Canad. Math. Bull. Vol. 20 (1), 1977

A COMMUTATIVITY THEOREM FOR NEAR-RINGS

вч HOWARD E. BELL

A ring or near-ring R is called *periodic* if for each $x \in R$, there exist distinct positive integers n, m for which $x^n = x^m$. A well-known theorem of Herstein states that a periodic ring is commutative if its nilpotent elements are central [5], and Ligh [6] has asked whether a similar result holds for distributivelygenerated (d-g) near-rings. It is the purpose of this note to provide an affirmative answer.

Our definition of near-ring assumes *left* distributivity, and the words "center" and "central" refer to multiplication. The term R-R subgroup denotes an additive subgroup S of R such that $RS \subseteq S$ and $SR \subseteq S$. An element of a subnear-ring T is called T-distributive if it is distributive with respect to addition in T. The near-ring R is said to be the supplementary sum of its subnear-rings A and B—denoted by R = A + B—if each element of R can be uniquely represented in the form a+b, where $a \in A$ and $b \in B$.

THEOREM. Let R be a distributively-generated near-ring with its nilpotent elements lying in the center. Then the set N of nilpotent elements forms an ideal; and if R/N is periodic, R must be commutative.

Proof of Theorem.

LEMMA 1. If R is a d-g near-ring in which nilpotent elements are central, then the set N of nilpotent elements is an ideal.

Proof. Let $u_1, u_2 \in N$ and $r \in R$. It is obvious that ru_1 and $u_1r \in N$; and the usual argument for commutative rings, which does not require additive commutativity, shows that $u_1 - u_2 \in N$. It remains to show that N^+ is a normal subgroup of R^+ , and this we do by induction on the degree of nilpotence.

If $u^2 = 0$ and $r \in R$, then $(r+u-r)^2 = (r+u-r)r + (r+u-r)u - (r+u-r)r = (r+u-r)r + u(r+u-r) - (r+u-r)r = 0$. Now suppose r+u-r is nilpotent for arbitrary $r \in R$ and $u \in N$ with index of nilpotence less than $k, k \ge 3$; and let $u \in N$ satisfy $u^k = 0$. Then, letting a = (r+u-r)r and proceeding as above, we have $(r+u-r)^2 = a + (ur+u^2-ur) - a = (a+ur) + u^2 - (a+ur)$, which is nilpotent since $(u^2)^{k-1} = 0$. Thus $r+u-r \in N$.

Received by the editors April 4, 1975.

LEMMA 2. Let R be a d-g near-ring with central nilpotent elements, and suppose that R/N is periodic. Then

(1) for each $x \in R$, there exists an integer n(x) > 1 for which $x - x^{n(x)}$ belongs to N;

(2) the commutator subgroup R' of R^+ is contained in N;

(3) if $a, b \in R$ and ab = 0, then ba = 0.

Proof. The d-g near-ring $\overline{R} = R/N$ is periodic with no non-zero nilpotent elements; and it is easily shown that if $w \in \overline{R}$ and $w^n = w^m$ for n > m > 1, then $w = w^{n-m+1}$. Therefore, for each $x \in R$, there exists an integer n(x) > 1 for which $x - x^{n(x)} \in N \subseteq Z$ -i.e. (1) holds. Since \overline{R} is distributively-generated, Theorem 2 of [1] guarantees that \overline{R} is additively commutative; and (2) follows at once. The proof of (3) is that of part (A) of Lemma 3 in [2].

Part (3) of Lemma 2 guarantees that there is no distinction between left and right annihilators. Henceforth we shall denote the annihilator of an element x of R by A(x).

LEMMA 3. For any R satisfying the hypotheses of Lemma 2, each of the following statements holds:

(1) If e is an idempotent which is S-distributive for some R-R subgroup S, then e is central in R.

(2) For each non-zero central idempotent e of R, $R' \subseteq A(e)$.

(3) If e_1, e_2, \ldots, e_k are pairwise-orthogonal central idempotents, then $e_1R + \cdots + e_kR$ is a commutative ring.

(4) For each central idempotent e of R, R = eR + A(e).

(5) If R = A + B for a pair of orthogonal subnear-rings A and B, and if the distributive element d of R is expressed as $d_1 + d_2$ with $d_1 \in A$ and $d_2 \in B$, then d_2 is B-distributive.

Proof. (1) Let e be an S-distributive idempotent of the R-R subgroup S, and let x be an arbitrary element of R. Since both ex and exe belong to S, we have (ex - exe)e = (ex)e - (exe)e = 0; and by (3) of Lemma 2, e(ex - exe) = ex - exe = 0. Similarly, xe - exe = 0; thus $e \in Z$.

(2) Since *e* is a central idempotent, *eR* is a distributively-generated nearring with identity *e* and has the property that $x - x^{n(x)}$ is central for each $x \in eR$. Thus, *eR* is a commutative *ring* by Theorem 2 of [2]; and e(x + y - x - y) = 0 for all $x, y \in R$.

(3) Note that $e_1R + \cdots + e_kR + R'$ is an R - R subgroup containing the idempotent $e = \sum e_i$. Let $x = e_1r_1 + \cdots + e_kr_k + r'$, where $r_1, \ldots, r_k \in R$ and $r' \in R'$; and use the distributivity and pairwise-orthogonality of the e_i plus the fact that R' annihilates each e_i , to get the result that $ex = xe = \sum_{i=1}^{k} e_ir_i$. Thus, by (1) of Lemma 3, e is a central idempotent of R; and another appeal to Theorem 2 of [2] gives the result that eR is a commutative ring. Since $e_iR \subseteq eR$ for each i, we are finished.

26

(4) It is trivial to show that r = er + (-er + r) is the unique representation of $r \in R$ in the form a + b, $a \in eR$, $b \in A(e)$.

(5) Let the distributive element d be written in the form $d_1+d_2, d_1 \in A$, $d_2 \in B$. If x, y are arbitrary elements of B, then $(x+y)d = (x+y)d_1 + (x+y)d_2 = (x+y)d_2$ since A and B are orthogonal; on the other hand, by the distributivity of d we get $(x+y)d = xd + yd = xd_1 + xd_2 + yd_1 + yd_2 = xd_2 + yd_2$. Thus d_2 is distributive in B.

LEMMA 4. Let R satisfy the hypotheses of Lemma 2, and let d be any distributive element of R. Then there exist an integer n > 1 and a central idempotent f of R for which $d - d^n \in N$ and $d^n R = fR$.

Proof. By (1) of Lemma 2, there exists a positive integer *j*, which we may choose to be at least 3, for which $d - d^i \in N$ and hence $d^k - d^{k+s(j-1)} \in N \subseteq Z$ for all positive integers *k* and *s*. Since $d^k - d^{k+s(j-1)}$ commutes with d + d, we have $-d^{k+1+s(j-1)} + d^{k+1} = d^{k+1} - d^{k+1+s(j-1)}$, so that d^{k+1} and $d^{k+1+s(j-1)}$ commute additively; and choosing k + 1 = t(j-1), t = 1, 2, ..., shows that all powers of d^{j-1} are additively commutative. Thus the additive subgroup S generated by the powers of d^{j-1} is a *d*-*g* near-ring with commutative addition, and hence a ring by a well-known theorem of Fröhlich [4]. Since the ring S has the property that $x - x^{n(x)}$ is nilpotent for each $x \in S$, it is periodic by a theorem of Chacron [3]; therefore, there exist integers *p*, *q* with p > q, such that $d^p = d^q$ and hence $d^k = d^{k+s(p-q)}$ for all non-negative integers *s* and all $k \ge q$. In view of the last observation, we may assume that $p - q + 1 \ge q > 1$.

Let n = p - q + 1. Then $d - d^n \in N$ by the proof of part (1) of Lemma 2. Moreover, since $n \ge q$ and $n^2 - n$ is divisible by p - q, we see that $(d^n)^n = d^n$. It follows at once that $f = d^{n(n-1)}$ is a distributive (hence central) idempotent and that $d^n R = fR$.

Proof of the Theorem. Let x and y be an arbitrary pair of elements of R and d_1, d_2, \ldots, d_t distributive elements of R which generate an additive subgroup containing both x and y; suppose d_1, \ldots, d_k are non-nilpotent and d_{k+1}, \ldots, d_t are nilpotent. For each $i = 1, \ldots, k$, choose an integer $n_i > 1$ and a central idempotent f_i such that $d_i - d_i^n \in N$ and $f_i R = d_i^{n_i} R$. In view of the fact that $R' \subseteq N$, $\sum f_i R + N$ is a subnear-ring which contains both x and y.

The next step is to construct a set of *pairwise-orthogonal* central idempotents e_1, \ldots, e_k such that $\sum f_i R + N \subseteq \sum e_i R + N$. The case k = 1 being immediate, we suppose that we have already obtained pairwise-orthogonal idempotents e_i, \ldots, e_s (some of which may be trivial) such that $\sum_{i=1}^s f_i R + N \subseteq \sum_{i=1}^s e_i R + N$. By repeated application of (4) of Lemma 3, write R = A + B, where $A = \sum_{i=1}^s e_i R$ and $B = \bigcap_{i=1}^s A(e_i)$; and let $f_{s+1} = g + h$, where $g \in A$ and $h \in B$. Now $(g+h)^2 = (g+h)g + (g+h)h = g(g+h) + h(g+h) = g^2 + h^2 = g + h$, and by uniqueness of representation $h^2 = h$. Since h is B-distributive by (5) of

Lemma 3, *h* must be central in *R*; and the fact that *R* is distributivelygenerated and that $R' \subseteq N$ shows that $f_{s+1}R = (g+h)R \subseteq gR + hR + N$. Denoting *h* by e_{s+1} , and appealing to the inductive hypothesis, we get $\sum_{i=1}^{s+1} f_iR + N \subseteq \sum_{i=1}^{s+1} e_iR + N$; and our construction is finished.

It remains only to show that $\sum_{i=1}^{k} e_i R + N$ is commutative. Accordingly let $u = e_1 r_1 + \cdots + e_k r_k + w$ and $v = e_1 s_1 + \cdots + e_k s_k + z$, where $w, z \in N$. Then, in view of the additive commutativity asserted by (3) of Lemma 3,

$$uv = \sum_{i=1}^{k} (e_{1}r_{1} + \dots + e_{k}r_{k} + w)e_{i}s_{i} + \left(\sum_{i=1}^{k} e_{i}r_{i} + w\right)z$$
$$= \sum_{i=1}^{k} e_{i}r_{i}e_{i}s_{i} + \sum_{i=1}^{k} e_{i}we_{i}s_{i} + \sum_{i=1}^{k} e_{i}r_{i}e_{i}z + wz; \text{ and}$$
$$vu = \sum_{i=1}^{k} e_{i}s_{i}e_{i}r_{i} + \sum_{i=1}^{k} e_{i}ze_{i}r_{i} + \sum_{i=1}^{k} e_{i}s_{i}e_{i}w + zw.$$

Now using the multiplicative commutativity of $\sum e_i R$ and the centrality of nilpotent elements, we see that uv = vu. This completes the proof of the theorem.

REMARK. If R has 1, it must in fact be a ring-this follows from Theorem 2 of [2]; however, in the absence of a multiplicative identity element, R^+ need not be abelian.

References

1. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Australian Math. Soc. 2 (1970), 363–368.

2. —, Certain near-rings are rings, J. London Math. Soc. (2) 4 (1971), 264-270.

3. M. Chacron, On a theorem of Herstein, Canadian J. Math. 21 (1969), 1348-1353.

4. A. Fröhlich, Distributively-generated near-rings, I, Ideal theory, Proc. London Math. Soc. (3) 8, (1958), 76-94.

5. I. N. Herstein, A note on rings with central nilpotent elements, Proc. Amer. Math. Soc. 5 (1954), 620.

6. S. Ligh, Some commutativity theorems for near-rings, Kyungpook Math. J. 13 (1973), 165-170.

DEPARTMENT OF MATHEMATICS

BROCK UNIVERSITY,

ST. CATHARINES, ONTARIO