CORRESPONDENCE.

ON THE CONSIDERING THE "PAID-UP" POLICY AS THE EQUIVALENT OF THE RATIO THE PREMIUMS PAID BEAR TO THE TOTAL NUMBER PAYABLE.

To the Editor of the Journal of the Institute of Actuaries.
Sir,--In a note appended to Mr. Younger's letter in the Journal for January last, on the subject of "Ten Years' Nonforfeiture Policies," you suggest the examination of the question, by means of a comparison of the amount of "paid-up" policy that the surrender value of the original
assurance would purchase, with the amount that would be given, by taking the ratio of the premiums already paid to the total number payable.

I have attempted in the following letter to carry out this suggestion; and the points to which more particularly my attention has been directed are, to find what conditions are required to make what may be called the "Empirical" method of finding the amount of "paid-up" policy true, and how far these conditions deviate from the real ones.

Thus, if a person assure at age x by n equal annual payments, and wish at age $(x+t)$ to have a "paid-up" policy payable at the same time as the original policy, he will receive by the empirical method $\mathfrak{f} \frac{t}{n}$ per $£ 1$ of original assurance.

What is the relation between this value and the true one?
Mr. Sprague, in the Journal of the Institute, volume vii., page 58, has shown that, on the assumption that the single payments are sold by the same table as the policy is valued by, $\left(1-\frac{\mathrm{P}_{x}}{\mathrm{P}_{x+t}}\right)$ represents the real amount of "paid-up" policy. Though the formula is applied there only to ordinary assurances for the whole of life, it is equally applicable to other classes of assurances, if by \mathbb{P}_{x} we mean the pure annual premium payable noder the original contract, and by \mathbb{P}_{x+t} the pure annual premium that would be payable at age $(x+t)$ as the equivalent for the remaining time of the same contract.* Thus, if \mathbb{P}_{x} be the ten years' premium at age 30 to provide $\mathfrak{£ l}$ at death, and if $t=4, \mathbb{P}_{x+t}$ will be the 6 years' preminm at age 34 to provide $£ 1$ at death.

Again, if \mathbb{P}_{x} be the premium at age 30 for an Endowment Assurance payable at death or $60, \mathbb{P}_{x+t}$ will be the premium at age 34 for an Endowment Assurance payable at death or 60 . If \mathbb{P}_{x} be the Survivorship Assurance premium, age 30 against age $70, \mathbb{P}_{x+t}$ will be the Survivorship Assurance premium, age 34 against 74, and so on.

What we have to find, then, is, the relation between $\frac{t}{n}$ and $\left(1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t}}\right)$.
Now, since after n payments of premium, the policy-holder has discharged all his obligations, the Assurance Company is then liable for the total amount assured, i.e., 1 , while at the same period the empirical formula will give $\frac{n}{n}$, i.e., 1 , we find the empirical rule is correct on and after age $(x+n-1)$, (premiom then due being paid). Thus the assumption

* It may not be out of place to append here another proof of Mr. Sprague's formula. Using \mathbb{P}_{x} and \mathbb{P}_{x+t} in the extended sense given to them above, and supposing $1+\overline{n-t-1} \alpha_{x+t}$ to mean the annuity payalle from age ($x+t$) on to the expiry of the time named in the original contract, as also employing \mathbb{A}_{x+1} to represent the single payment corresponding to the annual premium \mathbb{P}_{x+t}, then $\frac{\nabla_{x i t}}{\mathbb{A}_{x+t}}=$ the amount of "paid-up" policy.

Divide both numerator and denominator by $1+\overline{n-t-\overline{1}} 1 a_{\varepsilon+\ell}$, and we have

$$
\begin{gathered}
\frac{\frac{\mathbb{V}_{x \mid t}}{1+\overline{n-t-1} a_{s+t}}}{\frac{\mathbb{A}_{x+t}}{1+\overline{n-t-1} a_{x+t}}}=\text { "paid-up" policy. } \\
\text { But } \frac{\nabla_{x \mid t}}{1+\overline{n-t-1}\left(a_{x+t}\right.}=\mathbb{P}_{x+t}-\mathbb{P}_{x}, \text { and } \frac{\mathbb{A}_{x+t}}{1+\overline{n-t-1} a_{x+t}}=\mathbb{P}_{x+t} \text {, therefore } \frac{\mathbb{P}_{x+t}-\mathbb{P}_{x}}{\mathbb{P}_{x+t}} \\
=1-\frac{\mathbb{P}_{r}}{\mathbb{P}_{x+t}}=\text { "pard-up" policy. Q.E. D. }
\end{gathered}
$$

made by this method is, that every premium paid previously to that age secures an equal part of the sum assured, i.e., that the amount of single payment policy that could be purchased by the increase in the value of the the policy, through one more payment of premium, is the same at every age. That is, the empirical method assumes
(1)

$$
\begin{aligned}
\frac{\mathbb{V}_{\left.x\right|_{1}}}{\mathbb{A}_{x+1}}-0= & \frac{\mathbb{V}_{\left.x\right|_{2}}}{\mathbb{A}_{x+2}}-\frac{\mathbb{V}_{\left.x\right|_{1}}}{\mathbb{A}_{x+1}}=\frac{\mathbb{V}_{\left.x\right|_{3}}}{\mathbb{A}_{x+3}}-\frac{\mathbb{V}_{\left.x\right|_{2}}}{\mathbb{A}_{x+2}}=\ldots \\
& =\frac{\mathbb{V}_{x \mid t}}{\mathbb{A}_{x+t}}-\frac{\mathbb{V}_{x \mid t-1}}{\mathbb{A}_{x+t-1}}=\ldots=\left(1-\frac{\mathbb{V}_{x \mid n-1}}{\mathbb{A}_{x+n-1}}\right)=\frac{1}{n}
\end{aligned}
$$

But, as we have seen, $\frac{\mathbb{V}_{x \mid t}}{\mathbb{A}_{x+t}}=1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t}}$.
Therefore the assumption is, that

$$
\begin{align*}
1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+1}} & =\left\{1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+2}}\right\}-\left\{1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+1}}\right\}=\left\{1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+3}}\right\}-\left\{1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+2}}\right\}=\ldots \tag{2}\\
& =\left\{1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t}}\right\}-\left\{1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t-1}}\right\}=\ldots=1-\left\{1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+n-1}}\right\}=\frac{1}{n}
\end{align*}
$$

i.e.,

$$
\begin{align*}
1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+1}} & =\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+1}}-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+2}}=\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+2}}-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+3}}=\ldots=\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t-1}}-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t}}=\ldots \tag{3}\\
& =\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+n-1}}=\frac{1}{n}
\end{align*}
$$

Dividing each of these terms by \mathbb{P}_{x}, our assumption is

$$
\begin{align*}
\frac{1}{\mathbb{P}_{x}}-\frac{1}{\mathbb{P}_{x+1}} & =\frac{1}{\mathbb{P}_{x+1}}-\frac{1}{\mathbb{P}_{x+2}}=\frac{1}{\mathbb{P}_{x+2}}-\frac{1}{\mathbb{P}_{x+3}}=\ldots \tag{4}\\
& =\frac{1}{\mathbb{P}_{x+t-1}}-\frac{1}{\mathbb{P}_{x+t}}=\ldots=\frac{1}{\mathbb{P}_{x+n-1}}=\frac{1}{n \mathbb{P}_{x}}
\end{align*}
$$

That is, a series in arithmetical progression, with a common difference of $\frac{1}{n \mathrm{P}_{x}}$, is formed by the reciprocals of the premiums that would require to be paid by persons entering at every succeeding age from x to $(x+n)$ to place them in exactly the same position as that then held by the original assurer.

These premiums will, therefore, themselves form a harmonical series.
Therefore, in order that the amount of single payment policy, at any age, that could be purchased by the increase in the value of the policy, through one more payment of the premium, may be the same at every succeeding age, or, in other words, in order that the amount of "paid-up" policy at any age may be the same as the ratio the number of premiums paid bear to the total number payable, it is required that a harmonical series be formed by the premiums that would be charged at every succeeding age for a policy terminating with the original one, and under which all payments were to cease at the same time as under that contract.

The general expression for any term will thus be

$$
\mathbb{P}_{x+t}=\frac{2 \mathbb{P}_{x+t-1} \mathbb{P}_{x+t+1}}{\mathbb{P}_{x+t-1}+\mathbb{P}_{x+t+1}}
$$

In series (3) let us examine the two terms $\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+n-1}}$ and $\frac{1}{n}$. Which is greater? The two sides of the expression are

$$
\begin{array}{cc}
\begin{array}{c}
\text { True } \\
\text { Method. }
\end{array} & \begin{array}{c}
\text { Empirical } \\
\text { Method. }
\end{array} \\
n \mathbb{P}_{x} \sim & \mathbb{P}_{x+n-1}
\end{array}
$$

Now, $\mathbb{P}_{x+n-1}=\frac{\mathbb{V}_{x \mid n-1}}{1}+\mathbb{P}_{x}$ (the denominator 1 of the fraction being the annuity-due at age $(x+n-1)$ for the remainder of the term \mathbb{P}_{x} is payable). And substituting this for \mathbb{P}_{x+n-1}, we have

$$
n \mathbb{P}_{x} \gtrsim \mathbb{V}_{x \mid n-1}+\mathbb{P}_{x}
$$

or

$$
(n-1) \mathbb{P}_{x} \sim \mathbb{V}_{x \mid n-1}
$$

Now, generally speaking, the value of a policy of assurance, by annual payments not all exhausted, is less than the premiums that have been paid under it. Therefore, generally,

$$
\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+n-1}}>\frac{1}{n}, \text { or }\left(1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+n-1}}\right)<\left(1-\frac{1}{n}\right), \text { or }<\frac{n-1}{n}
$$

That is, the amount of "paid-up" policy, at the age at which the last premium is payable, is generally greater by the empirical method than by the true method. Again, since generally, $\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+n-1}}>\frac{1}{n}$, and the sum of the whole series (3) $=\frac{n}{n}=1$; since one, at least of the terms is greater than $\frac{1}{n}$, one or more of the others must be less than $\frac{1}{n}$. Let $\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t}}-$ $\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t+1}}$, or $\left(1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t+1}}\right)-\left(1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t}}\right)$, be such a term; and assume that at age $(x+f)$ the empirical and true methods give the same results.*
Then

$$
1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t+1}}-\frac{t}{n}<\frac{1}{n}
$$

therefore

$$
1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t+1}}<\frac{t+1}{n}
$$

* The empirical method does not necessarily give greater result than the true ones, so we are quite entitled to suppose a case accordingly. Thus, $\frac{\mathbb{F}_{x \mid 1}}{\mathbb{A}_{x+1}}-\frac{1}{n}$ represents the difference of the amounts by the two methods at end of one year; or $\nabla_{x|1|}-\frac{\mathbb{A}_{x+1}}{n}=$ the difference.

Now $\nabla_{x \mid 1}$ is a maximum when the current risk is a minimum. Say, then, $l_{x}=l_{x+1}$. In which case $\mathbb{V}_{x \mid 1}=\frac{\mathbb{P}_{x}}{v}$, and $\mathbb{A}_{x+1}=\frac{\mathbb{A}_{x}}{v}$, and the expression will become $\frac{\mathbb{P}_{x}}{v}-\frac{\mathbb{A}_{x}}{v n}$, or $n \mathbb{P}_{x}-\mathbb{A}_{x}$. But $\mathbb{A}_{x}=\mathbb{P}_{x}\left(1+\overline{n-1} \mid a_{x}\right), \therefore$ our expression is $n \mathbb{P}_{x}-\mathbb{P}_{x}\left(1+\overline{n-1} \mid a_{x}\right)$, or $n-\left(1+\overline{n-1} \mid a_{x}\right)$. Now [except in the case when $l_{x}=l_{x+1}=l_{x+2}=\ldots l_{x+n-1}$, and $v=1$, or $i=0] n$ is greater than $\left(1+\overline{n-1} a_{x}\right)$. Therefore, when the mortality is a minimum, the amount of paid-up policy at the end of one year, by the true method, will be greater than by the empirical method. Q. E. D.
and the empirical method will give more than the real amount. So our only means of determining whether the "paid-up" policy, at any individual age, is greater or less by the empirical than by the real method is by actual experiment.

In the foot note in which the proof of the equation $\frac{\mathbb{V}_{x \mid t}}{\mathbb{A}_{x+t}}=1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t}}$ is found, the \mathbb{A}_{x+t} (besides being at the same rates as the policy is valued by) is assumed to be the pure single payment; that is, the assurance at age $(x+t)$ is sold at cost price, and no allowance is made for expenses, nor any provision for future bonuses; so, should the amount of "paid-up" policy be calculated by this formula,* the policyholder will not be entitled to any further share in the profit, and will only receive that which has already accrued in respect of the former payments of premium, and it will be seen from our examples that, in most of the classes of assurance to which what we have called the "empirical" method is likely to be applied, for calculating the "paid-up" policy, there is no such excess of amount by the real method as to warrant further bonuses being allocated.

The assumption then, that is made in considering the "paid-up" policy the equivalent of the ratio the premiums paid bear to the total number payable, is that the differences in the amounts of "paid-up" policy at each age are equal to each other (formula 3). If this were really the case, $\frac{1}{n}$ would necessarily represent this equal difference.

But, as experiment will show, this is not so; and the differences on the whole form a series, commencing at some number greater or less than $\frac{1}{n}$, and terminating at some number less or greater than it. The less then the difference between these differences and $\frac{1}{n}$ the nearer will the empirical method be to the actual.

The following examples will serve somewhat to show to what extent the required condition is fulfilled in various kinds of assurances. They have been calculated by the Carlisle and English Life (No. III., Males) Tables, interest being assumed at 3 per cent. Though, as was pointed out by you in your note to Mr. Younger's letter, other tables, such as the "Experience," may give less irregular results, yet, for the present object, viz., the estimating whether "paid-up" policies by this empirical mode will be, in the various kinds of assurance, greater or less than by the true method; any other table adopted will probably show the same generat results, though the deficit or surplus in any individual case may not bear the same proportion to the correct amount at that age.

It must not, however, be understood that it is asserted that in every possible example, even by the tables adopted, the results will be of the same nature; so that in, say, the Limited Premiums, in every case, the

* Should the full value of policy not be allowed, but say, $\frac{1}{f}$ of it be deducted, and if some addition be made to the single payment, say, $\frac{1}{g}$ of $i t$, then the amount of paid-up policy to be given would be $\frac{1-\frac{1}{f}}{1+\frac{1}{g}}\left(1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+d}}\right)$.
empirical method will give greater amounts than the real method. (We have already proved that theoretically this is not necessarily true.) On the whole, however, the results will be somewhat similar to those given, so that in, say, the "Limited Premiums" Assurance, the empirical will generally exceed the actual. This excess, however, as already shown by Mr. Younger, is not of such extent as to put any serious difficulty in the way of the adoption of the scheme, and the following examples will show that it might even more advantageously to the Offices be extended to Endowment Assurances.

Endowment-payable at 60.

Age at which Conversion takes	Amount of Paith-tpPolioy.			$\begin{gathered} \text { Eyorss } \\ \text { over } \\ \text { Empraical } \\ \text { OF } \end{gathered}$		Ingrease in Amount from Year to Year$\left(1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t}}\right)-\left(1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t-1}}\right)=\Delta$		$\Delta-\frac{1}{n}$,	
$(x+t)$.	Carisle	English	Empirical.	Carisle.	English.	Carlusle.	English.	Carisile.	English.
45						-08946	.09151	+ 02279	+ 02484
46	08946	-09151	-06667	-02279	-02484	-08556	-08748	$+\cdot 01889$	+ $\cdot 02081$
47	-17502	-17899	-13333	.04169	$\cdot 04566$	-08185	-08357	+.01518	$+\cdot 01690$
48	- 25687	-26256	-20000	-05687	. 06256	-07829	-07978	+ 01162	+.01311
49	$\cdot 33516$	-34234	-36667	-06849	. 07567	-07496	$\cdot 07612$	$+\cdot 00829$	+ 000945
50	41012	- 41846	-33333	-07679	. 08513	$\cdot 07178$	-07256	+ 000511	+.00589
51	-48190	-49102	- 40000	-08190	-09102	-06876	-06913	$+\cdot 00209$	+ $\cdot 00246$
52	-55066	-56015	-46667	-08399	$\cdot 09348$	-06579	-06575	--00088	--00092
53	-61645	-62590	- 53333	. 08312	. 09257	-06291	-36248	-.00376	- $\cdot 00419$
54	-67936	-68838	- 60000	-07936	-08838	-06010	-05932	- *00657	--00735
55	-73946	/ 74770	-66667	07279	. 08103	-05735	-05624	- $\cdot 00932$	- 01043
56	-79681	-80394	$\cdot 73333$	-06348	$\cdot 07061$	-05469	-05326	- 001198	- $\cdot 01341$
57	-85150	-85720	- 80000	05150	$\cdot 05720$	-05208	$\cdot 05037$	- 01459	- 01630
58	90358	-90757	- 86667	-03691	-04090	-04951	-04757	-.01716	-.01910
59	-95309	-95514	$\cdot 93333$	-01976	-02181	-04691	$\cdot 04486$	- 01976	--02181

The premiums for endowments, as the time draws nearer for their enjoyment, increase very rapidly, so that \mathbb{P}_{x+t} is large in proportion to \mathbb{P}_{x}, and the empirical paid-up endowment is less than the true. At age ($x+n-1$), since the value of an endowment is greater than the premiums paid under it, in the inequality $(n-1) \mathbb{P}_{x} \sim \mathbb{V}_{x \mid n-\mathrm{I}}$ on page 300 , we have $\mathbb{V}_{x \mid n-1}$ the greater, and therefore the amount of paid-up endowment at the age immediately preceding the termination of the original contract is always less by the empirical than by the true method. It generally, though not necessarily, happens, whichever method in most assurance schemes gives the greater amount at age $(x+n-1)$ will give the greater amount at all other ages as well. Were this universally true, we should have " paid-up" endowments by the empirical method always less than by the correct one; and, indeed, this will generally be found to be the case.

In the foregoing examples $\left(\Delta \sim \frac{1}{n}\right)$ is always less by the Carlisle than by the English table, and therefore it follows that for endowments payable at 60 , the conversion ages ranging from 45 to 59 , the empirical method of calculating "paid-up" endowments will give results nearer the Carlisle than the English table.

Temporary Assurances-till Age 60.

The premiums for Temporary Assurances increase very slowly, so \mathbb{P}_{x+t} is very little larger than \mathbb{P}_{x}, and consequently the empirical " paid-up" temporary assurances are greatly in excess of the true amounts -so much so, indeed, as to make this method of calculating the "paid-up" policy quite inapplicable for this class of assurance. In the foregoing $\left(\Delta \sim \frac{1}{n}\right)$ is at first much smaller by the English than by the Carlisle tables, but latterly it is the reverse, so the empirical method of calculating "paid-up" temporary assurances for ages between 45 and 59 , and terminating at 60 , will give towards the beginning results nearer the English Life, and towards the end, nearer the Carlisle, table.

Endowment Assurance-payable at 60 or Death.

Age at which Conversion takes	Amodnt of Paid-tyPolicy.			ExGessoVEREMPIRTCALOF		Inorease in Amount from Year to Year$\left.-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t}}\right)-\left(1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t-1}}\right)=\Delta .$		$\Delta-\frac{1}{n}$.	
$(x+t)$.	Carlisle.	English.	Empirical	Carlsle.	English,	Carlisle.	Engush.	Carlisle.	English.
45						-06954	$\cdot 07101$	$+00287$	+ $\cdot 00434$
46	06954	-07101	-06667	-00287	-00434	-06943	-07031	+.00276	$+.00364$
47	-13897	-14132	$\cdot 13333$	-00564	-00799	-06957	-06940	+.00290	+ 00273
48	-20854	-21072	-20000	-00854	-01072	-06985	-06889	+.00318	$+\cdot 00222$
49	$\cdot 27839$	27961	-26667	-01172	-01294	-06970	-06808	+.00303	+ 00141
50	34809	-34769	-33333	. 01476	-01436	-06936	-06738	+ 00269	$+\cdot 00071$
51	-41745	-41507	- 40000	01745	-01507	-06819	-06653	$+\cdot 00152$	- $\cdot 00014$
52	-48564	-48160	$\cdot 46667$	-01897	-01493	-06700	-06590	$+\cdot 00033$	--00077
53	-55264	- 54750	-53333	-01931	$\cdot 01417$	-06613	-06543	-.00054	- $\cdot 00124$
54	61877	-61293	-60000	-0] 877	-01293	$\cdot 06531$	-06506	- 000136	- 00161
55	68408	-67799	- 66667	01741	-01132	-06451	-06471	-.00216	- 00196
56	$\cdot 74859$	/74270	$\cdot 73333$	-01526	-00937	-06380	-06448	- 000287	--00219
57	-81239	-80718	-80000	-01239	. 00718	-06306	-06431	- 000361	- -00236
58	-87545	-87149	-86667	-00878	-00482	-06240	-06424	-.00427	- $\cdot 00243$
59	$\cdot 93785$	$\cdot 93573$	$\cdot 93333$	-00452	-00240	-06215	$\cdot 06427$	- $\cdot 00452$	- -00240

In Endowment Assurance premiums (they being made up of endowment preminms, which, as we have seen, give much greater " paid-up" policies by direct calculation than by the empirical method, and of temporary assurance premiums which give much less by the former than by the latter) the amounts will lie between these two extremes, and, as the examples will show, are, on the whole, more favourable to the Insurance Company adopting this new method of finding the "paid-up" policy than are those in the case of limited premium assurances.

Assuranees for the Whole of Life-by equal Annual Premiums, payable till Death occur.

Note.—n in this case will be the difference between the limiting age in the Table, or the year which the last survivor enters upon, but falls to complete, and the age at entry.
$n=\omega+1-x=$ in Carlisle Table 105-x, and in English (Males) $=108-x$.

Age at which Conversion place $(x+t)$.	Amodnt of Patdoup Policy.				Exoess over $\underset{\text { or }}{\text { Empirical }}$		Increase in Amount from Year to Year$\left(1-\frac{\mathbf{P}_{x}}{\mathbf{P}_{x+t}}\right)-\left(1-\frac{\mathbf{P}_{x}}{\mathbf{P}_{x+t-1}}\right)=\Delta$		$\Delta-\frac{1}{n}$.	
	Carlisle.		English.							
	True.	Empirical	True.	Empirical	Carlisle.	English.	Carlisle.	English.	Carlisle	Englsh.
45							-03195	-03540	$+\cdot 01528$	$+\cdot 01953$
46	03195	$\cdot 01667$	03540	$\cdot 01587$	-01528	-01953	$\cdot 03233$	-03479	+.01566	$+\bullet 01892$
47	-06428	$\cdot 03333$	-07019	$\cdot 03175$	-03095	-03844	-03308	-03415	$+.01641$	+ 01828
48	-09736	. 05000	-10434	. 04762	-04736	-05672	-03448	-03355	$+\cdot 01781$	$+01768$
49	-13184	$\cdot 06667$	-13789	06349	-06517	-07440	$\cdot 03513$	-03294	+ 01846	$+01707$
50	$\cdot 16697$. 08333	-17083	-07937	-08364	-09146	$\cdot 03570$	-03234	+.01903	$+\cdot 01647$
51	-20267	$\cdot 10000$	-20317	$\cdot 09524$	-10267	-10793	-03467	-03105	$+\cdot 01800$	$+\cdot 01518$
52	23734	-11667	23422	-11111	-12067	-12311	$\cdot 03371$	-03034	$+\cdot 01704$	+ 01447
53	27105	-13333	-26456	-12698	$\cdot 13772$	-13758	-03281	$\cdot 02970$	+ 01614	$+.01383$
54	-30386	-15000	-29426	-14286	-15386	$\cdot 15140$	-03225	-02908	+.01558	+01321
55	-33611	$\cdot 16667$	-32334	-15873	-16944	-16461	-03145	-02845	+ 01478	+01258
56	-36756	-18333	-35179	-17460	-18423	-17719	$\cdot 03072$	-02784	+ 01405	+ 01197
57	-39828	- 20000	-37963	-19048	-19828	-18915	-02935	-02720	+ 01268	+ 01133
58	-42763	-21667	* 40683	-20635	$\cdot 21096$	-20048	-02694	$\cdot 02653$	+ 01027	$+01066$
59	45457	$\cdot 23333$	- 43336	-22222	-22124	-21114	$\cdot 02422$	-02583	$+\cdot 00755$	+.00996
60	-47879	-25000	-45919	-23810	$\cdot 22879$	-22109				
\cdots				
104	96892	. 98333			- 01441		$\because 03108$		\bigcirc	
107			96567	.984i3		$\bigcirc 01846$		$\because 03433$		+ $\quad+\cdots 1846$

In the formula $\left(1-\frac{\mathrm{P}_{x}}{\mathrm{P}_{x+t}}\right) \sim \frac{t}{n}$, should $(n-t)$ be a very large quantity, as the probability of the life reaching the older ages has very little effect on the quantity $\frac{\mathrm{P}_{x}}{\mathrm{P}_{x+t}}$, which would remain at nearly the same value were the oldest age in the tables much less than it is, while, on the other hand, as the probability of reaching every age is assumed the same in the quantity $\frac{t}{n}$, if n be very large compared with $t, \frac{t}{n}$ will be a very small fraction,
and much less than $\left(1-\frac{\mathrm{P}_{x}}{\mathrm{P}_{x+t}}\right)$, and consequently at the younger ages, and indeed at all the ages likely to occur in practice, the "paid-up" policy by the empirical method, to an assurer on this system, will be very much less than the correct amount.

In course of time, however the excess diminishes, and latterly turns the other way. Thus, at age $(x+n-1)$, or the oldest age in the table, the expression is $\left(1-\frac{\mathrm{P}_{x}}{v}\right) \sim \frac{n-1}{n}$ or $v \sim n \mathrm{P}_{x}$, of which the latter term, which corresponds to the result by the empirical method, is the greater.

The quantity $\left(\Delta-\frac{1}{n}\right)$ is in the above examples at first less and afterwards greater by the Carlisle than by the English table, and therefore assurers for the whole of life, by equal anuual premiums, will, should they between ages 45 and 59 change their policies into "paid-up" ones, get by the empirical method, at first, results nearer the Carlisle, and, afterwards, nearer the English tables.

Assuranees for the Whole of Life-by 5 Payments.

Assurances for the Whole of Life-by 10 Payments.

Assurances for the Whole of Life-by 15 Payments.

Age at which Conversion takes	Amount of Patdetp Polior.			$\begin{gathered} \text { DEFICIT } \\ \text { ONDER } \\ \text { EMPIRICAL } \\ \text { of } \end{gathered}$		Incrtase in Amount from Year to Ytar$\left(1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t}}\right)-\left(1-\frac{\mathbb{P}_{x}}{\mathbb{P}_{x+t-1}}\right)=\Delta$		$\Delta-\frac{1}{n}$.	
$(x+t)$.	Carnsle	English	Emprrical.	Carusle	English.	Carlssle.	English.	Carlisle.	English,
30						-06416	-06539	- $\cdot 00251$	- 000128
31	-06416	06539	-06667	00251	-00128	-06456	-06546	- $\cdot 00211$	- 000121
32	-12872	-13085	-13333	00461	-00248	-06529	-06553	-.00138	-.00114
33	19401	-19638	- 20000	-00599	$\cdot 00362$	-06595	-06562	- 000072	- 000105
34	-25996	26200	- 26667	00671	-00467	-06625	-06574	- 000042	- 00093
35	-32621	-32774	$\cdot 33333$. 00712	-00559	-06655	-06588	-.00012	-.00079
36	-39276	-39362	- 40000	00724	$\cdot 00638$	-06660	-06603	- 000007	--00064
37	-45936	-45965	- 46667	-00731	-00702	-06671	-06624	+ 00004	- 00043
38	-52607	- 52589	$\cdot 53333$	-00726	-00744	-06688	-06649	+.00021	-00018
39	-59295	-59238	-60000	00705	$\cdot 00762$	$\cdot 06683$	$\cdot 06678$	+.00016	+ 000011
40	65978	-65916	-66667	-00689	-00751	-06674	-06715	$+\cdot 00007$	+ 00048
41	72652	72631	$\cdot 73333$	-00681	-00702	-06716	-06756	+ 00049	+ 00089
42	-79368	79387	-80000	-00632	-00613	-06785	-06808	+.00118	+ 000141
43	-86153	86195	-86667	-00514	-00472	-06877	-06867	+.00210	$+\cdot 00200$
44	-93030	93062	. 93333	. 00303	-00271	$\cdot 06970$	$\cdot 06938$	$+\cdot 00303$	+ $\cdot 00271$

For the foregoing examples, then, the "paid-up"policy in this chass of assurance is a little greater by the empirical than by the correct metbod-and other examples would have shown that, generally speaking, this will be the case.

The difference, however, is so small as not to render it at all hazardous for the Insurance Companies to grant "paid-up" policies calculated in thismanner.

It will be observed from the column $\left(\Delta-\frac{1}{n}\right)$, in the preceding cases, that the "English" table gives results, on the whole, nearer those by the empirical method than does the "Carlisle" for these ages.

Finally, it has been shown that, in order that the ratio of premiums paid to the total number payable may express the correct amount of "paid-up" policy on the original status, it is necessary that the premiums that would require to be paid by persons entering at every succeeding age from x to $(x+n)$, to place them in exactly the same position as that then held by the original assurer, form a series in harmonical progression, and that, as \mathbb{P}_{x} and \mathbb{P}_{x+t} may be said to be independent of each other, it is not possible to prove in a general form whether the "paid-up" policy will be greater or less by using this mode of calculation than the correct amount; but that, on the whole, by this method, the "paid-up" policy granted would be much too large in the case of temporary assurances, and much too small for assurances by premiums payable till death and for endowments, the variation being so great as to render it inapplicable for any of these classes; and that for endowment assurances and policies by limited premiums, should the number payable, after change in the policy, not be very great, it will give results very close to the truth; in the first case, perhaps a little favourable to the Company; in the second, perhaps a little against it; but that, mader all ordinary circamstances, this difference is so small as to permit Offices to adopt the system with perfect safety.

I am, Sir, your obedient servant,
City of Glasgow Life Assurance Company, JAMES R. MACFADYEN. Glasgow, 10 th July, 1869.

