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Propagation of fluid-filled fractures by fluid buoyancy is important in a variety
of settings, from magmatic dykes and veins to water-filled crevasses in glaciers.
Industrial hydro-fracturing utilises fluid-driven fractures to increase the permeability of
rock formations, but few studies have quantified the effect of buoyancy on fracture
pathways in this context. Analytical approximations for the buoyant ascent rate facilitate
observation-based inference of buoyant effects in natural and engineered systems. Such
analysis exists for two-dimensional fractures, but real fractures are three-dimensional
(3-D). Here we present novel analysis to predict the buoyant ascent speed of 3-D fractures
containing a fixed-volume batch of fluid. We provide two estimates of the ascent rate: an
upper limit applicable at early time, and an asymptotic estimate (proportional to t−2/3)
describing how the speed decays at late time. We infer and verify these predictions by
comparison with numerical experiments across a range of scales and analogue experiments
on liquid oil in solid gelatine. We find the ascent speed is a function of the fluid
volume, density, viscosity and the elastic parameters of the host medium. Our approximate
solutions predict the ascent rate of fluid-driven fractures across a broad parameter space,
including cases of water injection in shale and magmatic dykes. Our results demonstrate
that in the absence of barriers or fluid loss, both dykes and industrial hydro-fractures can
ascend by buoyancy over a kilometre within a day. We infer that barriers and fluid loss
must cause the arrest of ascending fractures in industrial settings.
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1. Introduction

1.1. Motivation
Fluid-filled fractures that propagate due to the buoyancy of the fluid are found in
many geological settings. These fractures are discussed in the literature under various
names including gravity-driven hydraulic fractures (e.g. Salimzadeh, Zimmerman &
Khalili 2020), buoyant, liquid-filled cracks (e.g. Dahm 2000; Taisne & Tait 2009) and
fluid-filled fractures under the influence of weight contrasts (e.g. Pollard & Townsend
2018). Examples of this phenomenon include dykes and veins in the crust, as well as
melt-water-filled crevasses in glaciers. Understanding the rate and extent of propagation
of such fractures is critical for making useful, quantitative predictions. For example, the
speed with which a batch of magma rises through the crust determines the duration of the
warning period between geophysical detection of a dyking event and the volcanic eruption.
Fracture ascent speed and distance also have implications for industrial operations.
This process will affect the size and shape of the final fracture footprint (Peirce 2016;
Salimzadeh et al. 2020).

Field and laboratory observations of fluid-driven fracture provide some indication
of typical rates of ascent; for example, in basaltic systems this is of the order of
millimetres per second to ∼0.5 m s−1 (Tolstoy et al. 2006; Mutch et al. 2019).
Observations of supraglacial lakes suddenly draining through growing crevasses indicate
similar propagation rates (Das et al. 2008; Stevens et al. 2015). Although there is
evidence that water- and gas-filled fractures can ascend through the crust (Schultz
2016; Cartwright et al. 2021), this process has not been observed directly. Estimates
based on geochemical analysis give ascent rates of ∼0.01–0.1 m s−1 (one kilometre
per day) (Okamoto & Tsuchiya 2009). Despite these estimates and their relevance for
industrial operations, many published analytical and numerical models of industrial
hydraulic fracturing do not account for the effect of buoyancy. Hence the influence of
buoyancy on the ascent of fluid-filled fractures in this context may appear negligible
or non-existent (e.g. Perkins & Kern 1961; Nordgren 1972; Detournay 2016). Here we
show that buoyancy is an important control and should not be neglected. In industrial
settings, ascent of hydro-fractures can be terminated at interfaces such as stiffness and
stress contrasts introduced by layering (Bunger & Lecampion 2017). Furthermore, fluid
can leak off into the surrounding porous rock formation, leading to closure of the fracture
(Detournay 2016). We discuss the existing literature on buoyancy-driven hydro-fractures
in the next section, highlighting the conditions under which these ascend, and the speed of
propagation.

1.2. Previous work and current aims
Analytical predictions of the speed and height of a fracture have previously been obtained
from two-dimensional (2-D) models. The 2-D models assume plane-strain elasticity, where
there is zero strain out of the plane of interest (x–z) such that the fracture has an infinite
extent with invariance along its third dimension (y). The 2-D models cannot capture effects
of the finite lateral extent in y of all real fractures. Nonetheless they provide useful physical
insight and can be accurate along a central axis if the fracture is sufficiently broad in the y
direction.

Two classes of 2-D buoyant fractures have been characterised analytically. These are
categorised according to the fluid source, either a constant area-injection rate or a fixed
finite area (here, area refers to the volume per unit length in y). Early workers obtained
solutions to the problem of a constant injection rate (e.g. Lister & Kerr 1991; Roper
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& Lister 2007; Rivalta et al. 2015). In these studies, injection is along a line-source
of infinite length, at a rate that has units of volume per second per distance along the
source (m2 s−1). At later times in these models, the fracture head ascends buoyantly
above a constant-aperture tail, which transmits a steady supply of fluid upwards to
the head.

In the other fluid-source class, Spence & Turcotte (1990) estimated the time-dependent
ascent speed of a fixed, finite-area batch of fluid. Unlike the case of constant injection rate,
this model predicts a diminishing aperture of the fracture tail, slowing fluid supply to the
head, and hence causing the rate of propagation to diminish with time and ascent distance.

Analytical approximations for both of these classes have been shown to be consistent
with 2-D numerical solutions (Lister 1990b; Roper & Lister 2007; Dontsov & Peirce 2015).
The numerics confirm that the elastic constants and material toughness influence the shape
of the propagating head but not the ascent speed. The latter is determined by the width of
the tail.

Three-dimensional (3-D) fractures, with finite extent in the y direction, pose additional
challenges to analysis. Workers have begun to investigate the case of constant rate of
volume injection in 3-D (Möri & Lecampion 2022), proving approximate analytical
solutions for the height as a function of time, the width and the aperture of the fracture.
In contrast, there has been no analysis of the ascent speed of a 3-D fracture containing
a fixed volume of fluid. And yet such analysis would be valuable in various contexts. In
volcanology, where the volume of intrusions is often well-constrained by geodetic data, a
3-D solution would help to estimate parameters that drive dyke ascent through the crust.
In industrial operations, both the source rock properties and volumes of fluid injected are
well constrained, but currently there is no simple way of predicting how fast an injected
batch of fluid will ascend by buoyancy.

Here we develop an analytical solution that predicts the size and ascent speed of a
3-D fracture driven by a finite volume of buoyant fluid. In developing this solution,
our first aim is to provide an upper bound on the ascent speed of fractures that are
propagating due to the buoyancy of a finite batch of fluid. Our second aim is to understand
how this ascent speed decays with time, as in the 2-D solution of Spence & Turcotte
(1990).

Our strategy is to use a state-of-the-art numerical simulator (Zia & Lecampion 2020)
to produce 3-D solutions to the full, nonlinear equations. We treat these as a benchmark
for our novel analytical results, to show their applicability. The manuscript is organised as
follows. In the next section we review existing analytical approximations and introduce the
simulator of Zia & Lecampion (2020). We use this to simulate the ascent of a finite-volume
fluid batch, reviewing this simulation in detail to describe the problem. In § 3, we use these
insights and proceed to derive equations describing the ascent speed of a 3-D, finite batch
of fluid. In § 4, we use 3-D simulations to test the validity of these results across a range
of scales. We then test the ability of our approximations to predict the ascent speed of
oil-filled cracks in gelatine solids. Lastly, in § 5, we discuss the implications of our results
in relation to selected case studies, detailing limitations and potential avenues of future
research.

2. Background

In this section we first review approximate analytical solutions for 2-D and 3-D fractures,
then consider numerical simulators that solve the full, nonlinear problem.
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2.1. Analytical solutions

2.1.1. Critical lengths and volumes
A fluid-filled fracture will either ascend or descend, depending on the density of the
fluid relative to that of the surrounding solid medium. This has been well documented
in analogue experiments by comparing, for example, the injection of air and mercury into
gelatine solids as described in Heimpel & Olson (1994). For simplicity here, we consider
only positively buoyant (less dense) fluids, and hence we model only fracture ascent, noting
that there is no loss of generality in the solutions derived.

Fluid-filled fractures are driven to ascend by a weight contrast �γ between the
fluid and surrounding rock. More specifically, the buoyancy force is defined as the
difference between the vertical gradient of the horizontal stress in the rock column and
the volume-specific weight of the magma contained within a vertical fracture. Assuming
the horizontal and vertical stresses are equal, i.e. a lithostatic state of stress, then �γ =
(ρr − ρf )g (Secor & Pollard 1975), where ρr and ρf are rock and fluid density, respectively,
and g is the acceleration due to gravity.

Weertman (1971) and Secor & Pollard (1975) showed that fluid-filled fractures can
ascend through their solid host by hydraulic fracturing, provided a critical areal extent
Ac is exceeded,

Ac = (1 − ν)

2μ

K2
c

�γ
. (2.1)

Here ν and μ are Poisson’s ratio and the shear modulus of the host rock, respectively.
The stress intensity factor KI appears as Kc to represent the fracture toughness of the host
rock for mode-I fracture (Tada, Paris & Irwin 2000). This expression for Ac is derived by
requiring that the fracture walls close shut at the lower tip (KI(z = −c) = 0) and that the
upper tip is critically stressed (KI(z = +c) = Kc), where c is the fracture’s half-length and
z the vertical distance from its centre (Pollard & Townsend 2018). Working independently,
Dahm (2000), Salimzadeh et al. (2020), Davis, Rivalta & Dahm (2020), Smittarello et al.
(2021) and Möri & Lecampion (2022) each extended the 2-D analytical model of Secor
& Pollard (1975) to quantify the critical volume of fluid for ascent of a 3-D fracture. The
solutions derived in these studies have the same scaling with parameters but differ by
around 10 % because of different numerical constants. The solution for critical volume by
Davis et al. (2020) is

Vc = (1 − ν)

16μ

(
9π4K8

c

�γ 5

)1/3

. (2.2)

When the volume of fluid in a fracture exceeds Vc, the ascent of the fracture and contained
fluid is self-sustaining. By this we mean that the ascent is due to buoyancy alone, and
requires no additional forces such as a driving pressure (e.g. from a pressurised magma
chamber or well bore). As the fracture ascends, the tail of the crack lengthens and thins,
but the fracture head retains a volume sufficient to critically stress the medium ahead of it.
Figure 1 shows numerical solutions, discussed below, which illustrate this.

2.1.2. Ascent rate
Results cited above quantify the critical conditions for buoyant ascent, but not the speed of
that ascent. The latter requires a consideration of the fluid flow within the fracture. In the
tail of the fracture this can be usefully approximated as Poiseuille flow between parallel
plates. At small Reynolds number, lubrication theory gives the mean flow speed v and
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1.0

Figure 1. Numerical simulation of an ascending, finite batch of fluid. In this simulation, 1.95 m3 of fluid is
injected over 130 s. Two views of the fracture are shown at each time. On the left-hand side is a view looking
onto the fracture’s face, shaded by aperture (w) with the tip-line in black. On the right-hand side is a grey
cross-section showing the profile of the aperture along the centre of the crack. The latter has a horizontal
exaggeration of 2 × 104. (a) Analytical solution that defines the radius a. The plotted solution contains fluid
volume V and has a radius such that KI(z = −a) = 0. (b) Numerical simulation of the fracture ascent using
PyFrac (table 1). Simulation times are shown below the respective fractures. The time-dependant analytical
approximation of the fracture’s cross-section is shown as dashed lines (Roper & Lister 2007). The tail height h
from (3.10) is marked with a dot.

areal flux QA as

v = w2

12η
�γ, QA = w3

12η
�γ, (2.3a,b)

where w is the separation of the plates, η is the dynamic viscosity and we have assumed
that the gravity vector is parallel to the walls.

The ascent rate of a 2-D fracture with constant areal flux QA is given by eliminating w
from (2.3a,b) to give (Lister & Kerr 1991)

vQ =
(

Q2
A�γ

12η

)1/3

. (2.4)

This result means that for QA constant, the speed of the upper tip is controlled by viscous
flow through a tail of constant width, which transports buoyant fluid upwards to the
propagating head.
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The ascent rate of a 2-D fracture with constant area A is given by combining (2.3a,b)
with a conservation of mass equation that relates the rate of change of aperture to the
divergence of the vertical flux (Spence & Turcotte 1990). On this basis, Spence & Turcotte
(1990) obtained a solution in terms of the velocity of flow through a half-ellipse with a
fixed area. As this lengthens vertically its aperture decreases, which hinders fluid flow and
slows the ascent of the fracture tip. The rate at which the half-ellipse lengthens therefore
progressively decreases with time. Differentiating with respect to time the equation (22)
of Spence & Turcotte (1990), which defines the z distance between the upper tip and the
initial centre point of the fracture (the injection point), the fracture’s tip velocity is

vA(t) =
(

A2�γ

48η

)1/3

t−2/3. (2.5)

The ascent rate of a 3-D fracture with a constant rate of volume injection was considered
by Lister (1990b). His equation (2.14) provides an approximate 3-D scaling for fracture
height, breadth and aperture at a given injection rate (see also Germanovich et al. 2014).
These scalings have been confirmed by Möri & Lecampion (2022) using 3-D numerical
simulations computed with open-source codes (Salimzadeh et al. 2020; Zia & Lecampion
2020). Möri & Lecampion (2022) show that for a 3-D, constant injection-rate, ascending
fracture, the shape of the tip-line depends on a dimensionless ratio that includes viscosity
and fracture toughness. At early times, close to the injection point, viscous resistance limits
tip-line propagation, resulting in a V-shaped tip line. Whereas later, sufficiently far from
the injection point, fracture toughness limits tip-line propagation and the tip-line at either
side of the fracture is vertical. In this study we are interested in how the ascent speed
decays with time. In the case of buoyant ascent fed by a constant flux, the ascent speed
in the viscosity-dominated regime is v ∝ t−1/6, whereas later, after transitioning to the
toughness regime, the velocity is constant (Lister 1990b; Germanovich et al. 2014; Möri
& Lecampion 2022). These limiting regimes correspond with the asymptotic solutions for
an aperture near the tip-line (Detournay 2004).

The ascent rate of a 3-D fracture containing a constant volume of fluid is not known.

2.2. Numerical methods
We run 3-D simulations of an ascending fluid batch with a constant volume using
a hydro-fracture simulator. This 3-D simulator generates numerical solutions to the
nonlinear governing equations. These solutions guide the development of our approximate
analysis for constant-volume fractures. Comparison of our analytical and numerical
solutions then enables us to determine the validity of simplifying assumptions and assess
the accuracy of our analytical predictions.

We simulate the propagation of buoyancy-driven fractures using the open source code
PyFrac (Version 1.0, https://pyfrac.epfl.ch). The methods and implementation of PyFrac
are extensively documented in Zia & Lecampion (2020). The calculations we present use
the code as described in that original work, and hence we only summarise the algorithm
here to give a sense of its aptitude for solving hydro-fracture problems.

The hydro-fracture problem comprises three coupled physical aspects: fluid flow and
pressure inside the fracture; deformation of the surrounding medium due to the fracture;
and propagation of the fracture’s tip-line into the unfractured medium. These aspects are
independently modelled as low-Reynolds-number fluid flow, quasistatic linear elasticity
and linear-elastic fracture mechanics. Although each is linear independently, their coupling
results in a nonlinear equation system. The time-dependent solution to this system is the
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location of the tip-line, the fracture aperture, and the fluid pressure and velocity. The
PyFrac solver limits the complexity of this problem by restricting solutions to be planar
fractures. This simplification enables precomputation of the Green’s functions required
for the displacement discontinuity method using a fixed-grid mesh (Peirce 2016). The
displacement discontinuity method links fluid pressure inside the fracture to the opening
of its walls and to deformation of the surrounding medium. On the same mesh, the
lubrication equation is discretised using the finite volume method at element centres. The
gradients in fluid pressure determine the rate of flow between cells. Crucially, to avoid
the requirement of ultrahigh mesh resolution near the fracture tip, PyFrac uses near-tip
asymptotic solutions for propagating, fluid-filled fractures. These asymptotic solutions
resolve the subgrid-scale dynamics, and hence are used to assess the propagation criterion
and rate of tip-line motion. By comparison of numerical solutions to existing analytical
solutions (Peirce 2015, 2016; Zia, Lecampion & Zhang 2018; Moukhtari, Lecampion &
Zia 2020; Zia & Lecampion 2020), it has been shown that PyFrac can accurately solve the
coupled hydro-fracture growth problem.

For simulations in the present manuscript, the extent of the meshed domain in the
horizontal direction is 2a, where a is the characteristic crack radius we define below.
The vertical extent of the domain is sufficient to capture propagation of the fracture in
the postinjection, buoyancy-driven regime without remeshing (a distance of 14a). Along
the horizontal direction we use a minimum grid size of 50 elements; the vertical grid
is created such that the elements are square. We note that the meshed domain is only
used to discretise the fracture itself. Displacements and stresses due to the fracture are
described by Green’s functions for an infinite space such that these hold anywhere in
the body. The simulation presented here is initialised with a circular fracture of radius of
a/6. The fracture aperture is a result of a uniform internal pressure such the critical stress
intensity is attained around the tip-line (K = Kc). For this condition, an elapsed time since
the start of injection is determined using an analytical solution, assuming the injection
rate was constant (Detournay 2004). The remaining fluid volume is injected as part of the
simulation, at a constant rate from a point source.

At each time step in the simulation, PyFrac returns the computed front velocity. This
velocity fluctuates with a period of the order of the time step. The fluctuations, however,
are small in amplitude and do not influence the general trend of the velocity. To remove
them, we apply a moving average with a sampling width of 40.

The fluctuations arise from the numerical time-stepping scheme used to solve for the
position of the moving fracture front, a scheme that is first-order accurate in time (Peirce
& Detournay 2008). To compute the advance of the front, the user of PyFrac can choose
between three time-stepping schemes: implicit; explicit; and predictor corrector (Zia &
Lecampion 2019). We show a plot comparing filtered results for each of these schemes in
Appendix B. Neither the scheme chosen nor the mesh size change the resulting trend of
the front velocity. Following the example of Zia & Lecampion (2019), we have chosen the
predictor–corrector front-advancing algorithm in this study.

2.3. Qualitative insights from numerical simulations of fracture ascent
Using the numerical method described above, we simulate the injection of a finite batch
of buoyant fluid, closely following a case that was analysed by Salimzadeh et al. (2020).
The parameter values for this simulation are provided in table 1.

In figure 1 we plot snapshots of the fracture’s shape as it evolves through time. Time
increases from left to right in the plot. Looking onto the fracture’s face, approximately
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Quantity Symbol Unit Value

Young’s modulus E Pa 20 × 109

Poisson’s ratio ν — 0.25
Fracture toughness Kc Pa m1/2 2.0 × 106

Fluid/rock density difference ρr − ρf kg m−3 1000
Fluid viscosity η Pa s 0.05
Injected volume VI m3 1.95
Injection rate QV m3 s−1 0.015

Critical volume Vc m3 0.79
Volume ratio VI/Vc — 2.47

Table 1. Parameter values used for the simulation shown in figures 1 and 2. These correspond to
simulation-case II from the main text of Salimzadeh et al. (2020).

eight minutes after the injection has ceased (10 minutes), the fracture’s tip-line is circular.
Note the vertically asymmetric aperture of the cross-section at this time, which indicates
that the fluid is starting to flow towards the upper tip of the fracture. After six hours
the top of the fracture has grown upwards whilst the tip-line in the lower portion has
not changed shape; when looking at the face at this stage, the tip-line on either side
of the fracture tapers progressively towards the top. The form of the upper part of the
tip-line is a semicircle and remains so throughout the rest of the simulation. As time
increases the aperture in the lower parts of the fracture progressively thins. By six
hours, the fracture has reached a characteristic shape; in cross-section, the lower half
of the fracture (tail) is thin and V-shaped while the upper half (head) has formed the
teardrop profile of a Weertman crack (Roper & Lister 2007). Looking onto the face
at 15 hours, the fracture’s upper tip has continued to rise, resulting in a tip-line on
either side of the fracture that is approximately vertical, where the tapering upwards
is less evident. The cross-sectional aperture retains the typical structure predicted by
2-D analytical solutions, with a clearly defined teardrop-shaped head and tapered tail
(Roper & Lister 2007). This structure dominates at late times (t > 15 h), noting the
thinning of the tail as the length increases, whilst the head’s shape remains roughly
constant.

In figure 2(a) we plot the speed of the upper-most point on the fracture’s tip-line as a
function of time (log scale). We refer to this speed as the ascent rate because it is identical
to the speed at which the head of the fracture rises through the medium. A dashed line
shows v ∝ t−2/3; this scaling appears in the 2-D solution (2.5). At late times greater than
six hours, the speed from the 3-D numerical solution approaches this t−2/3 asymptote.

In figure 2(b) we plot the ascent rate as a function of the height of the fracture. Note the
y-axis has a logarithmic scale and the times shown in figure 1 are plotted as asterisks. The
plot shows two clear changes in front deceleration. The first occurs once the injection stops
and the second occurs when the upper tip has propagated further than 2a, a characteristic
radius we examine later (Möri & Lecampion 2021). We attribute the second transition in
the front speed to a shift in the process driving tip-line growth: from injection-driven to
buoyancy-driven fracturing. This transition occurs once the upper tip of the fracture has
propagated a given distance. If this interpretation is correct then at later times the decay
in ascent speed should be related to the fluid flowing upwards with an increasingly long
and thin tail (2.5) (Spence & Turcotte 1990). Such a thinning of the tail aperture can be
seen in the snapshots of the ascending fracture in figure 1. In the following section we
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Figure 2. Upper-tip ascent speed from the PyFrac simulation (solid line) and the predicted asymptotes and
analytical approximations (broken lines). Times corresponding to steps in figure 1 are shown as asterisks.
Parameter values are given in table 1. (a) Ascent rate versus time on a log–log plot. (b) Ascent rate versus
height. Our prediction for the maximum ascent speed from (3.7) is shown as a horizontal dashed line. Also
shown is the analytical approximation of the front speed produced using (3.10) and (3.11) (dash–dot line).

provide analytical expressions approximating: (i) the fracture’s maximum lateral extent a
(figure 1); (ii) the maximal upwards propagation speed once injection has terminated
(dashed line in figure 2b); and (iii) the deceleration of the ascending fracture with time
(figure 2a).

954 A12-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.986


T. Davis, E. Rivalta, D. Smittarello and R.F. Katz

3. Analysis of 3-D fracture ascent rates

In this section we first show that injection and buoyant ascent can occur sequentially, with
minimal overlap in time. We then derive an approximation of the tip speed at the onset of
buoyant rise. Next we derive a theory for deceleration of the tip over finite time. Finally,
we compare our approximate theory with the simulation presented above.

3.1. Injection-driven front speed for constant injection rate
Previous studies of 2-D ascending finite batches of fluid placed the batch in the crust
instantaneously and investigated how it subsequently evolves (Spence & Turcotte 1990;
Roper & Lister 2007). Our 3-D approximate solution is informed by these 2-D solutions
and also assumes that the finite fluid batch is fully emplaced before buoyant ascent occurs.
In our 3-D numerical experiments, however, we have chosen to simulate injection of the
fluid into the medium. We must therefore carefully choose a rate and duration of injection
such that the fluid batch is emplaced before significant buoyant ascent has occurred, such
that the approximation still holds. At early times, injection dominates the speed at which
the fracture front advances; during this phase the fracture grows radially with a circular
tip-line. In this section we consider how long injection of a given volume of fluid can last
without overlapping the buoyant ascent phase. We therefore compare the front speed due
to injection-driven growth and the front speed due to buoyant ascent.

The circular advance of the fracture tip driven by a constant injection rate in the absence
of buoyancy is well understood (Detournay 2016). The growth of an injection-driven
fracture can be separated into two regimes with distinct tip speeds: early times, when
viscosity dominates the tip asymptote; and later times, where toughness dominates.
Therefore, to compute the injection-driven front speed at a given time, we must determine
which regime is dominant at that time. The transition time between viscous and toughness
regimes occurs at

tmk =
(

E′13η′5Q3
V

K′18

)1/2

, (3.1)

where K′ = 4(2/π)1/2Kc, E′ = E/(1 − ν2) and η′ = 12η and QV is a constant volumetric
fluid flux into the fracture (Detournay 2004).

We determine the injection-driven growth regime at the end of injection tI by comparing
tI with tmk. In the case that viscous forces dominate (t < tmk), the speed of radial growth
(dr/dt) is

vrm = b
4
9

(
E′Q3

V

η′t5

)1/9

, (3.2)

where b = 0.6955 (Detournay 2016). In the case that toughness controls growth (t > tmk),
Detournay (2016) describe its radial speed as

vrk = 2
5

(
9

2π2

E′2Q2
V

K′2t3

)1/5

. (3.3)

Note, the volume injected at time t is QVt. We use the relevant estimate of front speed at
t = tI to make a comparison with the buoyant ascent speed. To this end, we next derive an
approximate upper bound on the rate of buoyant ascent if the fracture is circular and filled
with volume V .
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Ascent rate of 3-D fractures: finite batch of buoyant fluid

3.2. Early-time ascent rate
Here we aim to approximate the ascent rate of a buoyancy-driven fracture after injection
ceases, when the front speed becomes dominantly driven by buoyancy. This moment does
not occur precisely at the end of injection; some growth beyond that time is driven by the
release of elastic energy stored during the injection phase, which drives a radial motion
of the tip line (Möri & Lecampion 2021). This energy is expended rapidly, after which
buoyancy dominates the front speed. Our first calculation is an estimate of the speed of
ascent at this point. We assume that a volume V of fluid has been injected and resulted
in a penny-shaped crack. The crack has extended radially to a size such that the deepest
segment of the tip line, the bottom tip, has ceased its radial advance. The walls of the crack
are subject to a downwards stress gradient of magnitude �γ that drives fluid upward. As
this gradient becomes dominant post injection, the fracture above the bottom tip begins to
drain fluid and pinch closed. Injection of a volume V leads to a penny-shaped crack with
mean internal pressure given by

p0 = 3μ

8(1 − ν)

V
a3 , (3.4)

where a is the radius of the tip-line around the injection point (Tada et al. 2000). The
mode-I stress intensity at the circular tip line arises from a combination of p0 and the
linear stress gradient (Tada et al. 2000),

KI(θ) = 2
π

√
πa
(

p0 + 2
3
�γ a cos(θ)

)
, (3.5)

where θ is the angle in the y–z plane away from vertical. If z is the upwards distance from
the injection point, eliminating the mean pressure from (3.4) and (3.5) and requiring that
at the basal tip KI(z = −a) = 0 gives the radius of the crack as

a =
(

9μ

16(1 − ν)

V
�γ

)1/4

. (3.6)

The mean aperture of this crack is simply given by w = V/πa2. Using this in (2.3a,b) to
compute the characteristic fluid ascent speed v, then combining the result with (3.6) to
eliminate a we obtain

ṽV = 4(1 − ν)

27π2μ

�γ 2V
η

for V > Vc. (3.7)

Here we have assumed that the fluid ascent speed v is equal to the speed of the upper tip
line ṽV . The tilde indicates that this is an early-time solution and the subscript V indicates
that this is a fixed-volume, 3-D fracture. This speed is plotted as a horizontal dashed line
in figure 2(b).

3.3. Radial growth versus buoyant ascent
Equation (3.7) is the speed of the upper tip while the crack is still penny-shaped, just after
the phase of radial growth driven by the injection. As the upper tip propagates, driven by
buoyancy of the fluid, the crack elongates vertically. The stress gradient drives fluid within
the crack upwards such that part of the total fluid volume V resides in the head of the
crack, while the remainder forms a slowly thinning layer in the long tail (figure 1). Thus,
(3.7), which describes the instant when the entire fluid volume is in the head and the lower
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tip reaches its maximum depth, gives an approximate upper bound on the buoyancy-driven
ascent speed. Before proceeding to derive a late-time solution for the ascent speed, we use
the result above to compute a maximum duration of injection tV . If injection continues far
beyond this, the assumption of rapid fluid emplacement in the 3-D analytical solution we
introduce below will no longer hold.

The time at which buoyant ascent becomes dominant in determining the front speed
can be approximated as the moment when the injection-driven front speed is equal to the
buoyant ascent speed. We have approximated the latter with (3.7). We denote this crossover
time tV and obtain values for each of the two injection regimes. For a viscosity-dominated
circular crack, the speeds predicted by (3.7) and (3.2) are equal at

tVm =
[(

bπ2

8�γ 2

)9 E′10η′8

Q6
V

]1/14

. (3.8)

For a toughness-dominated circular crack the front speeds described by (3.7) and (3.3) are
equivalent at

tVk = 9
4

(
3π9

55
η5E′7

�γ 10K2
c Q3

V

)1/8

. (3.9)

We now show how to use these equations on an example case, the simulation in figure 1
(table 1). We first determine which regime the front was in at the end of injection (3.1).
Because the duration of injection tI was 130 s and tmk is 400 s, we conclude that this was
in a viscosity-dominated regime when injection ceased.

We then determine the time at which the injection- and buoyancy-driven front speeds
would be equal. Equation (3.8) provides the time when (3.7) and (3.2) are equal, at
tV = 720 s. The injection time tI is much shorter than this, and hence the fracture is
approximately circular when the injection stops. Figure 1 confirms this; the fracture is
still circular around eight minutes after the injection stopped at tI . If tI is below or of the
same order of magnitude as tV , the fracture will remain close to circular at the end of
injection.

Having clarified the requirements to emplace the batch of fluid such that our
assumptions hold, we next focus on the late time solution, long after injection has ended.

3.4. Finite propagation with deceleration
We now consider the vertical advance of the fracture over finite time. We define h as the
vertical distance between the fracture’s upper tip and the initial centre of the crack (the
injection point). Recalling that figure 2(a) shows the ascent rate of the 3-D simulation
asymptotically scales with time as predicted by (2.5), this motivates us to approximate the
3-D ascent speed using this 2-D solution. To retrieve h(t) and v(t) for our 3-D fracture,
we modify the similarity solution obtained by Spence & Turcotte (1990, (22)) for a 2-D
fracture with constant area. Replacing that area A with the initial cross-sectional area of
the 3-D crack 2aw gives

h =
(

9 (2aw)2 �γ t
16η

)1/3

. (3.10)
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Substituting (3.6) and w = V/πa2 into (3.10) and defining the speed vV(t) ≡ dh/dt, we
obtain

vV(t) =
(

(1 − ν)

92π4μ

�γ 3V3

η2

)1/6

t−2/3. (3.11)

This approximate solution might be expected to hold at later times, when buoyancy has
driven the fracture to propagate away from the injection point, establishing distinct tail
and head regions of the fracture.

Figure 2(b) shows the predicted initial and late-time speeds from (3.7) and (3.11),
respectively. The figure also shows a numerical solution of a 3-D crack for the same
parameter values. The ascent rate predicted by (3.11) at h = 2a is greater than the
numerical result at the same position; at this point, the early-time approximation (3.7)
fits better. At h/2a = 3/2, the two approximations are equal ṽV = vV(t). As the fracture
ascends beyond this height, the full numerical solution and the late-time solution converge.
This convergence was also obtained in 2-D numerical solutions by Roper & Lister (2007,
figure 9).

3.5. Comparison between the numerical results and analytical predictions
Using the initial cross-sectional area 2aw noted above, we plot as dashed lines in figure 1
the cross-section predicted by the 2-D similarity solutions of Roper & Lister (2007, § 6).
See our Appendix A for the equations used in this calculation. The height of the tail in
these cross-sections is given by (3.10). Focusing attention on the solutions at an elapsed
time of 30 hours, the analytical solution provides a good fit to the width of the tail from
the numerical solution. Furthermore, the simulated fracture’s head length and shape are
approximately that of the Weertman solution. The notable discrepancy is that the analytical
solution predicts a greater propagation distance than produced by the simulation. This
discrepancy is also evident in the comparison of fracture ascent speeds of figure 2(b)
where, initially, the analytical prediction is for faster propagation, but as the simulation
progresses and the fracture lengthens, the numerical and analytical speeds converge. Next
we discuss the assumptions made in the derivation of (3.11) to explain why the numerical
and analytical ascent rates and heights differ.

We begin with a reminder of three insights from 2-D results by Roper & Lister (2007)
that also apply here. Firstly, as long as the cross-sectional area of the initial 2-D crack is
above the critical head area given by (2.1), the fracture is predicted to ascend indefinitely,
with a monotonically decreasing propagation rate. Secondly, in the 2-D, constant-area
theory, elastic forces dominate in the head region, resulting in a head shape that remains
constant over time and is described by the static Weertman solution (Weertman 1971;
Rubin 1995). Thirdly, Roper & Lister (2007) show that the area of the head should be
removed from the total area when computing the dynamics of the tail (e.g. (3.10)) and, in
particular, in estimating the velocity and height of the fracture.

Keeping these insights in mind, we next evaluate assumptions of the 2-D, constant-area
approximate solution in comparison with observations from our 3-D simulation from
figure 1. In the 2-D solution, the areal extent of the head is constant during ascent, whereas
in the 3-D simulation, the effective head volume decreases due to a tapering head breadth.
Defining the head volume as open areas of the fracture from the upper tip down to a
distance of 2ch below this, we find that in simulations, the 3-D head volume decreases until
it stabilises at a value around that of Vc. This reduction of the head volume is qualitatively
shown by the lateral tip-lines in figure 1 that slightly converge upwards over time.
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Quantity Symbol Unit Oil in gelatine Water in shale Basaltic dyke

Shear modulus μ Pa 276 8 × 109 25 × 109

Poisson’s ratio ν — 0.5 0.25 0.25
Fracture toughness Kc Pa m1/2 19 2.0 × 106 6.0 × 106

Fluid/solid density difference ρr − ρf kg m−3 160 2000 50
Fluid viscosity η Pa s 4.8 × 10−2 5 × 10−3 20

Critical volume (2.2) Vc m3 1.31 × 10−5 0.7921 700

Table 2. Properties used to numerically simulate fracture ascent for different physical processes. The injection
rate for such cracks is set to tI = (V ṽV )/a, such that the injection is complete before the fracture ascends past
h = 2a. Note this results in ṽV/vr to ∼2 for all results. Here tI/tmk for VI/Vc = 2, 10 and 100 are 1.7 × 104, 45
and 2 × 10−2, respectively; as such these span both viscous and toughness dominated radial growth regimes at
the point at which the injection stops.

Because of this feature, we have neglected to approximate the head volume, placing
the entire cross-sectional area of the initial penny-shaped crack into the tail solution.
Our analytical result is therefore based on an overestimate of the tail volume, and
hence it should predict a faster ascent rate than the numerical simulation. This explains
why initially, the predicted velocities are faster. Moreover, in the 2-D solution (3.10),
the cross-sectional area of the fluid (tail plus head) is constant. This contrasts with
observations in the simulation shown in figure 1 where along the centreline, the fracture’s
cross-sectional area increases by 36 % from the earliest (10 minutes) to the latest (60 hours)
snapshots. This out-of-plane fluid flow is, by definition, not captured by the 2-D solution.
Thickening of the cross-section in the 3-D simulation suggests that the ascent rate for a
3-D fracture will be faster than its 2-D analogue at later times, such that our solution will
underestimate the ascent rate.

4. Validation of analytical approximations

4.1. Testing across length scales by comparison to numerical solutions
We now test our analytical approximations against numerical solutions across a wider
range of physical parameters. Here, each parameter set represents a different physical
context: analogue experiments with oil-filled cracks in gelatine; an industrial setting where
water is injected into a shale sequence; and the ascent of a basaltic dyke through the
crust (table 2). We compare our analytical prediction from (3.11) against rates obtained
from PyFrac calculations using the three parametric combinations listed in table 2, each of
which is simulated for three different injection volumes to give nine total models. Results
are shown in figure 3, in comparison with analytically predicted rates. The comparison
shows that vV(t) from (3.11) provides a reasonable match to the numerical results across
all parameter sets considered. The analytical results predict the PyFrac velocities within a
factor of two. The ratio of numerical to analytical ascent speed is approximately constant
for a given simulation. In figure 4, we compare our analysis (3.10) with numerical results
in terms of the time-dependent height of the upper tip above the injection point. As in the
previous figures, we find the fracture must ascend by a length of more than 2a (box shown
is 3a) before buoyancy becomes the dominant driver of propagation. After that time, the
results show the predicted and simulated heights are comparable. These comparisons show
that our analytical approximations capture the leading-order fracture ascent speed across
a broad parameter space. We further note that our analytical results for the extent and
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Figure 3. Numerical versus analytical (3.11) speed estimates at times t since injection. Plotted are nine
simulations performed using the code of Zia & Lecampion (2020) and summarised in table 2. These comprise
three parametric cases, each with three different injection volumes and rates. The plots stop at the point when
the simulated fracture reached the edge of the meshed domain or Pyfrac terminated the simulation.
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Figure 4. Numerical versus analytical (3.10) height estimates at times t since injection. Height here is defined
as the distance from the injection point to the upper tip. This plot uses the same numerical solutions as in
figure 3.
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Quantity Symbol Unit Exp. 1837 Exp. 1945 Exp. 1967

Young’s modulus E Pa 1345 426 944
Poisson’s ratio ν — 0.5 0.5 0.5
Fracture toughness Kc Pa m1/2 23.1 7.3 16.2
Oil/gelatine density difference ρr − ρf kg m−3 260 160 150
Oil viscosity η Pa s 1.74 × 10−3 48 × 10−3 970 × 10−3

Injected volume VI m3 2 × 10−5 1 × 10−5 1 × 10−5

Critical volume (2.2) Vc m3 6 × 10−6 2 × 10−6 8.4 × 10−6

Predicted velocity (3.7) ṽV m s−1 1.25 0.027 5.3 × 10−4

Table 3. Properties of the analogue gelatine experiments of Smittarello (2019). Experiment reference numbers
are shown in the first row. Note that the injection rates were not recorded. Note here the reported values of Kc
are estimated using an empirical formula based on the shear modulus, reported in § 3.1 of Davis et al. (2020).

ascent speed provide a reliable means to forecast the required PyFrac domain size and
simulation duration for a given set of parameters, such that the numerical model converges
and completes the intended simulation.

4.2. Comparison to analogue oil injection gelatine experiments
The gelatine experiments of Heimpel & Olson (1994) and Smittarello (2019) show that
crack ascent rates are related to the injected volume. Our analysis can be used to understand
what determines the speed of fractures in such experiments. Taisne & Tait (2009) noted
that many fluids typically injected, such as air and some oils, are non-wetting when in
contact with gelatine solids. When these flow through fractures in gelatine, the lubrication
approximation breaks down; all fluid can be expelled from between the walls. Both
effective closure of the fracture’s tail and near-constant ascent rates are indications that
non-wetting processes are active. As such, Taisne & Tait (2009) suggest that experiments
that use non-wetting fluids may not be a good analogue for natural settings.

Silicon oils are wetting with respect to the gelatine. In figure 5 we plot the speed of
silicon oils hydro-fracturing upwards through gelatine solids from Smittarello (2019).
The material properties are given in table 3 and the experimental set-up is described
in Smittarello et al. (2021). These experiments have well-constrained injection volumes
and elastic parameters, and therefore provide a suitable basis for comparison with our
equations. Note, the rate of injection was not constant in these experiments.

In these experiments, a tank is filled with liquid gelatine that is allowed to solidify,
then a buoyant fluid is injected at the base of the tank to form a fluid-filled fracture.
This fracture ascends through the gelatine and its position is measured at regular time
intervals. Figure 5(a) shows that after the postinjection transient ends, the length of the
experimental fractures broadly follow a t1/3 trend, as predicted by (3.10). Figure 5(b)
shows the predicted late-time fracture lengths are around double that observed. Note that
the predicted heights have been translated such that the fracture lengths are equal to the
observed lengths following injection (at t = 2tI). The results follow the t1/3 trend at late
times, but the magnitude of the prediction is too high. The critical volume Vc required
for ascent in table 3 is close to the injected fluid volume VI , and our prediction assumes
the entire fluid volume is in the fracture tail, as discussed earlier. When VI ≈ Vc, the
majority of fluid is actually contained in the fracture head during ascent. Less fluid in
the tail means slower draining out of the tail; this may explain why we predict ascent
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Figure 5. Upper tip height from analogue experiments where silicon oil is injected into gelatine solids.
Parameter values are given in table 3. (a) Height versus time, showing that at late times, curves approach the
t1/3 asymptote (dash–dot). The triangles denote the end of injection (tI). (b) The height from the experiments
is plotted against the predicted speed using (3.11), where the time is that elapsed since the start of the injection.
The predicted heights have been translated such that they are equal to the observed height at t = 2tI (squares).

rates that are faster than observed. Moreover, model predictions neglect the presence of
tank walls and free surface (Smittarello 2019). Experiment 1967 shows a deceleration as
it approaches the surface where a load is placed on the gelatine to deflect the crack from
vertical.
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5. Discussion

5.1. Some insights into ascent speed
In our numerical simulations, we ensure that the injection rates are sufficiently high that
the specified fluid volume has been injected into the fracture before significant ascent
occurs. This means that at the end of the injection, the crack tip-line is approximately
circular and ṽV should approximate the ascent speed at this time (§ 3.3). We expect that
if the time scale of injection is much lower than the time scale of propagation, then once
the crack has exceeded the critical radius of Davis et al. (2020), it will begin to elongate
in the direction of the stress gradient. In these cases, the upwards ascent speed should lie
somewhere between the two limiting regimes: that predicted by (2.5) for a batch of finite
volume and the ascent rate determined for a constant rate of volume addition, (2.4) (Möri
& Lecampion 2022). Even when the injection rate is low, once the entire fluid batch has
been injected into the fracture and as t increases, the general trend of the deceleration rate
should follow a t−2/3 asymptote.

Mutch et al. (2019) use geochemical techniques to retrieve magma ascent rates of the
Borgarhraun eruption, northern Iceland. These results suggest the magma’s ascent through
the crust was rapid, in the range of 0.02 to 0.1 m s−1. We now test whether our equations
correctly predict such ascent speeds. The erupted lava volume of Borgarhraun was reported
between 0.014–0.14 km3 and the magma density was around 2700 kg m−3 (Maclennan
et al. 2003; Hartley & Maclennan 2018). Assuming parameters value ρr = 2750 kg m−3,
E = 10–40 GPa, ν = 0.25 and η = 10–30 Pa s, we find the maximum ascent rate from
(3.7) between 0.08 and 9.4m s−1. Calculating the average speed from (3.11) between 2a
and the reported distance traversed by the batch of 24 km, we find that it is between 0.06
and 9.6 m s−1. Hence, we observe that by using typical crustal parameters, the model
returns propagation velocities of the order of those observed in nature. In particular, the
model provides a physical explanation for how a relatively small batch of magma can
traverse the crust within a week. We note the large uncertainties in the predicted rates of
ascent that are a consequence of uncertainties in input parameters.

Our results are also important in the context of hydro-fracturing operations. They can
be used to quantify the time it would take for a fluid to pass into overlying formations.
Furthermore, they provide an estimate of the area of rock exposed at the crack surfaces. We
aim here to give an indication of how this formula can be applied to industrial operations
such as hydro-fracturing. We envision the case of injecting a fluid volume of 25 m3, where
the fluid viscosity ranges between 10−3–10−2 Pa s, the rock stiffness is 10–40 GPa and
assuming the rock and fluid density are 2700 kgm−3 and 1000 kg m−3, respectively. For
this range of properties, using (3.10), it should take between 15 minutes and five hours for
the fracture to propagate 1000 m vertically and 2–40 hours to propagate 2000 m. These
ascent rates and distances suggest this is an efficient way to transport fluid through the
crust, and they raise the question: Which processes act to slow or stop this ascent?

We recall that in layered formations, both stress and stiffness interfaces can trap fractures
(Bunger & Lecampion 2017). Additionally, low-viscosity fluids in porous formations can
leak into the surrounding rock. This process is known as fluid leak-off; it would reduce
the effective volume driving the fracture upwards and could, in some cases, change the
dynamics of flow-driven fracture growth within the tip (Dontsov & Peirce 2015). Note that
in the context of a dyke, solidification of the magma along the dyke walls is mathematically
equivalent to leak-off. This process is well understood for constant-inflow, 2-D buoyant
cracks (Lister 1994b). It is of interest to quantify how the upwards propagation speed
and trapping height for a finite volume of fluid is changed by fluid leak-off/solidification
during ascent (Detournay 2004). We leave this extended analysis to future studies where
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more experimental data is available, but note that Lister (1994a, (5.1)) provides a 2-D
approximation of the maximal distance a fixed, finite-area dyke can propagate when
solidification is considered. Recall that in § 3.4 we have shown how to convert similar
equations to 3-D fractures. Note that 2-D solutions including solidification for constant
flux boundary conditions also exist (Lister 1990a; Dontsov 2016). The effect of layering
and rock porosity are specific to a given site. To understand how far a given fracture can
ascend before termination in a given setting, it is important to quantify these properties
and model them accordingly.

6. Conclusions

We have provided an analytical approximation of the maximum ascent speed of a
3-D, buoyant fluid-driven fracture containing a finite fluid volume. We verified this by
comparison with outputs from a hydro-fracture simulator. We showed that the ascent speed
decays away from this maximum due to viscous drag in the growing tail region, at a rate
that is asymptotic to t−2/3. Our quantitative approximations help to explain why a dyke can
traverse the crust in a time that is of order of days. Although the same is true for typical
injection volumes in hydro-fracturing operations, other processes will determine when the
fracture is trapped and its final extent.
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Appendix A. Two-dimensional similarity solutions – fixed finite area

We restate the solutions of Roper & Lister (2007) in dimensional coordinates. The
half-height of a Weertman crack is (Pollard & Muller 1976)

ch =
(

Kc

�γ
√

π

)2/3

. (A1)

The head length is 2ch and its area is

Ah = K2
c (1 − ν)

2μ�γ
. (A2)
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Figure 6. Comparison of different mesh sizes and schemes. Here 30 × 30 refers to the number of cells in a
square of size 0.75a. Moving-mean averaging is applied to the front-speed in the plots, to remove fluctuations
in speed. The sample size of 40 was been used.

If the initial crack area is A, then the tail area is At = A − Ah. Roper & Lister (2007) define
the fracture’s entire tail length as

z+
t =

(
9A2

t �γ t
16η

)1/3

. (A3)
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The opening profile (wall separation) of the head (wh) is

wh

2
= (1 − ν)Kc

2μ

√
ch

π

√
1 −

(
zh

ch

)2 (
1 + zh

ch

)
, (A4)

where zh spans from −ch to ch. The separation of the walls in the tail (wt) is

wt

2
=
√

ηzt

�γ t
, (A5)

where here zt spans from 0 to z+
t (from the base of the crack to where this meets the head

solution). The two solutions are then joined by moving zh upwards and neglecting parts
thinner than the top of the tail at the base of the head solution. We remind readers that
here, the crack’s centre at time t = 0 lies at z = ch (the injection point).

Appendix B. The PyFrac time stepping schemes

Zia & Lecampion (2019) describe the time stepping schemes available to compute the
advance of the fracture front in PyFrac. Three schemes are available to compute the new
fracture front over a time step: explicit; predictor–corrector; and implicit. Explicit is the
most efficient scheme available as it uses the front velocity from the previous time step.
This can suffer from errors due to under or over predictions of the velocity at the next step.
The implicit and predictor–corrector schemes are less efficient but are more accurate. To
test the effect of the choice of scheme, we obtain results to the same problem depicted
in figure 2(a), but using different schemes and sampling rates. The results are shown
in figure 6. All schemes produce curves that exhibit the t−2/3 trend at later times. The
lower resolution results (dashed) show larger differences at early times due to our use of
a moving-average filter over fewer time steps. In the analysis in this publication we used
the predictor–corrector scheme. The sampling used was over 30 × 30 cells with a square
of size 0.75a.
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