): recall that there are no curves, other than fibres, embedded

as lines by |C0 + x f | thanks to Lemma 2.1. Choose another smooth rational curve

γ2 ∈ |C0 + x f | such that γ2 intersects γ1 transversely at (C0 + x f )2
= 2x − e points

all different from π(Supp(ξ)) and not belonging to W. Now choose another smooth

rational curve γ3 ∈ |C0 + x f | such that γ3 and Γ3 have the same above properties

with respect to γ1, γ2,Γ1,Γ2,W and, moreover,
⋂3

i=1 γi = ∅. Iterate the process un-

til i = z. Note that the suitable choice of the γi is possible simply because |C0 + x f | is

very ample on Y .

Let Γi also denote the numerical classes of Γi in Num(X). If z = 1, we can separate

ξ on Γ1 because T|Γ1
is very ample, then we are done by lifting the separating sections

with the map in (4.1). If z ≥ 2, we need to apply Lemma 4.1 to T|Γi
when i ≥ 2. Let

us remark that

h0(Γi , T|Γi
) = h0(Γ2, T|Γ2

) = (L + M)γ2 + 2 = (L + M)(C0 + x f ) + 2

for i = 2, . . . , z, so that assumption (vi) implies that h0(Γi , T|Γi
) ≥ 2(z − 1)(2x − e)

for any i = 2, . . . , z. Noticing that Γi ∩ Γ j is the disjoint union of 2x − e fibres

of π, we can proceed as follows: T|Γ1
is very ample, so we can take s1

1 ∈ |T|Γ1
| and

s2
1 ∈ |T|Γ1

| separating ξ on Γ1. We can also choose s1
1 and s2

1 such that they intersect

transversely all the fibres Γ1 ∩ Γ j j = 2, . . . , z. As h0(Γ2, T|Γ2
) ≥ 2(2x − e), by

Lemma 4.1, we can choose s1
2 ∈ |T|Γ2

| and s2
2 ∈ |T|Γ2

| such that sk
1 ∩ Γ2 = sk

2 ∩ Γ1, for

k = 1, 2, and such that they intersect transversely all the fibres Γ2 ∩ Γ j j = 3, . . . , z.
As h0(Γ3, T|Γ3

) ≥ 4(2x − e), by Lemma 4.1, we can choose s1
3 ∈ |T|Γ3

| and s2
3 ∈ |T|Γ3

|

such that sk
3 ∩ Γ2 = sk

2 ∩ Γ3, and sk
3 ∩ Γ1 = sk

1 ∩ Γ3 for k = 1, 2, and such that they

intersect transversely all the fibres Γ3 ∩ Γ j j = 4, . . . , z. And so on. At the end we

get, for each k = 1, 2, a set of z elements sk
i ∈ |T|Γi

| i = 1, . . . , z such that for any

i, j ∈ {1, . . . , z}, i 6= j, sk
i ∩ Γ j = sk

j ∩ Γi is a reduced zero-subscheme, and {s1
1, s2

1}

separate ξ on Γ1. Thus, for each k = 1, 2, the z-tuples {sk
i ∈ |T|Γi

| : i = 1, . . . , z}

give rise to elements sk of |T|(Γ1∪···∪Γz)| = |T|(Γ1+···+Γz)|, which still separate ξ on

Γ1 ∪ · · · ∪ Γz. As Γ1 + · · · + Γz ≡ zπ∗γ, (4.1) gives elements sk of |T| that separate ξ
on X.

Case 2: P ∈ Supp(ξ) and ξ ⊂ F (scheme theoretically), where F = P(E| f ) and

f = ρ−1(ρ(π(P)).

Let F also denote the numerical class of P(E| f ) in Num(X). As in the previous case,

let us choose z smooth rational curves γ1, . . . , γz ∈ |C0 + x f | such that they intersect

each other transversely at (C0 + x f )2
= 2x − e points, each of them intersects f

transversely at one point different from π(Supp(ξ)) not belonging to W, and such
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that any 3-tuple of curves in {γ1, . . . , γz, f } has empty intersection. Note that all the

suitables choices are possible because |C0 + x f | is very ample.

Let Γi also denote the numerical class of Γi = P(E|γi
) in Num(X). We get the same

results about h0(Γi , T|Γi
) as in Case 1, and we have h0(Γi , T|Γi

) = (L+M)(C0 +x f )+2

for any i = 1, . . . , z.
As T|F is very ample we can take s1

0 ∈ |T|F| and s2
0 ∈ |T|F| separating ξ on F. We

can also choose s1
0 and s2

0 such that they intersect transversely all the fibres F ∩Γ j j =

1, . . . , z. Then we can choose s1
1 ∈ |T|Γ1

| and s2
1 ∈ |T|Γ1

| such that sk
1∩F = sk

0∩Γ1, for

k = 1, 2, and such that they intersect transversely all the fibres Γ1 ∩ Γ j j = 2, . . . , z.
As h0(Γ2, T|Γ2

) ≥ 2[(2x − e) + 1], by Lemma 4.1, we can choose s1
2 ∈ |T|Γ2

| and

s2
2 ∈ |T|Γ2

| such that sk
1 ∩ Γ2 = sk

2 ∩ Γ1, sk
2 ∩ F = sk

0 ∩ Γ2 for k = 1, 2, and such

that they intersect transversely all the fibres Γ3 ∩ Γ j j = 3, . . . , z, and so on. At the

end, by recalling that assumption (vi) gives h0(Γi , T|Γi
) ≥ 2[(z − 1)(2x − e) + 1],

for any i = 1, . . . , z, we get a (z + 1)-tuples {sk
i : i = 0, 1, . . . , z} for k = 1, 2,

giving rise to two elements sk ∈ |T|(F∪Γ1∪···∪Γz)| = |T|(F+Γ1+···+Γz
| that separate ξ on

F ∪ Γ1 ∪ · · · ∪ Γz. As Γ1 + · · · + Γz + F ≡ zπ∗γ + π∗ f , (4.1) gives elements sk ∈ |T|
that separate ξ on X.

Remark 4.4 Note that the previous criterion is purely numerical because condi-

tion (v) can be translated into a vanishing condition as we have seen in the proof of

Theorem 4.3.

To show the large validity of Theorem 4.3 we give the following example.

Example Let us consider on Y = Fe two line bundles L ≡ aC0 + bl f and M ≡
(a+2)C0+bm f with a > 0. Let us consider KY ≡ −2C0−(2+e) f so that KY +M−L ≡
(bm − bl − e − 2) f . Let us assume bm − bl − e − 2 > 0 and let us choose W = {two

distinct points on a fixed fibre f }, hence w = 2. In this way we can apply Griffiths–

Harris theorem on the existence of rank 2 vector bundles on surfaces (because every

section of |KY + M − L| passing through a point of W passes also through the other

point, see [D-L, Theorem 3.13] and its proof) and we get an exact sequence as the

following: 0 → OY → E ′ → (M − L) ⊗ IW → 0.
By tensorizing with L we get our vector bundle E:

0 → L → E → M ⊗ IW → 0.

Let us fix x = e + 2 and z = a + 1 and let us write down all necessary numerical

conditions to satisfy the assumptions of Theorem 4.3.

(i) 2a + bl > 0 and 2a + 4 + bm > 2.

(ii) a > 0.
(iii) bm − (a + 1)(e + 2) ≥ e − 1.

(iv) bm − (a + 1)(e + 2) − 1 ≥ e − 1.

(v) bm − (a + 1)(e + 2) − 1 ≥ e and bm − (a + 1)(e + 2) − 2 ≥ e.

(vi) bl + bm ≥ 4a + 2ae − 4.

By looking at all required conditions in Theorem 4.3 one can show that, for fixed

e, a > 0, bl > −2a, all assumptions are satisfied for bm ≫ 0, thus obtaining the very
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ampleness of a large class vector bundles E. These bundles give rise to 3-folds scrolls

embedded with fairly large degree (see Remark 3.3 and Section 7). For instance, if

d := deg(X), we have d = c1(E)2−c2(E) = (3a+4)(bm +bl)−2bl−e(3a2 +6a+4)−2,
and, if we put e = a = 1, bl = −1, bm = 9, we get d = 43.

5 A Criterion for Ruled Surfaces on Elliptic Curves

In this section we want to give some very ampleness criterion when the surface Y is

a ruled surface on an elliptic curve, i.e., Y = P(F), where F is a normalized rank

2 vector bundle over a smooth elliptic curve C with invariant e. Normalized means

that h0(C,F) 6= 0, but h0(C,F ⊗ L) = 0 for any linear bundle L on C of negative

degree. As usual, let ρ : Y → C be the natural map.

To get our criterion in this case, we will need stronger assumptions. Let us begin

with the following.

Lemma 5.1 Let Y be an elliptic ruled surface as above over an elliptic curve C. Let

A ≡ C0 + b f be a very ample divisor on Y (where C0 and f are, respectively, the

numerical classes of the tautological line bundle and of the fibre). Let P1, . . . , Pr be

r ≥ 2 distinct points on Y such that no two of them lie on the same fibre. Let F :=

{ fP1
, fP2

, . . . , fPr
}, where fPi

= ρ∗ρ(Pi). If h0(Y, A) ≥ 2r + 2, then there exists at least

an element γ ∈ |A| passing smoothly through P1, . . . , Pr, intersecting any fPi
tranversely

and intersecting transversely any other finite set of fibres Φ := {ϕ j} with F ∩ Φ = ∅.

Proof First, let us assume that Φ is empty. For any point Pi let us choose a vector

qi ∈ TPi
(Y ) pointing towards a direction different from that of fPi

. By assumption,

there exists at least a pencil of elements γ ∈ |A| passing through P1, . . . , Pr and

having tangent direction qi at Pi i = 1, . . . , r (2r linear conditions). If there exists

at least an element γ ∈ |A| passing smoothly through P1, . . . , Pr and cutting any fPi

transversely, we are done. Otherwise every γ is singular at some points, say, P1, . . . , Ps

and therefore every γ must be reducible into an element γ ′ ∈ |A − b1 fP1
− b2 fP2

−
· · · − bs fPs

| and the union of fibres fP1
, fP2

, . . . , fPs
with multiplicities b1, b2, . . . , bs

(see also the proof of Proposition 3.5). Now the generic γ ′ is smooth at any Pi and,

by our assumptions, γ ′ has tangent vector qi at any Pi .
Let ρ : Y → C be the natural projection. If b := b1 + b2 + · · · + bs ≥ 3, we can

choose other b generic points H1, . . . , Hb ∈ C (not necessarily distinct) such that

fH1
+ fH2

+ · · ·+ fHb
is linearly equivalent to b1 fP1

+ b2 fP2
+ · · ·+ bs fPs

. This is possible

because b1ρ(P1)+b2ρ(P2)+· · ·+bsρ(Ps) is a very ample divisor on C, so that it suffices

to choose a generic divisor H1+· · ·+Hb (disjoint with b1ρ(P1)+b2ρ(P2)+· · ·+bsρ(Ps))

in the linear system |b1ρ(P1)+b2ρ(P2)+· · ·+bsρ(Ps)|. Now we can consider an element

γ ′ + fH1
+ fH2

+ · · · + fHb
∈ |A|, and we are done.

If b := b1 +b2 + · · ·+bs = 2, we can choose 2 other generic points H1, H2 ∈ C (not

necessarily distinct) such that fH1
+ fH2

is linearly equivalent to b1 fP1
+b2 fP2

+· · ·+bs fPs
.

This is possible because b1ρ(P1) + b2ρ(P2) + · · ·+ bsρ(Ps) is a degree 2 effective divisor

on C, hence |b1ρ(P1) + b2ρ(P2) + · · · + bsρ(Ps)| is a one dimensional linear system

without base points, and it suffices to choose a generic divisor H1 + H2 (disjoint with

b1ρ(P1)+b2ρ(P2)+· · ·+bsρ(Ps)) in it. Now we can consider an element γ ′+ fH1
+ fH2

∈
|A|, and we are done.
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If b := b1 + b2 + · · · + bs = 1, say b1 = 1 and b2 = · · · = bs = 0, every γ must

be reducible into an element γ ′ ∈ |A − fP1
| and the fibre fP1

. Because there exists

at least a pencil of elements γ ∈ |A| passing through P1, . . . , Pr and having tangent

direction qi at Pi i = 1, . . . , r, we can choose another point P ′ ∈ fP2
, P ′ 6= P2 (recall

that r ≥ 2) and we can find at least an element γ ∈ |A| passing through P1, . . . , Pr, P ′

and having tangent direction qi at Pi i = 1, . . . , r. We have that γ is reducible into

an element γ ′ ∈ |A − fP1
− fP2

| and the two fibres fP1
, fP2

. As above, γ ′ is smooth

at any Pi and, by our assumptions, γ ′ has tangent vector qi at any Pi ; moreover, as

above, we can choose a generic divisor H1 + H2 (disjoint with ρ(P1) + ρ(P2)) such

that fH1
+ fH2

is linearly equivalent to fP1
+ fP2

. Now we can consider the element

γ ′ + fH1
+ fH2

∈ |A| and we are done.

Now let us assume that Φ is not empty, with j = 1, 2, . . . , p, and let us proceed as

in the previous case. If γ ′ (or γ ′ ) intersects every fibre of Φ transversely, we are done.

Otherwise γ ′ (or γ ′ ) must be reducible into an element γ ′ ′ ∈ |A − b1ϕ1 − b2ϕ2 −
· · · − bpϕp| and the union of fibres ϕ1, ϕ2, . . . , ϕp with multiplicities b1, b2, . . . , bp.

One can then argue as in the previous case. Note that, as all our choices are made by

using generic points Hi on C, we can avoid any fixed set of points on C .

Now let us return to the surface Y = P(F). It is well known that, if F is indecom-

posable, hence semistable, then 0 ≤ −e := deg(F) = deg[c1(F)] ≤ 1; if F is decom-

posable, then F = OC ⊕ L where L is a line bundle of degree −e ≤ 0; (see[H, V,

Theorems 2.12 and 2.15]). Moreover, if we compute the invariant µ−(F) (see [Bu]

for the definition), we have that µ−(F) = − e
2

in the first case and µ−(F) = −e in

the second case.

We have the following version of Theorem 4.3 for elliptic ruled surfaces.

Theorem 5.2 Let Y = P(F) be a surface as above. Let L ≡ alC0 + bl f , M ≡
amC0 + bm f be line bundles over Y. Let E be a rank 2 vector bundle over Y such that

there exists an exact sequence 0 → L → E → M ⊗ IW → 0, where IW is the ideal sheaf

of a reduced zero-scheme W ⊂ Y of length w. Let X = P(E) and let T be the tautological

line bundle on X.
Assume that there exist integers x and z ≥ 1 such that:

(i) x + µ−(F) ≥ 3 (or x + µ−(F) > 1 i f F has degree 1),

(ii) min{xal + bl − ale, xam + bm − ame − 2} ≥ 3,

(iii) L f > 0, M f > lmY (W ),

(iv) h1(Y, L − zC0 − zx f ) = 0, h1(Y, M − zC0 − zx f ) = 0,

(v) h1(Y, L − zC0 − zx f − f ) = 0, h1(Y, M − zC0 − zx f − f ) = 0,

(vi) the support of W is in general position with respect to the linear systems |M −
z(C0 + x f )| and |M − z(C0 + x f ) − ρ∗P| (i.e., the following natural maps

H0(Y, M − z(C0 + x f )) → H0(Y, (M − z(C0 + x f )) ⊗ OW ) and

H0(Y, M − z(C0 + x f ) − ρ∗P) → H0(Y, (M − z(C0 + x f ) − ρ∗P) ⊗ OW )

are surjective), where P is any point of C;

(vii) (al + am)(x − e) + bl + bm ≥ 2(z − 1)[(2x − e) + 1] + 2.

Then T is very ample.
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Proof Let us recall (see [M]) that a divisor on Y, whose numerical class is αC0 + β f ,
is ample if and only if α ≥ 1, β + αµ−(F) > 0. The divisor is very ample if β +

αµ−(F) ≥ 3 or β + αµ−(F) > 1 if F has degree 1 (see [A-B-B]).

Let us consider a linear system |C0 +ρ∗κ| with deg(κ) := x. By (i) it is very ample.

Let γ be any smooth elliptic curve in this system passing through at most 2 points of

W. Let us consider the restriction E|γ . We get an exact sequence: 0 → L → E|γ →
M → 0, where L and M are linear bundles on γ of degrees xal + bl − ale + ε and

xam + bm − ame − ε respectively, and ε = 0, 1, 2 is the number of common points

among γ and W. Recall that µ−(E|γ) ≥ min{xal + bl − ale + ε, xam + bm − ame − ε}
(see [Bu]). By (i) µ−(E|γ) ≥ 3, so that E|γ is very ample by [A-B-B, Theorem 3.3 and

Proposition 3.2].

If we fix any fibre f of Y and we consider E|f , we get that E|f is isomorphic to

OP1 (h) ⊕ OP1 (k), with h, k > 0 by assumption (iii), so that E|f is very ample.

Let us consider the following exact sequences:

0 → L − zγ → E ⊗ OY (−zγ) → (M − zγ) ⊗ IW → 0,

0 → (M − zγ) ⊗ IW → M − zγ → (M − zγ) ⊗ OW → 0.

By using assumptions (iv) and (vi) it is easy to see that h1(Y,E ⊗ OY (−zγ)) = 0.

Let us consider the following exact sequences, for any point P ∈ C :

0 → L − zγ − ρ∗P → E ⊗ OY (−zγ − ρ∗P) → (M − zγ − ρ∗P) ⊗ IW → 0,

0 → (M − zγ − ρ∗P) ⊗ IW → M − zγ − ρ∗P → (M − zγ − ρ∗P) ⊗ OW → 0.

By using assumptions (v) and (vi) it is easy to see that h1(Y,E⊗OY (−zγ−ρ∗P)) = 0.

Let us consider any effective divisor D ≡ zπ∗γ on X and the exact sequence

0 → T − D → T → T ⊗ OD → 0.

The natural map |T| → |T|D| is surjective as h1(X, T−D) = h1(Y,E⊗OY (−zγ)) = 0

by the above vanishing. A similar argument shows that if D ≡ zπ∗γ + π∗ρ∗P, the

natural map is surjective too, for any point P ∈ C.

Now we proceed as in the proof of Theorem 4.3 after recalling that, in our as-

sumptions, there are no |C0 + π∗κ|-lines on Y except for the ruling by Lemma 2.1.

Now we can repeat the proof of Theorem 4.3, more or less verbatim. We have to

use Lemma 5.1 with r = (C0+π∗κ)2
= (2x−e) (or r = (C0+π∗κ)2+1 = (2x−e)+1)

instead of Lemma 4.1. Note that, in any case, assumption (i) implies that r ≥ 2. The

only difference is that here h0(Γi , T|Γi
) = h0(Γ2, T|Γ2

) = (al + am)(x− e) + bl + bm for

any i ≥ 2, so that the last condition has to be: (al +am)(x−e)+bl +bm ≥ 2(z−1)r +2

in all cases, i.e., we need assumption (vii).
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6 Very Ampleness Through General Position

In this section we consider some very special rank 2 vector bundles over Y = F1. The

aim of Section 6 will be evident in Section 7.

Definition 6.1 Let W ′ be a zero-scheme of length w ′ in P
2 consisting of w ′ simple

points. These points are said to be in general position on P
2 if, for any positive integer

k, h0(P
2, IW ′(k)) = max{h0(P

2,OP2 (k))−w ′, 0} = max{
(

k+2
2

)
−w ′, 0}. Let s : Y →

P
2 be the blow up of P

2 at one point P0, and let W ⊂ Y be a 0-dimensional scheme

consisting of w simple points none of which lie on the exceptional divisor. These

points are said to be in general position on Y if P0 ∪ s(W ) consists of w ′
= w + 1

distinct points in general position on P
2.

Definition 6.1 can be reinterpreted in terms of cohomological vanishing.

Lemma 6.2 Let s : Y → P
2 be the blow up of P

2 at one point P0. Let W be a set of w

distinct points on Y in general position according to Definition 6.1; let D ≡ aC0 + b f be

a divisor on Y such that a ≥ 0, b ≥ 1 and b ≥ a. Let us assume that h0(Y, D) ≥ w,
then h1(Y, D ⊗ IW ) = 0.

Proof Let us consider the exact sequence: 0 → D ⊗ IW → D → D ⊗ OW → 0.
As H1(Y, D) = 0 we get our vanishing if (and only if) the restriction map

r : H0(Y, D) → H0(W, D ⊗ OW ) is surjective. Let l be the pull back of the gener-

ator of Pic(P
2) and let l0 be the exceptional divisor for s, then D = bl − (b − a)l0

and, by assumptions, D is an effective divisor. Hence r is surjective if and only if

the zero-scheme s(W ) imposes independent conditions on plane curves of degree b,
having a point of multiplicity at least b − a at P0. This condition, using the same

language, definitions and notation introduced in [C-M, p. 192] is equivalent to the

quasi-homogeneous linear system L(b, b− a, w, 1) not being special. This in turn fol-

lows from [C-M, Theorem 8.1 and Lemma 7.1] as P0 ∪ s(W ) are in general position

in P
2.

Now, let L ≡ C0 + (5 − h) f and M ≡ 2C0 + h f be two line bundles on Y with

h ≥ 3. Let us fix an integer y such that −2 ≤ y ≤ 4 and let us choose a set W

of w = h + y ≥ 1 distinct points on Y in general position according to Definition

6.1. In particular, each fibre contains at most one point of W . On our surface KY ≡
−2C0−3 f so that |KY +M−L| = |−C0 +(2h−8) f | = ∅, and therefore we can apply

Griffiths–Harris theorem on the existence of rank 2 vector bundles on surfaces (see

[D-L, Theorem 3.13] and its proof) and we get an exact sequence as the following:

0 → OY → E ′
y → (M − L) ⊗ IW → 0. By tensorizing it with L we get rank 2 vector

bundles Ey :

(6.1) 0 → L → Ey → M ⊗ IW → 0

such that c1(Ey) ≡ 3C0 + 5 f , c2(Ey) = 8 + y. In this section we prove very ampleness

results for Ey , with −2 ≤ y ≤ 3, for suitable sets W of h + y generic points of Y.
These results are presented in Theorems 6.7 and 6.10 after a number of preparatory

lemmas.

First, we have the following.
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Proposition 6.3 Let Ey be any vector bundle defined as above by (6.1). Let f be any

fixed fibre of Y . Let γ be a smooth element of |C0 + f | passing through at most two points

of W .

(i) the restriction Ey| f is isomorphic to OP1 (1) ⊕ OP1 (2), hence very ample;

(ii) if h = 3, then h1(Y,Ey ⊗ OY (− f )) = 0 for −2 ≤ y ≤ 3;

(iii) if h = 4, then h1(Y,Ey ⊗ OY (− f )) = 0 for −2 ≤ y ≤ 4;

(iv) if h = 3, the restriction Ey|C0
is very ample;

(v) if h = 4, the restriction Ey|C0
is very ample or, possibly, the rational map associated

to the linear system of the tautological divisor in P(Ey|C0
) is a birational morphism,

contracting only C0 at a singular double point;

(vi) if h = 3 or h = 4, h1(Y,Ey ⊗OY (−C0)) = 0;

(vii) if h = 3 or h = 4, the restriction Ey|γ is very ample;

(viii) if h = 3, then h1(Y,Ey ⊗OY (−γ)) = 0 for −2 ≤ y ≤ 2;

(ix) if h = 4, then h1(Y,Ey ⊗OY (−γ)) = 0 for −2 ≤ y ≤ 3.

Proof For (i) we restrict (6.1) to f and we get the exact sequence:

0 → OP1 (1 + ε) → Ey| f → OP1 (2 − ε) → 0,

where ε = 1 or ε = 0 according to whether f contains one point of W or not. Note

that, in any case, Ey| f ≃ OP1 (1) ⊕ OP1 (2), hence very ample.

For (ii) and (iii) we tensorize (6.1) by OY (− f ) and we get

0 → C0 + (4 − h) f → Ey ⊗ OY (− f ) → (2C0 + h f − f ) ⊗ IW → 0.

In any case h1(Y,C0 + (4 − h) f ) = 0. Moreover, h1(Y, (2C0 + h f − f ) ⊗ IW ) = 0 by

Lemma 6.2 if

h0(Y, 2C0 + (h − 1) f ) = 3h − 3 ≥ w = h + y.

Hence h1(Y,Ey ⊗ OY (− f )) = 0 for y ≤ 3 when h = 3 and for y ≤ 4 when h = 4.
For (iv) and (v) we restrict (6.1) to C0 and we get the exact sequence (recall that

W ∩C0 = ∅):

0 → OP1 (4 − h) → Ey|C0
→ OP1 (h − 2) → 0.

If h = 3, then Ey|C0
is very ample. If h = 4, we have two cases: Ey|C0

= OP1 (1) ⊕
OP1 (1), very ample, or Ey|C0

= OP1 ⊕OP1 (2). In this second case it is well known that

P(Ey|C0
) ≃ F2 and the tautological linear system gives rise to a birational morphism

sending F2 onto a quadric cone of rank 3, singular only at its vertex, where the curve

C0 is contracted.

For (vi) we tensorize (6.1) by OY (−C0) and we get the exact sequence (recall that

W ∩C0 = ∅):

0 → (5 − h) f → Ey ⊗ OY (−C0) → (C0 + h f ) ⊗ IW → 0;

now h1(Y, (5 − h) f ) = 0 and h1(Y, (C0 + h f ) ⊗ IW ) = 0 by Lemma 6.2 as h0(Y,C0 +

h f ) = 2h + 1 ≥ w = h + y .
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For (vii) we restrict (6.1) to γ and we get the exact sequence:

0 → OP1 (5 − h + ε) → Ey|γ → OP1 (h − ε) → 0,

where ε = 0, 1, 2 according to whether γ passes through 0, 1, 2 points of W. In any

case Ey|γ is very ample.

For (viii) and (ix) we tensorize (6.1) by OY (−γ) and we get the exact sequence:

0 → (4 − h) f → Ey ⊗ OY (−γ) → (2C0 + h f − γ) ⊗ IW → 0.

In any case h1(Y, (4 − h) f ) = 0. Moreover, h1(Y, (2C0 + h f − γ) ⊗ IW ) = 0 by

Lemma 6.2 if h0(Y, 2C0 +h f −γ) = 2h−1 ≥ w = h+y. Hence h1(Y,Ey⊗OY (−γ)) =

0 for y ≤ 2 when h = 3 and for y ≤ 3 when h = 4.

Now we prove the following lemmas.

Lemma 6.4 Let Ey be any vector bundle defined as above by (6.1). Let A ≡ C0 + x f

be a divisor on Y. Then Ey ⊗ OY (A) is very ample for x ≫ 0.

Proof Let us tensorize (6.1) by OY (A). We get

0 → L + A → Ey ⊗ OY (A) → (M + A) ⊗ IW → 0.

By [B-D-S, Proposition 4.2] it suffices to show that Ey ⊗ OY (A) is 1-jet ample, and

by [B-D-S, Proposition 4.1] it suffices to show that Ey ⊗ OY (A − B) is generated by

global sections where B is a very ample divisor such that B ≡ C0 +2 f . In other words,

it suffices to show that Ey ⊗OY (x f ) is generated by global sections for x ≫ 0. Let us

consider P(Ey ⊗ OY (x f )) and its tautological divisor T. We have only to show that

|T| has no base points.

Let us tensorize (6.1) by OY (x f ). We get:

0 → L + x f → Ey ⊗ OY (x f ) → (M + x f ) ⊗ IW → 0.

Let us fix any fibre f of Y. By arguing as in the proof of Proposition 6.3(i), we have

that [Ey ⊗ OY (x f )]| f is very ample for x ≫ 0. By arguing as in the proof of Propo-

sition 6.3(ii) and (iii), we have that h1(Y,Ey ⊗ OY (x f − f )) = 0 for x ≫ 0. Hence,

we get that T| f is very ample and |T| → |T| f | is surjective. Now, by contradiction,

let us assume that |T| has a base point P and let f be the unique fibre of Y passing

through π(P); P would be a base point also for |T| f |, but this is not possible as T| f is

very ample.

Lemma 6.5 Let Ey be any vector bundle defined as above by (6.1) and let f be any

fixed fibre of Y. Let S1 be the rational ruled surface P(Ey| f ) and let Γ0 and ϕ be the

standard generators of Num(S1) ≃ Pic(S1). Let T be the tautological divisor of X :=

P(Ey) as usual and let A ≡ C0 + x f be a divisor on Y with x ≫ 0. We have the

following:
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(i) S1 ≃ F1, T|S1
≡ Γ0 + 2ϕ is very ample and for any generic smooth element S2 ∈

|T + π∗A|, the intersection S2 ∩ S1 is a smooth rational irreducible curve C ≡ Γ0 + 3ϕ,
moreover |T|S1

||C ≃ |T|S1
|;

(ii) let ξ ∈ X[2] be any subscheme contained in a smooth surface as S1 (i.e., ξ ∈ S[2]
1 ),

then ξ is separated by |T| for −2 ≤ y ≤ 3 if h = 3, and for −2 ≤ y ≤ 4, if h = 4,
moreover, |T| has no base points;

(iii) the generic surface S2 ∈ |T + π∗A| is isomorphic to the the blow up of Y at

5x + 9 + y distinct points, hence to the blow up of P
2 at 5x + 10 + y distinct points; if we

generate Num(S2) with the pull back l of the generator of Pic(P
2), the pull back l0 of C0

∈ Y and the classes of the exceptional divisors, we have that

T|S2
≡ (x+5)l−(x+1)l0−l1 · · ·−l5x+9+y , |T| ≃ |T|S2

|, and h0(S2, T|S2
) ≥ 11−y.

Proof (i) The first conclusions follow from Proposition 6.3(i). Moreover, we have

that S2|S1
= (T +π∗A)|S1

≡ Γ0 +2ϕ+ϕ and for generic S2 ∈ |T +π∗A| the intersection

C := S2 ∩ S1 is a smooth irreducible curve because T + π∗A is the tautological divisor

of P(Ey ⊗ OY (A)), hence it is a very ample divisor of X by Lemma 6.4. C is rational

being a section of F1.
Let us consider the exact sequence 0 → T|S1

− C → T|S1
→ (T|S1

)|C → 0 on S1.

We have hi(S1, T|S1
−C) = hi(S1,Γ0 +2ϕ−(Γ0 +3ϕ)) = hi(S1,−ϕ) = 0 for i = 0, 1,

so that |T|S1
||C ≃ |T|S1

|. Note that h0(S1, T|S1
) = 5.

(ii) Let us look at the exact sequence 0 → T − S1 → T → T|S1
→ 0 on X.

We know that T|S1
is very ample in any case, so that |T|S1

| separates ξ, moreover, we

have h1(X, T − S1) = 0 for −2 ≤ y ≤ 3, if h = 3, by Proposition 6.3(ii), and

h1(X, T − S1) = 0 for −2 ≤ y ≤ 4, if h = 4, by Proposition 6.3(iii). Hence the map

|T| → |T|S1
| is surjective, and we can separate ξ by |T|.

Now, let us assume by contradiction that |T| has a base point P and let fP be the

fibre of Y passing through π(P). As we have seen the map |T| → |T|S1
| is surjective,

where S1 = P(Ey| fP
), then P would be a base point for |T|S1

| too. But this is not

possible because T|S1
is very ample.

(iii) Recall that, for x ≫ 0, Ey ⊗ OY (A) is very ample by Lemma 6.4. It is well

known that c2[Ey⊗ OY (A)] is the zero cycle of the zero locus of a generic section of

Ey ⊗OY (A) and that a smooth element S2 ∈ |T + π∗A| is isomorphic to the blow up

of Y exactly at the deg{c2[Ey ⊗ OY (A)]} = 5x + 9 + y points that are the zero locus

of the corresponding section of Ey ⊗ OY (A) (see [B-S, Theorem 11.1.2]). Moreover,

H1(Y, L + A) = 0 for x ≫ 0, hence

H0(Y,Ey ⊗ OY (A)) = H0(Y, L + A) ⊕ H0(Y, (M + A) ⊗ IW ),

and the zero locus of any section σ = σ ′ + σ ′ ′ of Ey ⊗OY (A) is a group of 5x + 9 + y

points belonging to (σ ′ ′)0 (note that this is independent of h). For generic σ the zero

locus (σ ′ ′)0 is a smooth curve and (σ)0 is a set of points linearly equivalent, on this

curve, to the intersection with (σ ′)0, so that we can assume that they are all distinct.

Let C ′
0, f ′, l1, . . . , l5x+9+y be the generators of Num(S2) (the classes of the pull back

of C0, f and the 5x + 9 + y exceptional divisors of the blow up). The Wu–Chern

relation for Ey⊗ OY (A) (see [G-H, p. 606]) implies that

(T + π∗A)2
= π∗{c1[Ey ⊗ OY (A)]}(T + π∗A) − c2[Ey ⊗ OY (A)].
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Hence

(T + π∗A)|S2
≡ (π|S2

)∗{c1[Ey ⊗ OY (A)]} − l1 · · · − l5x+9+y

≡ (π|S2
)∗(3C0 + 5 f + 2A) − l1 · · · − l5x+9+y and

T|S2
≡ (π|S2

)∗(3C0 + 5 f + A) − l1 · · · − l5x+9+y

≡ 4C ′
0 + (5 + x) f ′ − l1 · · · − l5x+9+y .

As Y is the blow up of P
2 at one point P0, S2 is the blow up of P

2 at 5x + 10 + y

points, so we can also generate Num(S2) with the pull back l of the numerical class

of a line in P
2 and the classes of the 5x + 10 + y exceptional divisors. If l0 is the class

of the pull back of the exceptional divisor of the blow up of P
2 at P0, we have C ′

0 ≡ l0
and f ′ ≡ l − l0 so that: T|S2

≡ (x + 5)l − (x + 1)l0 − l1 · · · − l5x+9+y . It is easy to see

that h0(S2, T|S2
) ≥ 11 − y. Note that h0(S2, T|S2

) = 11 − y if the 5x + 10 + y points

are in general position, but this fact is not known a priori.

Now let us consider the exact sequence 0 → T − S2 → T → T|S2
→ 0 on X. As

T − S2 = −π∗A we have that h0(X,−π∗A) = 0 and h1(X,−π∗A) = h1(Y,−A) = 0,
so that H0(X, T) = H0(S2, T|S2

) hence |T| ≃ |T|S2
|.

Lemma 6.6 Let Ey be any vector bundle defined as above by (6.1). Let ξ ∈ X[2] be

any subscheme of X having its support at a single point P ∈ X. Then |T| separates ξ for

−2 ≤ y ≤ 3 if h = 3 and for −2 ≤ y ≤ 4 if h = 4.

Proof We will show that Proposition 3.6(ii) and (iii) are satisfied with A ≡ C0 + x f ,

x ≫ 0, and B ≡ f . It is easy to see that (iii) is true for x ≫ 0, so we have to prove

that (ii) is true for any point P and any direction q∈ TP(X). In other words, we have

to show that there exists a smooth section τ ∈ |T| such that (τ )0 passes through P

and its tangent space at P does not contain q.

Let us consider π(P) and the fibre fP of Y passing through π(P). Let us choose a

smooth surface S2 ∈ |T + π∗A| passing through P (recall that T + π∗A is very ample

for x ≫ 0) and a smooth S1 := π−1( fP); so (ii)(a) is fullfilled.

By Lemma 6.5(ii) we can assume that q /∈ TP(S1).

By recalling that T|S1
is very ample in any case, we can choose σ1 ∈ |T|S1

| such

that (σ1)0 is a smooth curve, passing through P, with tangent vector t ∈ TP(S1) and

(ii)(b) is fulfilled. Obviously t 6= q. We can also choose a generic smooth element

S2 ∈ |T + π∗A| such that S2 cuts S1 transversely along a smooth rational curve C ,

(hence TP(S1) ∩ TP(S2) = TP(C)) and S2 cuts (σ1)0 transversely at 4 distinct points

P = R1, . . . , R4 ∈ C by Lemma 6.5(i). The independent vectors t and q ∈ TP(X)

generate a 2-plane in TP(X) cutting TP(S2) along a vector w. Now we choose a vector

v∈ TP(S2), v 6=w, and we consider the linear subsystem Λ of

|T|S2
| = |(x + 5)L − (x + 1)l0 − l1 · · · − l5x+9+y |

(see Lemma 6.5(iii)) given by those elements passing through P = R1, . . . , R4 and

such that their zero-loci are tangent to v at P. This is possible because h0(X, T) =

h0(S2, T|S2
) ≥ 11− y, (see Lemma 6.5(iii)), and therefore the (projective) dimension

of Λ is ≥ 5 − y ≥ 1.
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Now we want to show that not all the zero loci of the elements of Λ are singular

at P. In fact any element of Λ whose zero-locus is singular at P comes from a degree

x + 5 plane curve C intersecting a line l passing through P0 (corresponding to C)

with multiplicity at least x + 6. Hence l is an irreducuble component of C , and the

zero-locus of the corresponding element of Λ contains C. Therefore the zero-loci of

all elements of Λ are singular at P if and only if Λ = |T|S2
− C|. But this is a fixed

subspace of |T|S2
|, whose sections have zero-loci having at most a finite number of

fixed tangent vectors at P. If Λ = |T|S2
− C|, all zero-loci of Λ are reducible as the

union of C and other curves passing through P with the same tangent vector v, so

that it suffices to change suitably the choice of v to avoid this case.

In conclusion we can assume that not all zero-loci of the elements of Λ are singular

at P, and hence that not all of them contain C. Hence there exists a section σ2 ∈ Λ ⊆
|T|S2

| whose zero-locus is smooth at P, having v as tangent vector, such that w/∈ 〈t, v〉,
so that q/∈ 〈t, v〉 too so that (ii)(c) is fulfilled.

As H0(X, T) = H0(S2, T|S2
) we get that there exists τ ∈ |T| such that τ|S2

= σ2

and (τ )0 does not contain S1 because (σ2)0 does not contain C. Hence σ
′

1 := τ|S1
is

a non zero section of |T|S1
|, and we have σ

′

1 ∈ 〈σ1〉 because σ
′

1 and σ1 cut the same

divisor R1 + R2 + R3 + R4 on C and |T|S1
||C ≃ |T|S1

| by Lemma 6.5(i). By choosing

a suitable generator of 〈σ1〉 we can assume that τ|S1
= σ1 so that (ii)(d) is fulfilled a

fortiori by choosing σ := τ|S1∪S2
.

Now we can prove the following result, stating the very ampleness of almost all

vector bundles Ey when h = 3.

Theorem 6.7 Let Ey be any vector bundle defined as above by (6.1) with −2 ≤ y ≤ 2

and h = 3. Then Ey is very ample.

Proof Let T be the tautological divisor of X = P(Ey), let ξ be any fixed element of

X[2] and let s : Y → P
2 be the blow up of P

2 at P0. We have to prove that |T| separates

ξ. By Lemmas 6.6 and 6.5 we know that we have to consider only the cases in which

the support of ξ consists of a couple of distinct points P, Q projecting on different

fibres of Y.

Case 1: neither π(P) nor π(Q) belong to C0. We use a slightly different version of

the proof of Theorem 4.3 i.e., we use the linear system |C0 + f |, which is not very

ample. However, in this case, there exists a smooth element γ ∈ |C0 + f | passing

through π(P) and π(Q). Moreover, γ passes through two points of W at most, be-

cause γ corresponds to the unique line passing through s[π(P)] and s[π(Q)] on P
2

and s(W ) is a set of points in general position on P
2. Very ampleness of Ey follows

from Proposition 6.3(vii) and (viii) as T|P(Ey|γ) is very ample and |T| → |T|P(Ey|γ )| is

surjective.

Case 2: π(P) and π(Q) belong to C0. Very ampleness of Ey follows from Proposition

6.3(iv) and (vi) as T|P(Ey|C0
) is very ample and |T| → |T|P(Ey|C0

)| is surjective.

Case 3: π(Q) ∈ C0 and π(P) /∈ C0. Let fP be the fibre of Y passing through π(P)

and let Σ ⊂ X be the reducible surface P(Ey|C0
) ∪ P(Ey| fP

). Let R ∈ Y be the unique

point fP ∩ C0 so that P(Ey|C0
) ∩ P(Ey| fP

) = FR (as in the proof of Proposition 3.6).
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By Proposition 6.3(iv), we know that T|P(Ey|C0
) is very ample, so that we can take a

smooth element σ2 ∈ |T|P(Ey|C0
)| such that Q /∈ (σ2)0 and (σ2)0 cuts FR transversely

at a point H. By Proposition 6.3(i), and (ii), we know that T|P(Ey| fP
) is very ample

and that |T|P(Ey| fP
)| = |Γ0 + 2ϕ| on a surface F1. It is possible to choose an element

(not necessarily smooth) σ1 ∈ |T|P(Ey| fP
)| such that (σ1)0 passes through P and cuts

FR transversely at H. Note that F1 is embedded by |Γ0 + 2ϕ| as a scroll in P
4 in such

a way that FR is a fibre of the scroll, but P /∈ FR, hence it is not possible that all

hyperplanes passing through P and H contain the line FR in P
4.

Now the pair (σ1, σ2) is a section of |T|Σ| separating P from Q and, by Proposition

6.3(viii), we can lift this element to an element of |T| acting in the same way, and

we are done. In fact, note that the proof of Proposition 6.3(viii) works even when

γ = C0 ∪ fP.
Obviously if π(Q) /∈ C0 and π(P) ∈ C0, we can interchange the roles of P and Q

in the previous argument.

We can also prove the very ampleness of E3 when h = 4, but we need other lem-

mas.

Lemma 6.8 Let P0, P1, . . . , P8 be 9 distinct points in P
2 lying on a smooth cubic curve

C. Assume that the complete linear system L of quartics passing through them has no

base points. Then L is very ample.

Proof Let S be the blow up of P
2 at P0, P1, . . . , P8. We can generate Pic(S) ≃ Num(S)

with the pull back l of the numerical class of a line in P
2 and the classes li of the 9

exceptional divisors. In this notation the class of any irreducible curve γ on S is either

one of the li or a class of the following type: al−a0l0 −· · ·−a8l8, for suitable integers

a ≥ 1 and ai ≥ 0, as γ comes from an irreducible plane curve. The curve C in

P
2 gives rise to a curve C on S such that C ≡ 3l − l0 − · · · − l8, moreover, for any

irreducible curve γ on S, different from li , we have 0 ≤ Cγ = 3a − a0 − · · · − a8. It

follows that the class al − a0l0 − · · · − a8l8 of any irreducible curve γ on S different

from li must satisfy the condition 3a ≥ a0 + · · · + a8.
Very ampleness of L is equivalent to very ampleness of |4l − l0 − l1 · · · − l8| on S

and this will be established via Reider’s method (see [D-L, Theorem 2.1]). Let M be a

divisor on S such that 4l− l0− l1 · · ·− l8 ≡ KS +M. It is M ≡ 7l−2l0−2l1 · · ·−2l8. To

be able to apply Reider’s Theorem, M must be big and nef with M2 ≥ 10. Obviously

M2
= 13; moreover, Mli = 2, for any i, and Mγ ≥ a ≥ 1 for any other irreducible

curve γ on S, thanks to the above condition. It follows that M is ample (Nakai–

Moishezon criterion, see [H, p. 365]) and therefore big and nef.

Now, if E is a candidate effective divisor that, according to Reider, could cause

KS + M not to be very ample, it must be as in one of these cases:

(i) E ≡ l −
∑8

i=0 ai li , E irreducible, ME = 1,
∑8

i=0 ai = 3, 0 ≤ ai ≤ 1 for any i;

(ii) E ≡ 2l −
∑8

i=0 ai li , E irreducible, ME = 2,
∑8

i=0 ai = 6;

(iii) E = E1 +E2, E1 6= E2, where each E j is irreducible, E j ≡ l−
∑8

i=0 ai j li , ME = 2,∑8
i=0 ai j = 3, 0 ≤ ai j ≤ 1 for any i and j.

In all cases it is E2 ≤ −2, not satisfying Reider’s conditons, hence L is very ample.
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Lemma 6.9 Let Ey be any vector bundle defined as above by (6.1) with y = 3 and

h = 4 (hence w = 7). Let f be any fixed fibre of Y and let S1 := P(E3| f ) ⊂ X. Then

(i) the generic element S of the linear system |T − S1| is smooth and irreducible;

(ii) any linear subsystem of |T − S1| consisting of elements which are all singular and

or reducible has codimension at least two;

(iii) the restriction map |T| → |T||S is surjective for any smooth S ∈ |T − S1|;
(iv) T|S is very ample for any generic smooth S ∈ |T − S1|.

Proof For simplicity let us write E instead of E3. By (6.1) it follows that h0(Y,E) = 8.
By tensorizing (6.1) with OY (− f ) we get that h0(Y,E⊗OY (− f )) = h0(X, T −S1) =

3.
(i) and (ii). Let Λ be any linear subsystem of |T − S1| such that every element

of Λ is singular or reducible. To prove (i) and (ii) we have to show that dim(Λ) ≤
0. Recalling the proof of Proposition 3.5, we know that any element of |T − S1| is

singular if and only if it is reducible and that Λ 6= ∅ if and only if there exists an

effective divisor D = aC0 + ρ∗B ∈ Pic(Y ) with deg(B) = b, a ≥ 0, b ≥ 0 such

that T − S1 − π∗D is effective and, in this case, Λ = |T − S1 − π∗D| + |π∗D| with

h0(X, T − S1 − π∗D) = 1 and h0(X, π∗D) − 1 = dim(Λ) or h0(X, π∗D) = 1 and

h0(X, T − S1 − π∗D) − 1 = dim(Λ).

From the exact sequence

0 → C0 + f − f − D → E ⊗ OY (− f − D) → (2C0 + 4 f − f − D) ⊗ IW → 0,

we see that h0(X, T − S1 − π∗D) = h0(Y,E ⊗ OY (− f − D) can be positive only if

a ≤ 1.
Let us assume a = 1. In this case we have to consider the exact sequence

0 → −b f → E ⊗ OY (− f − D) → (C0 + 3 f − b f ) ⊗ IW → 0.

As P0∪s(W ) are in general position it is easy to see that h0(Y, (C0+3 f−b f )⊗IW ) =

0 for any b ≥ 0 . If b > 0, h0(X, T−S1−π∗D) = h0(Y,E⊗ OY (− f −D) = 0; if b = 0

h0(X, T −S1 −π∗D) = h0(Y,E⊗OY (− f −D) = 1 and h0(X, π∗D) = h0(Y, D) = 1,
so that dim(Λ) = 0, and we are done.

Let us assume a = 0 (hence b ≥ 1). In this case we have to consider the exact

sequence

0 → C0 − b f → E ⊗ OY (− f − D) → (2C0 + 3 f − b f ) ⊗ IW → 0.

As P0 ∪ s(W ) are in general position it is easy to see that h0(Y, (2C0 + 3 f − b f ) ⊗
IW ) = 0, moreover h0(Y,C0 − b f ) = 0, so that h0(X, T − S1 − π∗D) = h0(Y,E ⊗
OY (− f − D)) = 0 and Λ = ∅.

(iii). Let S be a smooth element of |T − S1| and let us consider the exact sequence

0 → T−S → T → T|S → 0. As T−S = π∗ f we have that h0(X, π∗ f ) = h0(Y, f ) =

2 and h1(X, π∗ f ) = h1(Y, f ) = 0, so that h0(X, T − S) = 2, h0(S, T|S) = 8 − 2 = 6

and the map H0(X, T) → H0(S, T|S) is surjective.
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(iv). S, being a smooth generic element of |T − π∗ f |, is isomorphic to the blow

up of Y at deg{c2[E ⊗ OY (− f )]} = 8 distinct points (see the proof of Lemma

6.5(iii)). Let C ′
0, f ′, l1, . . . , l8 be the generators of Num(S) as in Lemma 6.5(iii) for

S2. The Wu–Chern relation for E⊗ OY (− f ) implies that (T − π∗ f )2
= π∗{c1[E ⊗

OY (− f )]}(T − π∗ f ) − c2[E⊗ OY (− f )]. Hence

(T − π∗ f )|S ≡ (π|S)∗{c1[E ⊗ OY (− f )]} − l1 · · · − l8

≡ (π|S)∗(3C0 + 5 f − 2 f ) − l1 · · · − l8 and

T|S ≡ (π|S)∗(3C0 + 5 f − f ) − l1 · · · − l8 ≡ 3C ′
0 + 4 f ′ − l1 · · · − l8.

As Y is the blow up of P
2 at one point P0, S is isomorphic to the blow up of P

2 at 9

distinct points, so we can also generate Num(S) with the pull back l of the numerical

class of a line in P
2 and the classes of the 9 exceptional divisors. If l0 is the class of the

pull back of the exceptional divisor of the blow up of P
2 at P0, we have C ′

0 ≡ l0 and

f ′ ≡ l − l0 so that: T|S ≡ 4l − l0 − l1 · · · − l8.
To show that T|S is very ample we can apply Lemma 6.8: h0(S, T|S) = 6 by (iii);

|T|S| does not have base points, because |T| does not have base points by Lemma

6.5(ii) and |T| → |T|S| is surjective. The 9 distinct points lie on a smooth cubic

because the zero-locus of a generic section of E⊗ OY (− f ) is a set of 8 distinct points

belonging to a generic element of the linear system |(2C0 +3 f )⊗IW |= |(3l−l0)⊗IW |
on Y (see the proof of Lemma 6.5(iii)), corresponding to a smooth plane cubic curve

passing through P0 ∪ s(W ), where s : Y → P
2 is the blow up.

Theorem 6.10 Let Ey be any vector bundle defined as above by (6.1) with y = 3 and

h = 4 (hence w = 7), then E3 is very ample.

Proof As before, let us write E instead of E3. Let T be the tautological divisor of

X = P(E) and let ξ be any fixed element of X[2]. We have to prove that |T| separates

ξ. By Lemmas 6.6 and 6.5 we know that we have to consider only the cases when ξ is

a couple of distinct points P, Q projecting on different fibres of Y.
To apply Proposition 3.6, we show that its assumptions (i) and (iii) are satisfied

with A ≡ C0 +x f , x ≫ 0, and B ≡ f . It is easy to see that (iii) is true for x ≫ 0, so we

have to prove that (i) is true for any pair of distinct points P, Q ∈ X. In other words,

we have to show that there exists a section τ ∈ |T| such that (τ )0 passes through P

and does not pass through Q. Of course we can change the role of P and Q to separate

Q from P.
Let us consider π(Q) and the fibre fQ of Y passing through π(Q). Let us choose

a smooth surface S2 ∈ |T + π∗A| passing through P and not through Q (recall that

T + π∗A is very ample for x ≫ 0) and a smooth S1 := π−1( fQ); so (i)(a) is fulfilled.

Moreover, we can assume that S2 cuts S1 transversely along a smooth rational curve

C as in the proof of Lemma 6.6.

As T|S1
is very ample by Lemma 6.5(i), we can choose a section σ1 ∈ |T|S1

|
such that (σ1)0 is smooth, does not pass through Q, and cuts C at 4 distinct points

R1, . . . , R4 (see the proof of Lemma 6.6), so that (i)(b) is fulfilled.

To get (i)(c) and (d) we look for a section σ2 ∈ H0(S2, T|S2
) whose zero locus

passes through P, R1, . . . , R4 and does not contain C . By Lemma 6.5(iii) we know
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that S2 is isomorphic to the blow up of Y at 5x + 12 distinct points, hence to the blow

up of P
2 at 5x + 13 distinct points. If we generate Num(S2) with the pull back l of

the generator of Pic(P
2), the pull back l0 of C0 ∈ Y and the classes of the exceptional

divisors, we have that

T|S2
≡ (x + 5)l − (x + 1)l0 − l1 · · · − l5x+12, |T| ≃ |T|S2

| and

h0(S2, T|S2
) = h0(X, T) = h0(Y,E) = 8.

Let us consider the linear subspace H0(S2, T|S2
⊗ IP) of H0(S2, T|S2

) given by sec-

tions whose zero locus contains P; dim[H0(S2, T|S2
⊗ IP)] = 7, (recall that |T| ≃

|T||S2
= |T|S2

| has no base points by Lemma 6.5(ii)). Let us consider the restriction

ρP of the natural map ρ : H0(S2, T|S2
) → H0(C, T|C ) ≃ H0(P

1,OP1 (4)) ≃ C
5 to

H0(S2, T|S2
⊗ IP).

We claim that ρ is surjective. Indeed, consider first the structure sequence of S2

on X, tensored with T − S1: 0 → T − S1 − S2 → T − S1 → (T − S1)|S2
→ 0. It is:

h1(X, T − S1) = 0 by Proposition 6.3(iii) and

h2(X, T−S1−S2) = h2(X,−π∗(A+ fQ)) = h2(Y,−A− fQ) = h0(Y, KY +A+ fQ) = 0,

hence h1(S2, (T − S1)|S2
) = 0. Let us then consider the structure sequence of C on S2

tensored with T|S2
. As h1(S2, (T − S1)|S2

) = h1(S2, T|S2
− C) = 0 it follows that ρ is

surjective, so that our claim is proved. Moreover, ker(ρ) = H0(S2, T|S2
−C). As 3 =

h0(X, T−S1) = h0(S2, (T−S1)|S2
) = h0(S2, T|S2

−C), it follows that dim[ker(ρ)] = 3.
Now let us consider the following two cases.

Case 1: let us assume that P is in the base locus of |T|S2
− C| = |(T − S1)|S2

| =

|T − S1||S2
, hence in the base locus of |T − S1| because |T| ≃ |T||S2

= |T|S2
|. If Q is

not in the base locus of |T−S1|, then there exists an element S̃ ∈ |T−S1| = |T−π∗ f |
passing through P and not passing through Q. Let us pick S ′

1 := π−1( f ), where f is a

fibre of Y different from fQ, and we get an element S̃ ∪ S ′
1 ∈ |T − π∗ f |+ |π∗ f | ⊆ |T|

separating P from Q without using Proposition 3.6. If Q is in the base locus of |T−S1|,
let us pick a generic smooth surface S ∈ |T − S1|, obviously passing through P and

Q, and existing by Lemma 6.9(i) and (ii). Now, by Lemma 6.9(iii) and (iv) we can

separate P from Q by |T| directly, without using Proposition 3.6.

Case 2: let us assume that P is not in the base locus of the linear system |T|S2
−C| =

|(T − S1)|S2
| = |T − S1||S2

. Then there exists at least an element of |T|S2
−C| whose

zero-locus does not pass through P, hence

H0(S2, T|S2
)P # H0(S2, T|S2

−C) = ker(ρ) and

dim[ker(ρP)] = dim[H0(S2, T|S2
)P ∩ H0(S2, T|S2

−C)] = 2,

(a priori dim[ker(ρP)] = {2, 3}). Therefore ρP is surjective too, and we can choose a

section σ2 ∈ |T|S2
| whose zero locus passes through P, R1, . . . , R4, not containing C.

In this case we can conclude as in the proof of Lemma 6.6: as H0(X, T) = H0(S2, T|S2
)

we get that there exists τ ∈ |T| such that τ|S2
= σ2 and (τ )0 does not contain S1
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because (σ2)0 does not contain C. Hence σ
′

1 := τ|S1
is a non zero section of |T|S1

| and

we have σ
′

1 ∈ 〈σ1〉 because σ
′

1 and σ1 cut the same divisor R1 + R2 + R3 + R4 on C

and |T|S1
||C ≃ |T|S1

| by Lemma 6.5(i). By choosing a suitable generator of 〈σ1〉, we

can assume that τ|S1
= σ1 so that (i)(c) and (i)(d) are fulfilled a fortiori by choosing

σ := τ|S!∪S2
.

7 Existence and Non-Existence of some 3-Folds

The study of linearly normal projective manifolds of low degree got a boost as a result

of classical adjunction theory, as developed by Sommese and his collaborators. The

approach consists of three phases: enumeration of all possible manifolds of given de-

gree according to their adjunction theoretic structure and values of numerical char-

acters; investigation of actual effective existence of elements appearing in the com-

piled lists; study of the Hilbert scheme of existing manifolds (see [B-B-2] for details).

In [F-L-1, F-L-2, B-B-1], such a study is conducted for degree 9, 10, 11, respectively.

In all three papers the existence of members of a particular family of 3-fold scrolls

was left as an open problem. They are scrolls of the form X := P(Ey), of degree

[c1(Ey)]2 − c2(Ey) = 13− y, where Ey is a rank 2 vector bundle over Y = F1, having

c1(Ey) ≡ 3C0 + 5 f and c2(Ey) = 8 + y, with y = 2, 3, 4.
The analysis conducted in Section 6 gives immediately the following.

Corollary 7.1 There exist linearly normal 3-folds P(Ey), y = 3, 2, where Ey is a

rank two vector bundle given by (6.1), embedded as linear scrolls over F1, with c1(Ey) ≡
3C0 + 5 f , c2(Ey) = 8 + y, and degree 10 and 11, respectively.

Proof Apply Theorems 6.7 and 6.10 by recalling that vector bundles Ey defined by

(6.1) have the prescribed Chern classes.

In fact Theorem 6.7 proves the existence of other 3-folds of the same type. It is

natural to ask if rank 2 very ample vector bundles over Y can be defined by using

(6.1) for other values of y. The answer is negative for y = 4, h = 4. In this case it is

possible to prove that there is a smooth surface S ∈ |T − π∗D|, with D ≡ C0 + f ,
such that S is isomorphic to the blow up of P

2 at 9 distinct points in general position

and T|S ≃ 4l − 2l0 − l1 · · · − l8 (with the usual notation). If we consider an existing

smooth plane cubic curve passing through P0, . . . , P8, we have that this curve gives

rise to a smooth elliptic curve C on S such that T|C is not very ample (deg(T|SC)

= deg(T|C ) = 2), so that T can not be very ample. In the same way it is possible to

show that the same approach is not successful for y = 4, h = 3 or for y = 4 and

h = 5.
On the other hand it is easy to prove that there exists a very ample rank 2 vector

bundle E−3 over Y having c1(E−3) ≡ 3C0 + 5 f and c2(E−3) = 5 : indeed one can

simply take E−3 to be the direct sum of the two very ample line bundles L ≡ C0 + 2 f

and M ≡ 2C0 + 3 f .

The following necessary condition for the very ampleness of rank 2 vector bun-

dles E, over any Fe, having c1(E) ≡ 3C0 + t f for some integer t, can be established.

Proposition 7.2 Let E be a very ample rank 2 vector bundle over Fe such that c1(E) ≡
3C0 + t f and c2(E) = k. Then h0(Fe,E) ≥ 7, t ≥ 3e + 1, k + e > t, and there exists
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an exact sequence 0 → L → E → M → 0, where L and M are line bundles such that

L ≡ 2C0 + (2t − 2e − k) f , and M ≡ C0 + (k − t + 2e) f .

Proof As E is very ample, (P(E),OP(E)(1)) is a scroll over Fe, and it is known that

there are no such scrolls in P
r when r ≤ 5, see [O]. Moreover, if E is very ample,

then c1(E) is ample, so that t ≥ 3e + 1, see [H, Corollary 2.18]. Let ρ : Fe → P
1 be

the usual natural projection. The restriction E| f
to any fibre f of ρ must also be very

ample. But E| f = OP1 (a) ⊕ OP1 (b) with a + b = 3 as c1(E) f = 3, therefore the only

possibility is a = 2, b = 1 for any fibre. By [B, Theorem 1, p. 155], there exists an

exact sequence 0 → L → E → M → 0 such that L + M ≡ c1(E), LM = c2(E) = k,

and L = ρ∗[ρ∗(E ⊗ OFe
(−2C0)] ⊗ OFe

(2C0). In fact the zero-dimensional scheme Z

that is involved in the exact sequence of [B] in this case is empty. Indeed ρ(Supp(Z))

would coincide with the projection of the jumping lines for E, but in this case E

is uniform on the ruling. It follows that L ≡ 2C0 + λ f for some integer λ, and

M ≡ C0 + (t − λ) f . As LM = c2(E) = k, it is λ = 2t − 2e − k. The very ampleness

of E implies that M is ample, hence t − (2t − 2e − k) > e, i.e., k + e > t.

Proposition 7.2 shows that if a vector bundle over Y as E4 is very ample, then it is

the extension of two line bundles. However this fact does not help to prove the very

ampleness of a rank 2 vector bundle by our techniques.

We can also establish a non-existence result that settles one more existence ques-

tion left open in [B-B-1].

Corollary 7.3 There does not exist any linearly normal 3-fold X = P(E), embedded

in P
7 as linear scroll over Y = F1, with degree 11 and sectional genus 5.

Proof By contradiction, let us assume that X exists in P
7, hence h0(X, T) = 8

because X is supposed to be linearly normal. As in the proof of Lemma 6.5(iii),

let us consider a divisor A ≡ C0 + x f on Y with x ≫ 0 and a smooth surface

S2 such that S2 is isomorphic to the blow up of P
2 at 5x + 12 distinct points and

H0(X, T) = H0(S2, T|S2
). Recall that we are assuming that E is very ample so that

E ⊗ A is very ample too. Note that here the position of the points on P
2 it is not im-

portant. As T|S2
≡ (x + 5)l − (x + 1)l0 − l1 · · · − l5x+11, we have that h0(S2, T|S2

) ≥ 9,

a contradiction!
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