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Towards the triviality of X+
0 (pr)(Q) for r > 1

Pierre J. R. Parent

Abstract

We give a criterion to check if, given a prime power pr with r > 1, the only rational points
of the modular curve X+

0 (pr) are trivial (i.e. cusps or points furnished by complex multi-
plication). We then prove that this criterion is verified if p satisfies explicit congruences.
This applies in particular to the modular curves Xsplit(p), which intervene in the problem
of Serre concerning uniform surjectivity of Galois representations associated to division
points of elliptic curves.

1. Introduction

Let pr be a power of a prime number p, with r > 1, and X0(pr) be the classical modular curve
over Q. Let X+

0 (pr) be its quotient by the Atkin–Lehner involution. We say that a point of X+
0 (pr)(C)

is trivial if it is a cusp, or if the underlying elliptic curves have complex multiplication. In this
paper, we state a criterion to check whether X+

0 (pr)(Q) is trivial (Proposition 3.2). Then we prove
that this criterion is verified if p satisfies some congruences. Explicitly, set A := {primes that are
simultaneously a square mod 3, mod 4, mod 7, and a square mod at least five of the following: 8,
11, 19, 43, 67, 163}. Our main theorem is the following.

Theorem 1.1. If pr is a prime power such that r > 1, p � 11, p �= 13, and p does not belong to the
above set A, then X+

0 (pr)(Q) is trivial.

(Note that the existence of Q-morphisms X+
0 (pr+2) → X+

0 (pr) (see [Mom86, p. 443]) shows that
this result actually boils down to the case r = 2 and r = 3.)

Theorem 1.1 applies in particular to the modular curve Xsplit(p), which is isomorphic over Q

to X+
0 (p2). This special result was our first motivation for this work, because of its relation with the

following problem of Serre. Let E be an elliptic curve over a number field K without complex mul-
tiplication over K. The Galois action induces a representation Gal(K/K) → GL(E[p]) � GL2(Fp).
In his famous article [Ser72], Serre proved that there exists an integer CE such that this repre-
sentation is surjective if p > CE . In the same paper Serre asked if the integer CE can be chosen
to depend only on K, not on E ([Ser72, p. 299]; see also [Maz77, Introduction]). This question
boils down to determining whether the K-rational points of several modular curves of level p are
trivial (in the above sense) for large enough p. These curves are X0(p), Xsplit(p), Xnon-split(p), and
maybe ‘exceptional’ ones. The latter case (of exceptional curves) was ruled out by Serre (see [Maz77,
Introduction]), and it is a celebrated theorem of Mazur [Maz78] that X0(p)(Q) is made of cusps for
p > 163 (and is trivial for p > 37). In the cases of Xsplit(p) and Xnon-split(p), a new difficulty arises
from the fact that elliptic curves over Q with complex multiplication always provide rational points
on one of those two modular curves. From the above, our criterion for Xsplit(p)(Q) to be trivial
(Proposition 3.2) can be verified for p � 11, p �∈ {13, 37}, where p does not belong to the set A.
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The density of the prime numbers p in Theorem 1.1 is (1−7.2−9) � 0.986 . . . . At the moment, we
are unable to prevent a positive density of primes from escaping our methods, which use quadratic
imaginary orders of trivial class number (as one guesses from the shape of A). Still in § 6 we
indicate a procedure that could asymptotically improve this density. For general p we also prove a
quantitative result giving explicit upper bounds for the number of non-trivial points in X+

0 (pr)(Q)
(Theorem 6.2).

Our approach is based on the well-known method introduced by Mazur. We also make use of
previous works by Momose on X+

0 (pr)(Q), Kolyvagin–Logachev’s (or now Kato’s) theorem on the
Birch and Swinnerton-Dyer conjecture, and a recent application by Merel of the graph method for
X0(p) of Mestre and Oesterlé. Our criterion is in fact almost the same as that of Merel [Mer01,
Proposition 4], which arose in a different context. A new tool we use is a formula of Gross, generalized
by Zhang, on special values of L-functions, which allows us to describe the cotangent space of Je

(conjecturally the largest quotient of J0(p) having rank 0 over Q) in terms of Heegner points
(Proposition 4.2).

More precisely, the text is organized as follows. In § 2 we reduce our problem to a question
on the fiber of X0(p) at p. In § 3 we give our criterion (Propositions 3.1 and 3.2). In § 4 we
concentrate on the cotangent space of Je in order to reformulate our criterion with the help of the
Gross formula. In § 5 we restrict to primes satisfying the congruences of Theorem 1.1 and apply the
graph method to build special elements that make the criterion work. Finally, in § 6 we prove our
quantitative improvement (Theorem 6.2), we describe an algorithm to verify triviality of X+

0 (pr)(Q)
for any specified prime p, and we discuss the example of X+

0 (37r). In the course of this paper we
also give new elementary proofs of a result by Ahlgren and Ono on Weierstrass points of X0(p)(Q)
(Theorem 3.3), and of a theorem by Vatsal for the equidistribution of Heegner points (Theorem 4.3).

2. Reducing to the bad fiber of X0(p)

For any positive integer N , recall that X0(N) is the modular curve over Q corresponding to the
congruence subgroup

Γ0(N) :=
{(

a

c

b

d

)
∈ SL2(Z), c ≡ 0 mod N

}
.

This curve deprived of its cusps is the coarse moduli space over Q of the isomorphism classes of
elliptic curves equipped with an N -isogeny. If M |N , we write πN,M : X0(N) → X0(M) for the de-
generacy morphism, which is defined functorially as (E,CN ) �→ (E,CM ), where CM := E[M ] ∩ CN .
In this paper, the model of X0(N) over Z that we consider is the modular one, which is obtained
by taking the normalization of P1

Z in X0(N)Q via the morphism πN,1 : X0(N)Q → X0(1)Q � P1
Q.

Models over arbitrary schemes of this modular curve will be deduced by base change. We denote by
X0(p)smZ the smooth part of X0(p)Z, obtained by removing the singular points in the fiber at p. If M
is a divisor of N such that M and N/M are relatively prime, we write wM for the corresponding
Atkin–Lehner involution, and X+

0 (N) := X0(N)/wN . As usual, we write J0(N) for the Jacobian
over Q of X0(N), and J−

0 (N) := J0(N)/(1+wN )J0(N). The models we use for abelian varieties over
rings of integers are Néron models.

One defines similarly the curve Xsp.C.(N) associated to the split Cartan subgroup

Γsp.C.(N) :=
{

γ ∈ SL2(Z), γ ≡
(∗

0
0
∗
)

mod N

}
,

and the curve Xsplit(N) corresponding to the normalizer of the above group:

Γsplit(N) :=
{

γ ∈ SL2(Z), γ ≡
(∗

0
0
∗
)

or
(

0
∗
∗
0

)
mod N

}
.
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The curve Xsp.C.(N) (respectively, Xsplit(N)) parametrizes elliptic curves endowed with an ordered
(respectively, unordered) pair of independent N -isogenies. There is an involution w on Xsp.C.(N),
defined functorially by (E, (A,B)) �→ (E, (B,A)), such that Xsplit(N) = Xsp.C.(N)/w. The map
z �→ Nz on the upper half-plane induces a Q-isomorphism X0(N2) � Xsp.C.(N) (an ‘exotic’ map in
the language of [KM85]), and Xsplit(N) � X0(N2)/wN2 .

We now fix a prime power pr, r > 1. Let P be a non-cuspidal point in X+
0 (pr)(Q) and z ∈

X0(pr)(K) a lifting of P , for K a quadratic number field (or for K = Q, but this case is possible only
for p � 163 by Mazur’s theorem). The point z corresponds to a couple (E,Cpr ) over K, by [DR73,
Proposition VI.3.2]. Set π := πpr,p, x := wpπ(z) and x0 := πwpr(z) ∈ X0(p)(K). Let y ∈ J−

0 (p)(K)
be the image of the divisor class of (x) − (x0) in J0(p)(K).

Lemma 2.1. The point y is Q-rational.

Proof. This is a straightforward calculation: if σ is the non-trivial element of Gal(K/Q), then

cl(y − σ(y)) = cl((wpπ(z)) − (πwpr(z)) − (wpπwpr(z)) + (π(z)))
= (1 + wp)cl((π(z)) − (πwpr(z))).

In the following, we will also need the next result.

Lemma 2.2 (Momose). If P belongs to X+
0 (pr)(Q), with r > 1 and p � 7, then the isogeny class of

elliptic curves corresponding to P is not supersingular at p.

Proof. This is Lemma 2.2(ii) together with Theorem 3.2 both of [Mom86].

What has been done so far allows us to reduce to the bad fiber of X0(p)smZ , which we now look
at more closely.

3. Using the graph method
Denote by S the set of supersingular invariants of elliptic curves in characteristic p, and by ∆S the
group of divisors of degree 0 with support on S. Let T be the subring of End(J0(p)) generated by
the Hecke operators. The group ∆S is endowed with an action of the ring T, deduced for instance
from the action of the Hecke correspondences on the supersingular points of the fiber at p of X0(p)
(see for instance [Ray91]). The T ⊗ Q-module ∆S ⊗ Q is free of rank 1 [MO, Mes86]. We can
identify ∆S, regarded as a T-module, with the character group of the neutral component of the
fiber at p of the Néron model of J0(p)Q, as in [MO] (see also [Mer01, § 1.4]). More precisely, if O
is the ring of integers of an extension of Qp, the zero component of the special fiber of J0(p) on
O is a (generally non-trivial) quadratic twist of the torus (GS

m/Gm), where the latter quotient is
relative to the diagonal embedding Gm ↪→ GS

m. Note that if O is ramified, the Néron model over
O of J0(p)K is not the base change of J0(p)Z; however, the zero components of these two schemes
are canonically isomorphic, as they both represent the neutral component of the Picard functor,
according to a theorem of Raynaud [Ray91, Théorème 2]. We also remark that ∆S can be interpreted
as a cotangent space (see Remark 1 below).

If F is a number field or a p-adic field with ring of integers OF , and P is an F -rational point
of X0(p), then denote by φP the morphism from X0(p)F to J0(p)F which maps Q to (Q − P ).
If P is ordinary above p, then we consider the canonical extension of φP from X0(p)smOF

to J0(p)OF
.

One sees from the above that φP may be explicitly described in any special fiber at k above p: if Q
and P specialize to the same component at k, then

φP (Q)(k) =
(

jE − jQ

jE − jP

)
jE∈S

∈ (GS
m/Gm)(k).
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Define the winding quotient Je = J0(p)/IeJ0(p) as in [Mer96]. Denote by ΦP the morphism obtained
by composing φP with the quotient map J0(p) → Je, and extend ΦP from X0(p)smOF

to the Néron
model of Je on OF .

Proposition 3.1. Let pr be a power of a prime p � 11 with r > 1. If, for every P in X0(p)sm(Zp),
the morphism ΦP is a formal immersion at P (Spec(Fp)), then X+

0 (pr)(Q) is trivial.

Proof. Suppose one has a non-cuspidal point in X+
0 (pr)(Q). As in the previous section, let z ∈

X0(pr)(K) be one of its liftings (for K a quadratic field), x := wpπpr,p(z) and x0 := πpr,pwpr(z) ∈
X0(p)(K). Lemma 2.2 gives us that x and x0 extend to points of X0(p)sm(OK).

Let k be a residue field of K above p. We claim that x and x0 specialize to the same element
of X0(p)sm(k). Indeed, if z corresponds to (E,Cpr ), then x and x0 correspond to (E/Cp, E[p]/Cp)
and (E/Cpr , E[p] + Cpr/Cpr) respectively. The isogenies associated to the specializations at k of
these points are both either radicial or étale, hence xk and x0k belong to the same component.
Moreover the j-invariants of the two associated curves are conjugated by a power of the Frobenius
automorphism. Now [Mom86, Theorem 3.2] says that p splits in K. Therefore xk = x0k.

As Je is a quotient of J−
0 (p), Lemma 2.1 says that Φx0(x) is Q-rational, hence it must have

finite order by the Kolyvagin–Logachev theorem [KL90]. As Φx0(x)k = 0k and p > 2, a well-known
specialization lemma tells us that Φx0(x) = 0 (see for instance [Par99, Lemme 4.14]). The hypothesis
that Φx0 be a formal immersion at x0k implies that x = x0. Therefore the underlying elliptic curve
has a non-trivial endomorphism.

Now for the criterion.

Proposition 3.2. Assume that p > 2. Let P be an element of X0(p)sm(Zp), with j-invariant
j0 mod p. Suppose that there exists v = (vE)jE∈S in ∆S [Ie] such that∑

jE∈S

vE

(j0 − jE)
�= 0 mod p

(or P (Spec(Fp)) is a cusp). Then the morphism ΦP of Proposition 3.1 is a formal immersion at
P (Spec(Fp)).

Note that this is very similar to [Mer01, Proposition 4]. The slight difference is that our maps
ΦP go to a quotient of J0(p), not a subvariety.

Proof. We will show that the map induced by ΦPFp on cotangent spaces (at 0Fp and PFp respectively)
is non-zero. We first identify the PFp component with (P1\S) via the j-invariant.

We claim that the natural morphism Cot(JeZp
) → Cot(J0(p)Zp

) identifies Cot(JeZp
) with

Cot(J0(p)Zp
)[Ie]. Indeed, from the exact sequence 0 → Ie.J0(p)Q → J0(p)Q → JeQ → 0, one deduces

a sequence of free Zp-modules of finite rank:

0 → Cot(JeZp
) → Cot(J0(p)Zp) → Cot(Ie.J0(p)Zp) → 0,

which is exact (this comes from a theorem of Raynaud (see [Maz78, Corollary 1.1]), since J0(p)Z is
semi-stable). At the generic fiber, Cot(JeQp

) � Cot(J0(p)Qp)[Ie] (see for instance [Par99, Proposi-
tion 4.10]); therefore this isomorphism remains true on Zp. This is our claim.

As J0(p)Zp has purely toric reduction, one has ∆S ⊗ Fp � Cot(J0(p)Fp
), and the above reads

∆S[Ie] ⊗ Fp � Cot(JeFp
). Let ω ∈ Cot(JeFp

) be the invariant differential associated to the element
v of the proposition. By hypothesis, the pull-back

Φ∗
P
Fp

(ω) =
∑
jE∈S

vE

(j − jE)
dj

is non-zero at j0.
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Remark 1. In [Mer01, Proposition 4], ∆S was interpreted as a character group, while here we
make use of a cotangent space interpretation: denoting by ∆e the character group of J0

e , we have
isomorphisms ∆e ⊗ Fp � Cot(JeFp

) and ∆S ⊗ Fp � Cot(J0(p)Fp
), as we have already remarked.

Using uniformization results for the purely toric varieties J0(p)Zp and JeZp
one can actually prove

that those isomorphisms at the special fiber remain true globally : if O is the ring of integers of
the unramified quadratic extension of Qp, then Cot(J0(p)O) � ∆S ⊗O, and similarly Cot(JeO) �
∆e ⊗O = ∆S[Ie] ⊗O (see for instance [MO, § 1.4.5]).

Remark 2. Propositions 3.1 and 3.2 already imply that, if J0(p)− has rank 0 over Q (and if there are
at least two supersingular invariants j1, j2 in Fp, which is true as soon as Q(

√−p) has class number
at least 3), then X+

0 (pr)(Q) is trivial (see Lemma 5.1: one can take v = [j1] − [j2]). Thus we find a
(slightly) different proof of Momose’s main result [Mom86, Theorem 3.6]. The limitation of this
statement is that the condition on J0(p)−(Q) is presumably not true when p is too large, so
Momose’s result concerns a finite number of primes only. On the other hand, comparing dimen-
sions of cotangent spaces described as rational function spaces as in the proof of Proposition 3.2,
one sees that a basis of Cot(JeQp

) can have at most dim(J0(p)) − dim(Je) =: n common zeroes.
Using [Mom84, Lemma 4.2], one recovers the quantitative version of Momose’s theorem [Mom86,
Theorem 3.7]: n is an upper bound for the number of non-trivial rational points of X+

0 (pr)(Q)
(note that we use Je instead of the Eisenstein quotient). In § 6, we will improve such bounds.

Remark 3. We note in passing the following by-product of the above.

Theorem 3.3 (Ahlgren–Ono). The Weierstrass points in X0(p)(Q) are supersingular in character-
istic p.

In [Ogg78], Ogg proved that the Weierstrass points of X0(p)(Q) are supersingular, and recently
Ahlgren and Ono [AO03, Theorem 1] obtained the same result for X0(p)(Q). In fact, their result
is much more precise than ours, but their proof relies on more involved computations on modular
functions.
Proof. Call j0, . . . , jg the supersingular invariants in characteristic p (assuming g � 2 of course).
Let O be the ring of integers of the quadratic unramified extension of Qp. Set

ωi := [1/(j − ji) − 1/(j − j0)]dj.

According to Remark 1, by lifting the differentials ωi one obtains a basis of S2(Γ0(p))O. One readily
computes that the Wronskian of the ωi is

W (j) = cdet(1/(j − jk)i − 1/(j − j0)i)1�i,k�g = c
∏
k>i

(1/(j − jk) − 1/(j − ji)),

with

c = (−1)E(g/2)

( g−1∏
k=1

k!
)

�= 0 mod p.

This proves the proposition for non-cuspidal points, and a change of variable shows that cusps are
not Weierstrass points either.

4. Heegner points description of Cot0(JeQp)

For studying formal immersion properties as above, we need to understand the cotangent space of
Je at 0. It happens that this space can be entirely described in terms of Heegner points, as a result
of a formula of Gross on special values of L-functions.

We first briefly recall some elements of the arithmetic of quaternion algebras underlying Gross’s
theory (see [Gro87], [BD96], or [Vat02], and references therein). If M is a Z-module, define
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M̂ := M ⊗ Ẑ. Let B be the quaternion algebra over Q which is ramified precisely at p and ∞.
Choose a maximal order R of B, and let {R1 := R, . . . , Rn} be a set of maximal orders in B
corresponding to representatives for Cl(B) = R̂∗\B̂∗/B∗ as in [Gro87, § 3]: to a double coset
g := (g2, g3, . . . , gl, . . . ) we associate the B∗-conjugation class of the maximal order B ∩ g−1R̂g.
Recall that Cl(B) is in one-to-one correspondence with the set of supersingular invariants of elliptic
curves in characteristic p: the order Ri associated to an invariant jEi is such that Ri � EndFp2 (Ei).

If L is a quadratic number field, it embeds in B if and only if its localization at ramification
primes for B is a field, i.e. L is a quadratic imaginary field in which p is inert or ramified. Then for an
order O of L, a morphism of algebras σ : L ↪→ B, and a maximal order R of B, the pair (σ,R)
is said to be an optimal embedding of O in R if σ(L) ∩ R = σ(O). If −D is a negative integer,
let h(−D) be the class number of the quadratic order O−D with discriminant −D (if it exists), let
u(−D) := card(O∗

−D/〈±1〉), and let hi(−D) be the number of optimal embeddings of O−D in Ri

modulo conjugation by R∗
i . We define the element1

eD :=
1

2u(−D)

n∑
i=1

hi(−D)[Ri].

We consider eD as an element of 1
12ZS. If (xE)E∈S is the canonical basis of QS, and wE :=

card(EndFp
(E)∗/〈±1〉), one defines a scalar product 〈., .〉 on QS by 〈xE , xE′〉 = wE.δjE ,j′E where

δ is the Kronecker symbol. The Hecke correspondences extend to linear operators of ZS which are
self-adjoint for this product. The Eisenstein vector Eis, with coordinates (1/wE)E∈S in the canonical
basis, spans the orthogonal complement to ∆S ⊗Q. As its name promises, Eis is an eigenvector for
the Hecke endomorphism Tl with eigenvalue l + 1 for any prime l �= p. The restriction of the Hecke
endomorphisms on ∆S ⊗ Q gives its T-module structure.

Now let f be a newform of weight 2 for Γ0(p). If −D is a quadratic imaginary discriminant as
above, we write εD for the non-trivial quadratic character associated to Q(

√−D), and f ⊗ εD for
the twist of f by εD. Let (∆S ⊗Q)f be the TQ-eigenspace associated to f , let ef,D be the component
of eD on (∆S ⊗ Q)f , and write (., .) for the Petersson product. Extend 〈., .〉 to Q

S by bilinearity.
Gross’s formula, which is of interest to us here, is the following.

Theorem 4.1 (Gross, Zhang). If D is prime, D �= p, one has

L(f, 1)L(f ⊗ εD, 1) =
(f, f)√

D
〈ef,D, ef,D〉.

If D is any prime-to-p integer, then the left-hand side of this formula is zero if and only if the
right-hand side is zero.

Proof. In [Gro87, Corollary 11.6], the formula is proven for prime discriminants. A more general form
can be found in [BD97, Theorem 1.1], and the above statement comes from [Zha01, Theorem 1.3.2],
or [Zha02, Theorem 7.1] (see also [Vat03, Theorem 6.4]).

Proposition 4.2. Set A := {prime-to-p imaginary quadratic discriminants}. Let E be the Q-vector
subspace of ∆S ⊗Q spanned by the orthogonal projections (relative to 〈·, ·〉) of the elements eD, for
D ∈ A. Then E = (∆S [Ie] ⊗ Q).

Proof. If x is an element of Q
S , write x for the orthogonal projection of x on ∆ ⊗ Q with respect

to 〈·, ·〉. We first claim that E is a TQ-submodule of ∆S ⊗ Q, which is generated by the el’s with
−l running through the fundamental imaginary quadratic discriminants which are prime to p.

1This element was improperly defined in [Par03, § 3]. The mistake came from a misinterpretation of the notation of
[Gro87, p. 167] (eD is not ‘the class of the divisor cD of 3.8’ when −D is not a fundamental discriminant). This did
not affect our results in any way.
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For −D ∈ A, q �= p a prime, and n � 1, a formula of [BD96, paragraph 2.4, p. 433] provides the
induction relation eqn+2D = Tq.eqn+1D − q.eqnD. Together with the other formulae on the ‘behaviour
under norms’ of Heegner points in [BD96], this gives our claim.

In order to prove E = (∆S[Ie]⊗Q) we may tensorize both sides of this equality with Q. Let f be
a newform of weight 2 for Γ0(p). Gross’s formula implies that, if −D is a prime-to-p discriminant
such that the component ef,D of eD in (∆S ⊗ Q)f is non-zero, then L(f, 1) �= 0. In that case,
it follows from the definition of Je that Ie.f = 0, so Ie.ef,D = 0. This proves that E ⊗ Q is
included in ∆S [Ie] ⊗ Q. For the reverse inclusion we remark that, for any newform f in S2(Γ0(p)),
a (refinement of a) theorem of Waldspurger furnishes infinitely many prime-to-p discriminants D
such that L(f ⊗ εD, 1) �= 0 (see [LR97]). Therefore if L(f, 1) �= 0, then ef,D �= 0, and we may choose
an idempotent element t in TQ such that t.eD = ef,D.

Remark 4. Before going further, we remark that the above furnishes an elementary proof of the
following equidistribution result on Heegner points, which was first proved by Vatsal using
arguments from graph theory ([Vat02, Theorem 1.5]; see also [Cor02]). Using the same notation
as before, we denote by w(el2nD) :=

∑
E∈S hE(l2nD) and w(Eis) :=

∑
E∈S 1/wE (= (p− 1)/12) the

weight of el2nD and Eis, respectively.

Theorem 4.3 (Vatsal). Let −D be a fundamental quadratic imaginary discriminant such that
(−D/p) �= 1. Let l �= p be a prime. Then el2nD is equidistributed as n tends to infinity, and more
precisely

1
w(el2nD)

el2nD =
1

w(Eis)
Eis + O(l−n/2).

Proof. From Eichler’s formula:

w(el2nD) =
(

1 −
(−l2nD

p

))
h(−l2nD)

(see for instance [Gro87, p. 122]), we find that w(el2nD) is proportional to ln. As in the proof of
Proposition 4.2, one has the induction relation el2(n+2)D = Tl.el2(n+1)D − l.el2nD (at least for n � 1).
Decomposing el2nD =

∑
f νn(f).ef in ∆S ⊗ Q as a sum of eigenvectors for the Hecke algebra, the

recursion relation shows that the weight of each νn(f) can be written as λD,f .ln/2 cos(n.τf ), for
some real λD,f and τf (recall that the polynomial X2 − al(f)X + l, where al(f) is the eigenvalue of
Tl on f , is real). This completes the proof of the theorem.

Notice that Michel proved another equidistribution result: if I is the set of fundamental quadratic
imaginary orders, then again every sequence of elements eD, D ∈ I, tends to Eis as D increases
(see [Mic05, Theorem 10]).

5. Proof of Theorem 1.1

The results of the previous section show that v in Proposition 3.2 can be written as a linear
combination, with weight zero, of Gross vectors eD. The following lemmas illustrate the simplest
use of such a v.

Lemma 5.1. If there exists v in the subspace E of Proposition 4.2 such that, in the canonical basis
of QS , v has exactly two non-zero components, then (a multiple of) v satisfies the hypothesis of
Proposition 3.2 for every P in X0(p)sm(Zp).

Proof. One may suppose that the two non-trivial components of v are ±1, and the function

j �→
∑
jE∈S

vE

(jE − j)

is clearly nowhere zero on the relevant component of the ordinary locus of X0(p)(Fp).
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Lemma 5.2. Suppose that p does not belong to the set A of Theorem 1.1, and p > 997. If p is not a
square modulo l for some l ∈ {3, 4, 7}, set v := e4l −u(−l)el. Otherwise, if p is a non-square modulo
two distinct elements q and r of {8, 11, 19, 43, 67, 163}, set v := eq − er. Then v satisfies the
conditions of Lemma 5.1.

Proof. It is sufficient to check that each v of the lemma has no more than two coordinates in the
canonical basis of ZS, and are non-zero. As in the proof of Theorem 4.3, Eichler’s formula gives that∑n

i=1 hi(d) is equal to (1 − (d/p))h(d) if p2 does not divide d, and 0 if it does. The discriminants
involved in the lemma all have class number 1, so this formula implies that the support of v in S
has zero or two elements. Notice that, if p is inert in Od, the factor 2 = (1 − (d/p)) in Eichler’s
formula corresponds to the fact that the optimal embeddings associated to Od are ‘counted twice’,
once for each orientation. (Note also that Q(

√−1), Q(
√−3) and Q(

√−7) each have several orders
with class number 1: this explains the particular role that the discriminants −4, −3 and −7 play in
our statement.) Now we prove that v is non-trivial. Each element of S corresponding to a maximal
order Ri in which there is an optimal embedding of an order O with trivial class group may be lifted
to the j-invariant of an elliptic curve over Q having complex multiplication by O. The list of these
13 invariants is well known (see for instance [Ser67]); if p > 997, they are all distinct mod p.

End of proof of Theorem 1.1. If p > 997, we combine Propositions 3.1 and 3.2 and Lemmas 5.1
and 5.2. If 11 � p � 997, p �∈ {13, 37}, one checks that one can still build a v, as in Lemma 5.2, to
make our method work. The recalcitrant case of 37 is treated in [HM97] (by using explicit equations)
and in [MS02, Theorem 3.14] (see also the end of the next section). (Note that in [Mom87], further
results are proved for some X+

0 (pr) for small primes p and r � 3. Notice also that the cases p � 300
of our theorem follow from Theorem 0.1 of [Mom86], apart from few possible exceptions (151, 199,
227, 277), which are easily ruled out by hand with our techniques.)

6. Algorithm, upper bounds and an example
We end by making some algorithmic and numerical remarks.

The above methods can clearly be extended to the case where p does belong to the set A of
Theorem 1.1, i.e. p is inert in at most one quadratic imaginary order of class number 1. Indeed, for
d any quadratic imaginary discriminant, let Hd(X) :=

∏
(X − jOd

) ∈ Z[X] be the class polynomial
whose roots run through the singular moduli of elliptic curves with complex multiplication by Od.
For two such polynomials, define

Hd1,d2 := h(d1)Hd1(X)H ′
d2

(X) − h(d2)H ′
d1

(X)Hd2(X).

Proposition 6.1. With notation as above, let E be a finite set of quadratic imaginary discriminants
such that the polynomials Hd1,d2 have no common root in C when d1 and d2 run through E.
Then there exist CE > 0 and a (finite, easily determined) set of congruence conditions AE such that
X+

0 (pr)(Q) is trivial for p � CE, p satisfies AE, and r > 1.

Proof. Fixing a prime number p, to any element v ∈ ∆S one may associate a meromorphic dif-
ferential on P1

Fp2
as in the proof of Proposition 3.2. Let d1 and d2 be the discriminants of two

quadratic imaginary orders in which p remains prime. Writing ωd1,d2 for the differential associated
to h(d1)ed2 − h(d2)ed1 , one sees that Hd1,d2 mod p is the numerator of ωd1,d2. If the polynomials
Hd1,d2 have no common complex root when the discriminants di run through E, then if p is large
enough these polynomials have no common root mod p either. One may therefore look for a lower
bound CE such that, if p � CE and p satisfies appropriate congruences (asserting that p is inert in
the orders whose discriminants belong to E), then one can conclude that X+

0 (pr)(Q) is trivial for
every r > 1.
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Proposition 6.1 shows that one could make the density of good primes growing (where ‘good’
means that X+

0 (pr)(Q) is trivial), though of course this method will not lead to the conjectured
optimal statement (i.e. Theorem 1.1 without congruence conditions). On the other hand, given a fixed
prime p, our methods obviously furnish an algorithm possibly (and probably) showing the triviality
of X+

0 (pr)(Q): one just has to look at allowed class polynomials. This algorithm is illustrated below
with the curve X+

0 (37r) (in a case, however, where one cannot conclude that the rational points are
trivial). We shall notice that in practice this algorithm is not easy to use because class polynomials,
having huge coefficients, are hard to compute.

The above still has the following quantitative consequence.

Theorem 6.2. For any ε > 0, there exists K(ε) > 0 such that, if r > 1 is an integer,

card(X+
0 (pr)(Q)) < K(ε)p1/8+ε.

Assuming the Riemann hypothesis for Dirichlet L-functions, one obtains the bound

card(X+
0 (pr)(Q)) � (log p)1+ε.

Proof. Applying the techniques of [Mom84, § 4] for bounding the number of non-trivial rational
points, we see that we need only determine an upper bound for the minimal number of roots
of relevant polynomials Hd1,d2 (see also Remark 2). So we look for small quadratic imaginary
discriminants d1 and d2 such that p is inert in Od1 and Od2 . By Theorem 1.1 we may suppose
p ≡ 1 mod 4. Proposition 6.3 below shows that, given ε > 0, there exist C(ε) > 0 and two
fundamental discriminants d1 and d2 as above which are relatively prime and less than C(ε)p1/4+ε.
This means that for all ε > 0 there exists K(ε) such that the degree of Hd1,d2 is less than K(ε)p1/8+ε,
by the Brauer–Siegel theorem. Now the fact that Hd1,d2 be non-zero mod p (if p � 0) follows from
[GZ85, Corollary 1.6].

Under the Riemann hypothesis, the second assertion of Proposition 6.3 furnishes the other upper
bound of the theorem.

We finally illustrate these methods in the particular case p = 37. The curve X0(37) has been
studied by many authors, including Momose in the context of our problem (see [Mom84, para-
graph 5]; note also that a thorough study of the arithmetic of X0(37) can be found in [MSD74,
§ 5]). It has genus 2, and the supersingular polynomial in characteristic 37 is (j − 8)(j2 − 6j − 6).
The ‘plus’ and the ‘minus’ parts of S2(Γ0(37)) are both non-trivial, so dim(Je(37)) = 1. Calling α
and β the supersingular invariants in F372\F37, we write S = (8, α, β). The class polynomials Hd

of degree 1 such that 37 is inert in Od (for instance, H8(X) = X − 8000) must all be congruent
to X − 8 mod 37 (and this can be readily checked). This gives e8 = (1, 0, 0) in QS , ordering S as
above. It is a general fact that the vector space in QS generated by the Gross vectors eD always
contains the Eisenstein vector (indeed, this vector belongs to the closure of the space spanned by
the vectors eD, by the equidistribution results of § 4). In the case of X0(37) this can also be directly
checked from the fact that

H23(X) = X3 + 3491 750X2 − 5151 296 875X + 233753

is congruent to (X − 8)(X2 − 6X − 6) mod 37, so e23 = Eis = (1, 1, 1) in QS . Therefore the space
E of Proposition 4.2 for p = 37 is generated by 3e8 − e23 = (2,−1,−1), and

ω− :=
(

2
j − 8

− 1
j − α

− 1
j − β

)
dj = 10

(j − 6)
(j − 8)(j2 − 6j − 6)

dj

forms a basis of Cot(Je(37)F37). Hence on each component of X0(37)smF37 , there is exactly one point
at which the natural morphism to Je(37)F37 is not a formal immersion. All we can conclude about
X+

0 (37r)(Q) is that it contains at most one non-trivial point. (Actually, as remarked at the end of
the proof of Theorem 1.1, according to [HM97] and [MS02], X+

0 (37r)(Q) is trivial for all r � 2.)
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6.1 Appendix: a proposition of analytic number theory
The aim of this subsection is to briefly expose the results from analytic number theory which are
used in the proof of Theorem 6.2. All the material here is an adaptation of a letter from E. Kowalski.

Proposition 6.3. Let p be a prime number, p ≡ 1 mod 4. For all ε > 0, there exist C(ε) > 0 and
two fundamental quadratic imaginary discriminants −d1 and −d2, which are relatively prime, such
that (−d1

p

)
=

(−d2

p

)
= −1 and d1 < d2 � C(ε)p(1/4)+ε.

Assuming the Riemann hypothesis for Dirichlet L-functions, there exist an absolute C > 0 and
two different prime numbers l1 and l2, congruent to 3 mod 4, such that(−l1

p

)
=

(−l2
p

)
= −1 and l1 < l2 � C(log p)2.

We shall give the proof of the first (unconditional) assertion only, which is a fairly straightforward
consequence of the Burgess inequality for character sums [Bur63], in the following form.

Lemma 6.4. Let χ mod q be a primitive character that is non-trivial, where q is cubefree. Given
ε > 0, there exist C1(ε) and δ(ε) > 0 such that, for all x � q1/4+ε and for all y � x, one has∣∣∣∣

∑
n�y

χ(n)
∣∣∣∣ � C1(ε)x1−δ(ε).

Proof. According to [Bur63, Theorem 2], for all integers r � 1 and for all ε′ > 0 there exists
D(ε′, r) > 0 such that∣∣∣∣

∑
n�y

χ(n)
∣∣∣∣ � D(ε′, r)y1−1/rq((r+1)/4r2)+ε′ � D(ε′, r)x1−1/rq((r+1)/4r2)+ε′ .

Given ε > 0, this shows that, if x � q1/4+ε, taking r large enough and ε′ small enough with respect
to ε, one can choose δ(ε) > 0 such that x−1/rq(r+1)/4r2+ε′ � x−δ(ε), whence the lemma.

Proof of Proposition 6.3 (first assertion). For x � 1, let N(x) be the set of integers d � x such that(−d

p

)
=

(
d

p

)
= −1.

Let M(x) = |N(x)|. One has

M(x) =
1
2

∑
d�x

(
1 −

(
d

p

))
,

assuming x < p for simplicity. Fix ε > 0. From Lemma 6.4, there exist C1(ε) and δ(ε) > 0 such that∣∣∣∣
∑
d�x

(
d

p

)∣∣∣∣ � C1(ε)x1−δ(ε)

if x � p1/4+ε. Therefore ∣∣∣∣M(x) − x

2

∣∣∣∣ � C2(ε)x1−δ(ε).

Taking x � p1/4+ε, xδ(ε) > 4C2(ε), and x > 4, one obtains M(x) > 1. Note that the preceding
conditions can be written x � C3(ε)p1/4+ε. Let � be the smallest element of N(x). It is necessarily
prime by multiplicativity. If � ≡ 3 mod 4, set d1 = �, otherwise set d1 = 4�: then −d1 is a fundamental
discriminant. Now let N3(x) be the subset of integers d ∈ N(x) such that d ≡ 3 mod 4 and d is
prime to �. Set M3(x) := |N3(x)|. If N3(x) is not empty, it clearly contains an element d2 such
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that −d2 is a fundamental discriminant. To complete the proof of the proposition, it is therefore
sufficient to show that M3(x) > 1 if x � p(1/4)+ε. One writes

M3(x) =
∑

d�x,(d,�)=1

1
4
(ε2(d) − χ4(d))

(
1 −

(
d

p

))
,

where ε2 is the trivial character modulo 2 and χ4 is the non-trivial character modulo 4. Using the
Möbius function, this reads

M3(x) =
∑
e|�

µ(e)
∑

d�x/e

1
4
(ε2(de) − χ4(de))

(
1 −

(
de

p

))
.

We estimate the four terms obtained by expanding the inner sum. The first one is

S1 =
1
4

∑
e|�

µ(e)ε2(e)
∑

d�x/e

ε2(d) =
x

8

(
1 − ε2(�)

�

)
+ O(1),

and the second one is

S2 = −1
4

∑
e|�

µ(e)χ4(e)
∑

d�x/e

χ4(d) = O(1),

so

S1 + S2 =
x

8

(
1 − ε2(�)

�

)
+ O(1).

The latter terms are

S3 = −1
4

∑
e|�

µ(e)ε2(e)
(

e

p

) ∑
d�x/e

ε2(d)
(

d

p

)
,

S4 =
1
4

∑
e|�

µ(e)χ4(e)
(

e

p

) ∑
d�x/e

χ4(d)
(

d

p

)
.

Applying Lemma 6.4 again gives us

|S3| + |S4| � C4(ε)x1−δ(ε)

for x � (4p)1/4+ε, and matching up those estimates one obtains the proof of the proposition.
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