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Abstract
Generating designs viamachine learning has been an on-going challenge in computer-aided
design. Recently, deep learning methods have been applied to randomly generate images in
fashion, furniture and product design. However, such deep generative methods usually
require a large number of training images and human aspects are not taken into account in
the design process. In this work, we seek a way to involve human cognitive factors through
brain activity indicated by electroencephalographic measurements (EEG) in the generative
process.We propose a neuroscience-inspired design with amachine learningmethod where
EEG is used to capture preferred design features. Such signals are used as a condition in
generative adversarial networks (GAN). First, we employ a recurrent neural network Long
Short-TermMemory as an encoder to extract EEG features from raw EEG signals; this data
are recorded from subjects viewing several categories of images from ImageNet. Second, we
train a GAN model conditioned on the encoded EEG features to generate design images.
Third, we use the model to generate design images from a subject’s EEG measured brain
activity. To verify our proposed generative designmethod, we present a case study, in which
the subjects imagine the products they prefer, and the corresponding EEG signals are
recorded and reconstructed by our model for evaluation. The results indicate that a
generated product image with preference EEG signals gains more preference than those
generated without EEG signals. Overall, we propose a neuroscience-inspired artificial
intelligence design method for generating a design taking into account human preference.
The method could help improve communication between designers and clients where
clients might not be able to express design requests clearly.

Key words: deep learning, neurocognition-inspired design, neuromarketing, cognitive
understanding, generative adversarial networks, personalized design

1. Introduction
Automatically generating a designwith preferences has been an on-going challenge
in the design domain. Many deep learning methods have been proposed to
generate designs. For example, image style transfer (Efros & Freeman 2001;
Dosovitskiy & Brox 2016; Gatys et al. 2016; Isola et al. 2017a) can be used to
generate an image with the original content but different style features. Generative
bionics design (Yu et al. 2018) employs an adversarial learning approach to
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generate images containing both features from the design target and biological
source. However, these artificial intelligence (AI) image generationmethods do not
consider human aspects, which means the results are generated in variations but
lack human cognition input. Consideration of human aspects in a design process is
vital in the design field (Cooley 2000; Carroll 2002; Vicente 2013). A person’s
preference for a design can be significant and intuitive, and sometimes an indi-
vidualmay not precisely knowwhat their real preferences are. Therefore, being able
to capture human preference (as an embodiment of design solution) and integrate
the preference into the generation process may lead to a significant improvement
in AI-aided generative design. Recent advancements in neuroscience, especially
deep learning-based brain decoding techniques (Palazzo et al. 2017; Shen et al.
2019; Tirupattur et al. 2018) show potential for reconstructing a seen or imagined
image from brain activities recorded by electroencephalogram (EEG), functional
magnetic resonance imaging (fMRI) andNear-Infrared Spectroscopy (NIRS). This
has provided the impetus to explore a novel neurocognition-inspired AI design
method as presented in this paper by filling the gap between human being’s brain
activity and AI visual design.

In this study, we explore whether the brain signal (EEG)-informed generative
method could capture human preference. An attempt has been made to add an
aspect of human cognition into a deep learning design process to generate design
images taking account of a person’s preference. As human cognition involvesmany
factors, to limit the scope of cognition here, only human preference for potential
styles has been explored. A neuroscience-inspired AI design method is proposed,
with a generative adversarial networks (GAN) (Goodfellow et al. 2014) framework
conditioned on brain signals. This framework enables cognitive visual-related
styles to be reconstructed. Figure 1 illustrates a schematic of the proposed process.
The framework is composed of two stages, a model training stage and a utilizing
stage. In the training stage, firstly, an image presentation experiment is used to
explore the relationship between the presented image and corresponding brain
signals when viewing the image. An encoder is trained to extract the features from
raw EEG data. Second, a generator is trained using a GAN framework conditioned
on the encoded brain signal features to reconstruct the presented image. After we

Figure 1. Overview of the process of brain signal conditioned design image generation.
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obtain a fully convergedmodel, in the utilizing stage, the trainedmodel is then used
to reconstruct the preferred design images in an imagery experiment. Given the
brain signals related to the imagination of preferred design, the trained model
could be used to generate images that probably contain the preferences.

Both visual examination and quantitative experiments were conducted for a
case study and it was shown that the proposed neuroscience-inspired AI design
method could generate some design images people preferred. The experiment
successfully demonstrated that desired design images can be generated using the
brain activity signals recorded when subjects are imagining a product they prefer.
The neuroscience-inspired design approach could be embedded directly into other
design processes with the understanding of design cognition incorporated. For
example, by using this approach in fashion and product design, one could explore
the cognition of possible preference on materials, patterns and shapes. Such
learned brain states could contribute to better design choices. This approach could
potentially also provide a new way for personalized design, for example, a person-
alized gift design with customization for the recipient.

The main contributions of this paper are summarized as follows.
(1) A neuroscience-inspired AI design method to generate designs taking into

account the subject’s preference by employing EEG measured brain activity. To
verify whether the generated product images with preference EEG signals gain
more preference than those generated without EEG signals.

(2) A new framework for communicating the cognitive understanding of
customer requirements, enabling, for example, designers to have a visual under-
standing of what their clients want or their ideas through pictures not words.

2. Related work
Three scientific areas have inspired this research. In the first section, machine
learning technology for generating art and design works has been reviewed, and the
problem of current methods has been described. Second, to solve the current AI
generative design problem, neuroscience-inspired design methods are explored.
Current neurosciencemethods do provide somemeans and potential for capturing
a human brain’s activities and representing design cognition. In order to transform
brain signals into visual designs, the third area considered concerns using deep
neural networks to classify, generate and reconstruct visual images from brain
activities (EEG and fMRI). Taking inspiration from these three areas of study, a
framework is proposed where brain activities are adopted as input to introduce
human cognition in a GAN-based generative design process.

2.1. Deep learning for design

Regarding the purpose of this study, it is worth discussing the overlap between
design science and computational creativity. Computational creativity refers to a
system that exhibits behaviours that unbiased observers would deem to be creative
(Colton & Wiggins 2012). Since deep learning has become more prevalent and
powerful in the computer science field, systems have become more intelligent and
able to complete creative tasks, such as visual art, poetry, music and design
(Loughran & O’Neill 2016; Chen et al. 2019). By summarizing perspectives from
psychology, philosophy, cognitive science and computer science as to how
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creativity can be measured both in humans and in computers, Lamb et al. (2018)
make recommendations for how to evaluate computational creativity from per-
spectives including person, process, product and press. This is in line with the
purpose of our research, as we attempt to reveal the implicit connection between
person and product by investigating whether a human’s preference can be embod-
ied in AI designs. In previous GAN based AI design research, for example, the
approach for design ideation by Chen (2019), human’s judgement is mainly
involved in the post process of AI generation, which results in inappropriate
evaluation in terms of computational creativity.

Several deep neural network approaches for image generation have been
proposed recently, such as natural image generation (Brock et al. 2018), human
face generation (Karras et al. 2018) and the neural style transfer model (Gatys et al.
2016; Johnson et al. 2016; Li & Wand 2016; Zhu et al. 2017), which can generate
images which contain the content of the given image with style features from the
artistic images. Isola et al. (2017b) investigated the image transfer problem which
generates new images from photos and applied also to human-drawn sketches.
Karras et al. (2018) proposed an image-to-image translation method which
translated an image from a source domain X to a target domain Y (using unpaired
examples). An image compositingmethodwas proposed by Luan et al. (2018). This
copied an element from a photo and pasted it into a painting while maintaining
spatial and inter-scale statistical consistency. Dong et al. (2017) explored semantic
image manipulation by generating realistic images from an input source and a
target text description that not only match the content of the description but also
maintain text-irrelevant features of the source image. Elgammal et al. (2017) used
creative adversarial networks to automatically generate artwork bymaximizing the
deviation from established styles and minimizing the deviation from art distribu-
tion. In a more high-level exploration, researchers have started to apply deep
learning in auto design generation. Yu et al. (2018) proposed DesignGAN to
generate a shape-oriented bionic design that maintains the shape of the design
target and combines the features from the biological source domain. Also inspired
by bionic design, Duncan et al. (2015) presented a method for generating zoo-
morphic shapes by merging a man-made shape and an animal shape. One method
employed by Bernhardsson (2016) generates font designs by walking through their
latent space. Sbai et al. (2018) use a generative adversarial learning framework to
generate inspirations for fashion design, creating original and compelling fashion
designs to serve as an inspirational assistant.

In addition to the direct image generation technology summarized above, there
are also some methods considered to improve the quality of an image, such as the
image inpaintingmethod investigated by Liu et al. (2018), which could fill in ‘holes’
in an image. This uses partial convolutions, where the convolution is masked and
renormalized to be conditioned on only valid pixels. Also, the image colourization
method was investigated by Nazeri et al. (2018), which could generate an image
with plausible colours based on the adversarial learning framework. Some
approaches have enabled the development of design applications, for example,
Prisma (Anon n.d.), a photo editor that turns a photo to an artwork.

However, these approaches mainly focus on automatically generating new art
and design images with the features from input images. A problemwith this type of
generative creativity is the postgeneration evaluation since the generation is
completely random.How tomake a selection from a large number of automatically
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generated designs remains a challenge. The user is a crucial part of the traditional
design process; therefore, consideration of human aspects in the design process is
essential, which is missing in the current auto AI design generation approaches.
How to generate a desirable design with the preference from clients is a key
question in our research. To integrate human aspects into the design process, we
explored neuroscience-inspired design and a deep learning framework condi-
tioned on brain signals is described in the next two subsections.

2.2. Current neuroscience-inspired design

Noninvasive methods for measuring human brain activity that have been devel-
oped include EEG, fMRI and NIRS. EEG measures subcranial electrical signals
from electrodes in contact with the scalp. Neuroscience has inspired many devel-
opments in design, such as understanding cognitive neurofeedback from clients,
building and developing new products and evaluating advertizing. For example,
neuroimaging has been used in understanding packaging design to help explain
how packaging design confuses the consumer (Basso et al. 2014). Velasco et al.
(2015) have presented an experimental research programme on evaluating the
impact of different orientation of design elements in product packaging. Further-
more, to understand the consumer psychology of a brand, Plassmann et al. (2012)
have reviewed the applications of marketing and also describe issues for future
research. In a review of neuroscience-inspired design (Spence 2016), one problem
of commercial neuromarketing was noted that the results provided by neuroim-
aging are a clear answer to a ‘black-and-white’ question rather than a discrimi-
nating analysis of a ‘shades of grey’ question. Inspired by this review, the potential
of introducing neuroscience into a deep learning framework has been explored,
where the machine could not only provide a response to a ‘black-and-white’
question but also show other potential visualizations relating to a ‘shade of grey’
intuition.

2.3. Brain signal conditioned deep learning framework

Machine learning methods have been applied to both EEG and fMRI to help
understand visual images, for example, Bashivan et al. (2015) proposed an
approach for learning the representation from multichannel EEG time-series.
Spampinato et al. (2017) have developed a visual object classifier driven by human
brain signals. Distinct from Spampinato et al. (2017) who used EEG data, Hor-
ikawa et al. explored object decoding from fMRI patterns (Horikawa & Kamitani
2017), which shows that the latent representation of real images (CNN1-8,
HMAX1-3, GIST and SIFTbBOF) can be predicted from the fMRI signals. Both
of these EEG and fMRI results show the potential of brain-based information
retrieval. Furthermore, researchers have tried to generate related visual informa-
tion from the decoded information of brain signals. To decode a brain image from
EEG signals, Palazzo et al. (2017) have combined GAN with a recurrent neural
network model to process EEG signals and reconstructed the viewing images of
participants. Kavasidis et al. (2017) proposed amethod for generating images using
visually evoked signals recorded through EEG. In addition to EEG, fMRI signals are
also widely used. Shen et al. (2019, 2018) have successfully demonstrated that
visual images can be reconstructed from decoded fMRI signals. An unsupervised
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model using variational autoencoder to model and decode fMRI activity in the
visual cortexwas proposed byHan et al. (2019). This work showed the possibility of
projecting both images and corresponded fMRI signals into latent spaces.

These generative brain decoding methods provide inspiration to explore a new
method for design cognitive analysis which takes into account human brain
activity. However, these methods are focusing on a brain decoding approach,
aiming at reconstructing the mental image of what people think about. There is
a lack of exploration of generating a design image with consideration of human
cognition. Previous research has explored the reconstruction of seen images but the
principles could also be relevant to explore human imagination.

3. Method: human-in-the-loop design with machine
learning framework

How to involve human cognition into the AI design process to generate a design
considering personalized preference is the focus of the research presented here.
Human preference can be captured by measuring EEG signals. The process
includes two phases: a training phase to learn a generating function GBD :B!D
which maps the EEGmeasured brain activity B to the corresponding design image
D, and a design phase to utilize the learned generating function and particular brain
signal to generate a product involving human preference.

In the training stage, EEG signals were recorded when subjects were viewing the
‘ground-truth’ images of a design. Subsequently, the brain signals B are encoded into
the EEG features related to the design semantic of the seen image by a Long Short-
Term Memory (LSTM)-based EEG encoder. The EEG features are embedded into
the GAN-based generator as the generation condition, which forces the generative
model to reconstruct imagesD that contain the same design semantic of the original
seen image. In the utilizing stage, the subjects are asked to imagine an example of a
product or a design they prefer, and the measured EEG signal which may contain
favoured design features of the subjects will then be encoded as the input of the
trained generator. The design containing the design features that correspond to the
subject’s imagination will then be created by the generator. Figure 2 illustrates how

Figure 2. Training an EEG conditioned generative model.

6/19

https://doi.org/10.1017/dsj.2020.23 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.23


the EEG encoder and image generator can be trained. Details about how this
framework is implemented will be introduced in the following sections.

4. Experiment implementation
Details of the experiments for the model training process are presented in this
section.

4.1. Participants and equipment

The EEG study included six right-handed student volunteers (three females and
three males) aged between 17 and 30 years old, with normal or corrected-to-
normal vision. All participants gave informed consent to take part in the EEG
experiment and had considerable training in EEG experiments. Our EEG record-
ings were performed using an electrode cap with 64 Ag/AgCI electrodes which
were mounted according to the extended international 10/20 system. An online
50-Hz notch filter was added to avoid power line signal contamination.

Signals were recorded by using a Neuroscan Synamp2 Amplifier (Scan 4.3.1;
Neurosoft Labs Inc., Sterling, VA) and sampled at 1000Hz. Eye blinks were
recorded from left supra-orbital and infra-orbital electrodes, whereas the horizon-
tal eye movement EEG was recorded from electrodes placed 15mm laterally to the
left and right external canthi. The forehead (AFZ) was used for the ground
electrode, and the reference electrode was attached to the left mastoid. All elec-
trode’s impedances were maintained below 5 kΩ.

4.2. Visual stimuli

In this experiment, the stimuli consisted of five different categories of product
images (handbag, headset, mug, watch and guitar) from ImageNet (Fei-Fei et al.
2010), which are widely recognizable and common products to help ensure the
participants had similar familiarity with the stimuli; each category included
50 images. The size of the pictures was resized to 500� 500 pixels and cropped
to the centre of the screen.

4.3. Experiment design

Two separate data collection sessions were conducted consisting of an image
presentation experiment and the preference imagery session. The data collected
from the image presentation session are used formodel training and those collected
from the preference imagery session are used in the model utilization stage. In
order to ensure the quality of the data, an electrode connection checking session
was added before each run. During the experiment, the subject was accommodated
in a sound-attenuated and electrically shielded room and seated comfortably. The
stimuli images were presented in the centre on the screen and at a fixed distance. In
addition, a press button pad was provided for the subjects to give feedback during
the experiment. Subjects were able to stop the experiment at any time.

In the image presentation session (Figure 3), five categories of images were
presented in five runs, each run consisting of one category of 50 images and
separated in five blocks, each block with 10 different images and one repeated
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image. The subjects were required to view the images and press the button on the
board when they saw the repeated images to maintain their attention. At the
beginning of each block, a fixation red cross was presented in the central of the
screen for 1000ms. At the end of each run, 3000mswere added as a rest time. In the
preference imagery session (Figure 4), the subjects were required to visually
imagine their preferred products with a prompt such as ‘Imagine a bag you like’
and follow the instructions that appear on the screen. This session consisted of five
runs and each run contained 10 blocks. First, a fixation red cross was shown in the
centre of the screen for 1000ms. After this, the instruction was presented in the
middle of the screen, and the subjects were asked to visualize the preferred visual
look of the product. Following an audible beep, they were asked to close their eyes
for an 8-s imagination period. After this, the subjects were required to evaluate the
correctness and vividness of their mental imagery on a 5-point scale (Very vivid,
Fairly vivid, Rather vivid, Not vivid and Cannot correctly recognize the target) by
pressing the button of the box. The items evaluated as ‘Cannot correctly recognize
the target’ are removed from the dataset. In the end, subjects were also required to
draw down the image they imagined after each block. A total of 3000ms refreshing
timewas added before and after each block. The subjects could stop the experiment
at any time during the experiment.

After we obtained the raw data, the data were preprocessed by EEGLAB. The
preprocessing procedure includes four stages, the channel selection stage, the
epoch extraction and remove baseline stage, the rejecting artefacts stage and a
data filtering stage. The channel selection was aimed at rejecting some bed signal
channels whichmay influence data analysis. Then we extracted epoch according to
the event markers and removed the baseline by subtracting the value of the first
data from the original data. In the rejecting artefacts stage, we run both artefact
correction (Zeng et al. 2013) and independent component analysis (Zeng et al.
2013) to reject the irrelevant noise artefact such as ocular artefacts and muscle

Figure 3. Image presentation experiment. Images were presented in the centre of the display with a central
fixation cross. Ten images were shown per-block with one repeated image which required subjects to press a
button when saw this image to maintain their attention.

Figure 4. Preference imagery experiment. The onset of each block was started by a central fixation cross. The
8000ms imagery periods were signalled by auditory beeps. Before the first beep, subjects were required to
visualize the preferred product for 4000ms as the preparation of the imagery after. At the end of each block,
subjects were required to evaluate the vividness of their imagination by pressing the button.
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artefacts. In the end, we applied some filters to remove the unwanted frequency and
to maintain meaningful waves for visual recognition and mental imagination.

4.4. Generative model

4.4.1. Training stage one – EEG feature encoder
The objective of this work is to map the stimulated brain signals into the corre-
sponding latent representation of seen images, and thus to build a model to extract
EEG features as correlated to the image features as possible.

A recurrent neural network using a LSTM (Hochreiter & Schmidhuber 1997)
cell was employed to track the temporal dynamics in the EEG data which contains
fundamental information for EEG activity comprehension. LSTMs are common
techniques that have been developed to improve long-term dependencymodelling.
The brain signal is a long time sequence with very high time dependency, which
means the interpretation of the brain activity is not only influenced by the previous
1-ms signal but also influenced by the brain signal long before. Therefore, the
LSTM was used to learn a long-term dependency. Figure 5 illustrates the archi-
tecture of our EEG feature encoder. This is made up of a standard LSTM layer and
two fully connected layers (linear combinations of input, followed by ReLU
nonlinearity). At each time step t, the data of all EEG channels at time t is fed
into the LSTM layer; The output of the LSTM layer at the last time step is used as
the input of the fully connected layers, ReLUnonlinearity is appended after the first
fully connected layer and a Softmax layer is appended after the last fully connected
layer. The learning rate is initialized to 0.0001 and gradient descent is used to learn
the model’s parameters end-to-end. The dataset is split into three sets: 80% EEG
data for training, 10% EEG data for validation, 10% EEG data for testing. Figure 6
illustrates the confusion matrix among five classes, with a total of 1500 EEG data
points (300 per class), which includes 1200 data points for training, 150 data points
for validation and 150 data points for testing. The overall classification accuracy on
the test set which contains five classes is 71.4%. A confusion matrix summarizing
the classification results is shown in Figure 6. It was observed that the error for
headphone-watch was larger, possibly caused by the similar ‘round and ring shape’

Figure 5. EEG feature encoder.
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of the two objects. Examples of images that a headphone is misclassified as watch
have been illustrated on the right of the confusion matrix.

4.4.2. Training stage two – generator network
The general view onmodel architecture is shown in Figure 7. The foundation of the
generator framework is ACGAN (Odena et al. 2016). This generates images based
on the input feature vector and also has the ability to generate images from the
specific category. ACGAN consists of a generative modelG and two discriminative
models Da and Db. The generator G xjcð Þ is trained to capture the target data
distribution pdata xð Þ from the condition EEG feature c of class y and noise
distribution pz zð Þ, and aims to generate images of the target class as real as possible
to make the discriminator recognize the generated images are real. Whereas the
discriminative model Da xjyð Þ is a binary class classifier which distinguishes
whether a sample image belongs to the real image set. The discriminative model
Db xjyð Þ is a multiclass classifier that identifies the image class. Both the generative
and discriminative models are trained simultaneously and play against each other
to minimax the log-likelihood value function V (D, G).

min
G

max
D

V D,Gð Þ¼Ex∈pdata xð Þ logDa xjyð Þþ logDb xjyð Þ½ �
þEz∈pz zð Þ log 1�Da G xjcð Þjyð Þð Þþ log 1�Db G xjcð Þjyð Þð Þ½ �

4.4.3. Generator
The generator consists of five upsampling layers. First, inputs of the EEG represen-
tation which is the element-wise product of the 64-dimensional EEG features and a

Figure6.Confusionmatrix for the EEG encoder and examples ofmisclassified images. The (i, j) element in the
confusion matrix represents the frequency product from the ith class, classified as jth class.
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randomGaussiannoise have beenmade. The input vector is then spatially upsampled
by four times by the first transposed convolutional layers and output 512 feature
maps. After that, the number of feature map halves and the feature map size doubles
after each remaining transposed convolutional layer. Finally, the final output has
been obtained as the 64� 64-pixel images with three colour channels. Batch nor-
malization (Ioffe & Szegedy 2015) and LeakyReLU (Maas et al. 2013) nonlinearities
have been appended after each transposed convolutional layer (Table 1).

4.4.4. Discriminator
The discriminator consists of twomodules: a convolutional module used to extract
the image feature and a classification module used to distinguish the generated
image and identify the image category as well.

Convolutional module. The convolutional part of the discriminator is made up
of 10 convolutional layers. This takes as input coloured 64� 64 images. We have
64 feature maps after the first layer and the number of feature maps reaches
512 after being doubled at layers 3, 5 and 8, respectively. The featuremap size starts
at 64� 64 and is halved after eachmax-pooling layer appended after the 2, 4, 7 and
10 layers and become 4� 4 after the final layer. Batch normalization and LeakyR-
eLU nonlinearities are appended after each convolutional layer.

Classification module.After the convolutional module, a 4� 4� 512 sized data
sample is obtained. The data are flattened and fed into two classifiers, a binary
classifier to distinguish generated images from the real image and a multiclass
classifier to identify the image category. The binary classifier consists of two fully
connected layers. After the first layer, the output size is 1024 and 1 after the second
layer. A ReLU activation function is appended after the first fully connected layer,
and a sigmoid layer is added after the second fully connected layer. The multiclass
classifier consists of three fully connected layers. The first layer reduces the number
of features to 1024 and the features number remains unchanged after the second

Figure 7. General view on model architecture.
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layer. Then, the data are fed into the last layer where the number of features is
reduced to the number of image categories. A ReLU activation function is
appended after the first and the second layer and a Softmax layer is added after
the last fully connected layer.

4.4.5. Training procedure
To balance the generator and discriminator, we train the generator 10 times per
iteration unless the loss of the generator is less than the 10-fold loss of the
discriminator. The training procedure for each epoch is shown in Figure 8. We
only have 50 EEG correlated images for each class. To avoid the overfitting
problem on direct training GAN on a small dataset, we train our GAN model in
two stages. In the first stage, we train the GAN with the larger dataset which is
gathered manually based on the ImageNet. This dataset contains 10,000 images in
total (2000 images per class with a total of five classes), only including images
without EEG signals. All conditioned EEG features are set to the average feature
value of the class that the image belongs to. In the second stage, we retrain the GAN
model for 50 more epochs on the small dataset that contains 50 EEG-available
images per class, providing the correct EEG feature.

4.5. Utilizing stage – generating images with trained models with
results verification

Following the method described above, the EEG data collected from the image
presentation session were used to train the encoder, and then 10,000 images
gathered manually from the ImageNet were used to train the generator. After we
obtained a model where both the encoder and generator reached the performance
mentioned above, we started to use the model in the design cases. In the model
utilizing stage, the data collected from the preference imagery session were input
into the model to generate the correlated mental image.

To verify whether this EEG-driven generative method could have a higher
chance to capture human preference, a questionnaire survey was conducted in
order to provide a proof-of-concept. The control group and intervention group of

Table 1. Hyperparameters architecture of the generator

Operation Kernel Strides Padding
Feature
maps Map size

Transposed convolution, batch normalization,
activation-LeakyRELU

4� 4 1 0 512 4� 4

Transposed convolution, batch normalization,
activation-LeakyRELU

4� 4 2 1 256 8� 8

Transposed convolution, batch normalization,
activation-LeakyRELU

4� 4 2 1 128 16� 16

Transposed convolution, batch normalization,
activation-LeakyRELU

4� 4 2 1 64 32� 32

Transposed convolution, activation-tanh 4� 4 2 1 3 64� 64
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generated images (with preference EEG/without EEG) were involved in this
human study survey. During the survey experiment, 200 generated images were
randomly selected from the results generated from our model. Among them,
100 images were selected from the results generated with preference EEG signal,
and the other 100 images were selected from these generated without EEG signals.
Each set of 100 images contains five classes of images and 20 images per class. Six
participants who had been involved in both the image presentation session and
preference imagery session evaluated these images. Participants were required to
rank the images by preference level 1–10 (10 represents most preferred) from the
selected images with 100 images from each group. For each trial of the evaluation
experiment, the participants viewed a printed set of generated images and were
required to rank the images. After this survey experiment, statistical analysis was
performed for each category in two groups. The evaluation results indicated that
the design images which are generated by preferred brain signals gained a higher
chance to generate a preferred image.

5. Results and analysis

5.1. Results

Generated mental image results from both the image presentation experiment and
the preference imagery experiment is shown in Figure 9. In the figure, the seen
image results from the image presentation experiment is shown in the grey frame,
which is a baseline of the work to allow for subsequent evaluation of the perfor-
mance of the visual image reconstruction model. After reconstructing the seen
image from the image presentation experiment, the trained model which fully
converged in the training process is used to reconstruct the imagery image from the
preference imagery experiment, which is shown in the red frame in Figure 9.

Figure 8. Training procedure for each epoch.
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5.2. Visual examination and quantitative study for proof-of-concept

To verify whether the participants preferred the generative design results condi-
tioned on preference brain signal than those without brain signal, both visual
examination and quantitative studies were performed. Visual examination was
used for checking whether our model has achieved a meaningful quality, that the
EEG encoder maintains a good classification accuracy and the image generator
reaches the image generation requirement. A quantitative study was performed for
comparing whether the score of controlled with preferred EEG ranked higher than
the one without EEG from the questionnaire survey. The details of the question-
naire survey are described in the previous Section 4

In the qualitative study, the generated results demonstrated that the proposed
approach successfully generates different designs with multiple colour and shape
features from different product classes. As mentioned in Section 4.4.1, the overall
classification rate of the encoder is 71.4%. To judge the realism and diversity of the
produced image, we use the Inception score (Salimans et al. 2016) which is
commonly used to evaluate the quality of images generated byGANs. An inception
model, score measures two things simultaneously. The first concerns whether the
images contain meaningful items, indicated by the distribution p yjxð Þ having low
entropy. The other is whether the images have variety; the marginalÐ
yjx¼G zð Þð Þdz have high entropy. Therefore, we obtain the final inception score

as exp ExKL p yjxð Þkp yð Þð Þð Þ. An inception score of 4.9 was obtained on the
generated images. This is similar to the inception score of 5.1 achieved in the study
by Spampinato et al. (2017) while we have much fewer classes of images for
training.

The quantitative study result is from the questionnaire survey, in which all
participants were required to rank the image from 1 to 10 based on their preference.
Figure 10 shows the mean value and its standard deviation of each category from
the two groups of generated images (without EEG signal and with preferred EEG
signal). The difference between the two groups is assessed using the Wilcoxon
signed-rank test. All group tested had statistically significant differences (p< .05) in

Figure9. Seen image reconstruction results in the grey frame (left) and imagery preference design image in red
frame (right) reconstruction results.
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their means with the EEG being greater than the non-EEG for all cases, except for
the Guitar class (p= .07). Please refer to Figure 10 for more details. The analysis of
the two study experiments (qualitative and quantitative) indicates that the images
generated with preference EEG signals gained more preference than images
generated by the generator itself. Comparing the scores from two controlled
groups, the results also show that the generative model with the input of preference
EEG signal had a higher chance to generate an image that people preferred. We
observed that the reconstructed imagined images have a larger variety of colour
and shape features than the reconstructed seen images. The preference imagery
experiment results also show that these preferred products generated by the deep
learning method through brain activities have combined multiple design features
from various kinds of products which learned from previous designs. Also, we take
the output from the LSTM layer as the EEG feature is not the final output, as we
believe it may contain other features such as the shape or colour or products’ style.
Therefore, it may be inferred that these generated designs contain mixed colour
and shape features which have been filtered by human cognition by inputting brain
signal into a deep generative model.

6. Discussion and observations
The findings from this study show some potential of generating designs with
human preference, which also indicate some future applications. For example, to
apply in design cases, designers could have a prejudgment based on these generated
images. One of the generated bags in our case study, for example, has multiple
colours, fromwhich we could predict that the user actually wants a ‘very lively bag’.
Similarly, with the grey bag, we could infer that an office style bag is what they
might prefer. Such a discriminating analysis of ‘shades of grey’ design question
could be applied to different design processes. Product designs dominated by the
shape are more accepted than the designs dominated by function such as a guitar.
This may reflect that the preference for shape is better captured by EEG signals.
Further study of this hypothesis could provide additional evidence and insights
into this finding.

The limitations of current results include limited dataset and limited model
control. To improve the accuracy of the model, a larger dataset would need to be
collected. In this work, we only train the model with six participants. In future
applications, different training datasets could be involved in training according to

Figure 10. Human study results of the design case study.
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different application scenarios. For example, in a personalized design task, the EEG
encoder could be trained by each client; to design a product for a group of people,
the EEG encoder could be trained by data collected from these focused group. The
generation ability of model is depended on different, to choose the right model
training strategy will be the key thing for further application. In addition, another
limitation is the diversity of the participants, our participants are volunteers from
our research group.Mixed background participants need to be considered in future
research. As one of the main contributions, a neuroscience-inspired AI design
framework is proposed in this research. The design application based on this
framework could be applied in many design areas, such as verifying the effective-
ness of design, user or marketing research and any other user-focused design
application. Furthermore, this method could also benefit to human–computer
interaction, future robotics and wearable medical devices.

7. Conclusions
In this paper, a Neurocognition-inspired AI design method has been proposed
with machine learning to automatically generate a design taking into account
personalized information. The case study results have indicated that the images
generated with preference EEG signal were more preferred than images generated
by the generator itself. We are not focusing on decoding human preference in this
study. Comparing with the traditional AI design generation method, adding brain
signal EEG to the generation process helps machine to capture the human aspect,
and had a higher chance to generate an image that people preferred. Although the
proposed approach has only been applied for five product design cases, it could
potentially be used in other design cases and for different design tasks such as
design evaluation and branding strategy. In the research work to date, due to the
limited data in the model training process, the case study only contains design
semantics from these five categories. Data in additional categories can be collected
in order to contain more features. The experiment indicates a new way of
communicating human cognitive content. Embedding the proposed a
Neurocognition-inspired AI design method into different design processes could
help designers understand users’ requirements and preferences more accurately. A
new approach to design synthesis has been demonstrated to be possible, based on
existing neurocognitive techniques. The results may help designers think beyond
user cases by having direct visualization of what the user may like. The application
of this neuroscience-inspired AI design method could, first, could be used as a
method of user research; second, works as a primary method of user–computer
interaction which could involve in any stage of the design process; third, gives a
new approach to traditional design evaluation.
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