Surface Evaluation of Photoactivated TiO2 Films

R. M. Woo-Garcia¹, L. García-González¹, A. L. Herrera-May¹, C. Zuñiga-Islas², W, Calleja-Arriaga³, J. Molina-Reyes², M. Pacio-Castillo³ and F. López-Huerta^{4,*}

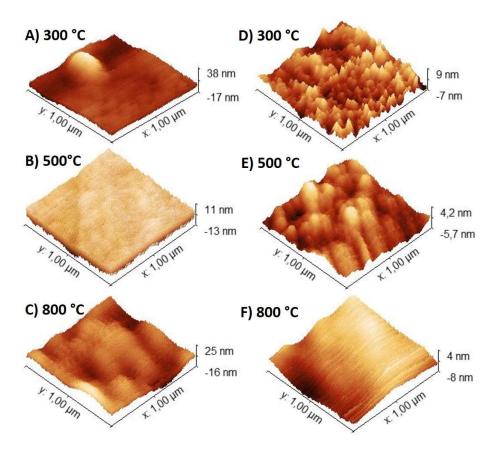
In recent years, the applications of titanium dioxide (TiO₂) films include water and medical treatment [1]. These applications depend on the following characteristics of the TiO₂ films: specific surface area, crystal and grain size, concentration and dopant. TiO2 films can be synthesized through different methods and used to produce biosensors due to their high biocompatibility [2-3]. We present the morphology of TiO₂ films, deposited on a quartz substrate at room temperature by DC magnetron sputtering using a titanium target with a diameter of 50.8 mm. A TiO₂ ceramic material covers 20% of the titanium target surface. The quartz substrate is cleaned in an ultrasonic bath of acetone (C₃H₆O), ethanol (C₂H₆O) and distilled water for 5 minutes at room temperature. The deposition is made under an Argon (Ar) atmosphere and a chamber pressure of 7.46 E-6 mbar. The TiO₂ films are postdeposition annealed at different temperatures (300, 500 and 800 °C). The films are treated with ultraviolet light (UV) for 15 minutes at room temperature to photoactivate the surface. To characterize the topography of the TiO₂ films, the samples are analyzed by atomic force microscopy (AFM) in a non-contact mode and processed using Gwyddion software. The AFM technique showed the transition of anatase to rutile phase. Figure 1 shows typical topography three-dimensional (3D) images (1 μm × 1 μm scan area) of TiO2 films annealed at different temperatures. Table I showed the measured root-mean-square (RMS) surface roughness changes from 2.28 nm to 7.18 nm when treated with UV, this change causes a greater affinity with neuronal cells.

References

- [1] J. Molina-Reyes, et al., Catalysis Today (2018).
- [2] F.Lopez-Huerta, et al., Materials. 7 (2014) 4088-4100.
- [3] B. Cervantes, et al., Materials. 9 (2016) 1-11.

Table 1. Average values of the crystalline grain size of TiO2 films annealed at different temperatures. Heat Treatment (°C) RMS (nm) with UV RMS (nm) without UV

300	7.18	2.28
500	4.92	1.38
800	5.47	2.36


¹ Micro and Nanotechnology Research Center, Universidad Veracruzana, Adolfo Ruiz Cortines 455, Veracruz, Mexico

² National Institute of Astrophysics, Optics and Electronics, Luis Enrique Erro 1, Puebla, Mexico

³ Research Center on Semiconductor Devices, Benemérita Universidad Autónoma de Puebla, Adolfo Ruiz Cortines 455, Puebla, Mexico

⁴ Faculty of Electrical and Electronic Engineering, Universidad Veracruzana, Adolfo Ruiz Cortines 455, Veracruz, Mexico

^{*} Email: frlopez@uv.mx

Figure 1. AFM images of the surface of TiO₂ films annealed at different temperatures: A-C) with UV, D-F without UV.