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ON STOCHASTIC RELAXED CONTROL FOR
PARTIALLY OBSERVED DIFFUSIONS

W. H. FLEMING anp M. NISIO

§1. Introduction

In this paper we are concerned with stochastic relaxed control pro-
blems of the following kind. Let X(¢), ¢ > 0, denote the state of a process
being controlled, Y(¢), t > 0, the observation process and p(, -) a relaxed
control, that is a process with values probability measures on the control
region I’. The state and observation processes are governed by stochastic
differential equations

Wy {dX(t) = «(X)BO + [ 1(X(®), wat, dwdt
X(0) = ¢

and

1.2) {d Y(t) = mX@)dt + dW(?)
Y0 =0

where B and W are independent Brownian motions with values in R"
and R™ respectively, (put m = 1 for simplicity).
The problem is to maximize a criterion of the form

J = Ef(X(T))

by a suitable choice of admissible relaxed control p. In a customary
version of stochastic control under partial observation, p(¢, -) is measur-
able with respect to o¢-field generated by the observation process ¥(s),
s <t. Instead of discussing the problem of this type, we treat some
wider class of admissible relaxed controls (see § 2), inspired by Fleming-
Pardoux [8]. Roughly speaking, our problem is the following; Let
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1.9 LT = exp {[ WXV — + [ [HX(s)Fds) .

Then B and Y turn out as inde_pendent Brownian motions under a new
probability P, defined by

P _ .,
(1.4) 9P = L-Y(T)
appealing to the so-called Girsanov transformation. For admissibility we
merely require that p(¢, -) is independent of future increments of Y(§) —
Y(s), 6, s >t, and B, with respect to P. Moreover we are concerned with
q(dt, du) instead of p(t, du)dt. (see Definition 1). Thus the criterion </
can be expressed as

(1.5) J = EfX(T)L(T)

where E stands for the expectation with respect to P, and X(¥) is a
solution of the following system equation;

(1.6) dX(t) = a(X(£)dB() + j T(X(), waldt, du).

Under Lipschitz continuity and boundedness of @ and 7, (1.6) has a unique
solution (Theorem 1).

In Section 2 we introduce some metric spaces which are appropriate
to our optimization problems. In Section 3 we prove the compactness of
spaces of solutions and relaxed controls ¢g. This guarantees the existence
of optimal one (Theorem 3).

In the latter half we treat a nonlinear semigroup associated with
relaxed control under partial observation. In this case we regard, as the
state space, the unnormalized conditional distribution A(¢) of X{(#) given
past observation and control. Hence A(?) is a process valued in measures
on R" and satisfying the Zakai equation. Thus our problems turn out
as optimization problems of measure valued processes. After we prove
the continuity of A(f) with respect to initial distribution X(0) and data
of past observation and control, (see Theorem 5), we construct a nonlinear
semigroup S(¢), ¢ >0, on a Banach lattice of bounded and uniformly
continuous functions, defined on the space of measures (Theorem 7).
Following Fleming [6], we show that the generator of S(f) relates to a
dynamic programming equation, so-called Mortensen’s equation.
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§2. Notations and preliminaries

Let (2, F, P) be a probability space. Let B and Y be n-dimensional
and 1-dimensional Brownian motions, defined on (2, F, P) respectively.
I' is a given convex compact subset of R* called a control region. M(I")
denotes the totality of positive finite measures defined on B(I")(=Borel
field of I). By M([O T] x I') we denote the set of all mappings 1: [0 T7]
X B(I') — [0 T] such that

0) 200, A)=0 YAeB(I)

i) A, I =t Y£>0

i) AE, )eM(I) for allt >0

iii) A(¢, A) is increasing in ¢ for all A e B(I')

iv)  SUPsepn |45, A) — At, A) =t — s|.

From (ii) and (iii), 1 determines a measure on [0 7] X I' and A([s, ?], -)
=t ) — As, )eMI), if t >s, and A([s, t], I') =t — s.

Let g be a mapping; [0 7] X B(I') X 2 — [0, 1], such that

v) for all AeB(I'), q(-, 4, -) is B[0 T] X F-measurable

vi) qeM([0 T1x I') P-almost surely.

DeFINITION 1. o = (2, F, P, &, B, Y, q) is called an admissible (re-
laxed) system, if & is an n-random vector on (2, F, P), which is independ-
ent of (B, Y, q), B and (Y q) are independent and the increments (Y(¢) —
Y(s), t > s) are independent of oY, q)(= o-field generated by Y(4), 6§ <s
and q(0, A), 8 < s, A e B().

DeFiNITION 2. The component g of o is called a relaxed control,
and we denote it by ¢, when ./ is stressed. leM([O Tl xI') can be
regarded as a relaxed control. U denotes the totality of admissible systems.

Let a(x) be a symmetric n X n matrix valued function on R" and 7
an n-vector continuous function on R® X I'. We assume the following
conditions

(Al |g(x,w)|<b, YxeR", uel g=a,7
(A2) |g(x,uw) — g, W)| < K|x — |, Yx, ¥ eR"uel,g=a,T.

For an admissible system .« = (Q, F, P ¢ B, Y, q) we consider the
stochastic differential equation (SDE in short)

dX(t) = a(X(t)dB(r) + Jlr 7(X(@®), wq(dt, du)
X(00) = ¢.

2.1)
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THEOREM 1. There exists a unique solution X of (2.1) which is
a,(&, B, q)-progressively measurable and has continuous paths.

Proof. We apply a usual successive approximation method. We define
X, in the following way

X =¢

@2 X =&+ [ aX(6)dBE) + | [ 1(X,(6), wa(ds, du)
n=2012 ---.

Then, X, is ¢,(§, B, g)-progressively measurable and has continuous paths
by (iv) and (Al).

Xold) = X0 = [ @(X,@) — (X, ()dB()
+ [ 0@, w - 1), wha(ds, du)
So, using (A1) and (A2) we see
([ 1rxus), w) = X, wlatds, du))
< [[[ 1x.@, w — 1%, (9), WPa(ds, duwyate, 1)
< &t[ | 1X6) - X, (9)Fads, dw)
- Kt I: 1X.(s) — X,_((s)Pds .
Putting p,(t) = E|X,..(t) — X.())F, we have
0O <K [ piods, forve<T,
with some K, = K(T). This implies

(2.3) on() < - -t

( 1)

Therefore

ZEX,0) - X0 < X Voult) < oo

This implies that X,(f) converges P-almost surely. Hence X(¢) = lim, . X,(2)
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can be regarded as ¢,(&, B, q)-progressively measurable and moreover a
martingale inequality tells us that, as n — oo,

(2.4) j 0 #(X.(5))dB(s) — j #(X(s))dB(s) uniformly in te [0, T],
P-almost surely. On the other hand
sup [ 7X@, ) — 1(X(5), watds, dw
< ['] s, w = 7X@, Wl a(ds, duy
< Kj: min (| X.(s) — X(s), 2b)ds .
By virtue of the convergence theorem we get, as n — oo,

(2.5) J: L 1(X,(s), wyg(ds, du) — J: L 7(X(s), u)q(ds, du),

uniformly in ¢e [0, T], P-almost surely.

Combining (2.4) and (2.5) with (2.2), X turns out as a solution of (2.1)
and X,(f) converges to X(f) uniformly in e [0 T'] P-almost surely. Hence
X has continuous paths.

Let Y be a o,(¢, B, q)-progressively measurable solution of (2.1). Then,
applying a routine method, we can easily see for V¢,

X@® = Y@ P-almost surely.

This completes the proof of Proposition 2.1.
L denotes the Prohorov metric for probability measures. That is
following, [11]. Let ¢, be the infinimum of ¢ such that

w(F) < p(U(F)) + ¢ for all closed subset F,
where U(F) is the e-neighbourhood of F. ¢, is defined by switching g,

and p,. Set

(2.6) L(y,, 1) = max (e, &) -

Put

2.7 MU, 0) ={2eM); () =t},t>0.

Define a metric p, as follows

2.8) 0y 2) = L(*7 17) ae M, 7).
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Since I" is compact, (M([, ?), p,) is a compact metric space. Put D = {r,
rationale [0, T],i=1,2,---} and

(2.9) M, = ﬁl M, r).

We endow M, with a metric d, such that

1
2n

(2.10) Ay ) = 5 01y )

where 2 = (4, 4, ---) and ji = (u, 2, - --). Hence 1,k =1,2, --- is a dy-
Cauchy sequence, iff 2,,k=1,2,--- is a p,-Cauchy sequence for any
component i. Therefore again (M, d;) is a compact metric space.

Since 1€ M([0 T] X I') is determined by i =-(A(r), A(ry), - - -) € M, we
define a metric d, on M([0 T] x I') by

(2.11) de(2, 1) = o2, 1) -

ProrosiTioN 2.1, M([0 T]1 X I', d,) is @ compact metric space.

Proof. Let A,(r;, -) converge to 4, in p,,. Then 2, e M(I,r;) and for
ge Cy(I')(=bounded continuous function on I).

(2.12) f 8, du) j gWao(dy), as k—oco.

Define i(r;, A) by A(r,, A) = 2,(A). Then putting g = 1 in (2.12), we see
Ar, I) =r,
Let r, >r, and set R(A) = A(r,, A) — A(r;, A). Then R is a signed
measure on I'. Since ,(r;, -) — (r;, -) e M(I', r, — r;) and A(r, -) — (7, -)

converges to R weakly by (2.12). R turns out as a positive measure and
ReM(I, r, — r;). This means

(2.13) A(r, A) is increasing in rational r
and
(2.19) [Ars, A) — A1y A < |y I) — A(ry, D) =1, — 15 .

Now we will construct 1 which corresponds to (A(r;, -),i =1,2, ---) e
M,, in the following way,

(2.15) A, A) = lim A(r,, A) .

ritt
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Then 4 clearly satisfies the conditions (0) ~ (iv), namely 2e¢ M([0 T1 X I')
and cAiT(Z,c, A —0, as k— co.

Remark. p,(2,(), 22) < (@/r)|t — r,| + p,(A(r), A(r;)) by condition (iv).
Hence

2.8 — A(D) in p,.
For ge C([0 T] X I') (= continuous function on [0 T'] X I')
(2.16) j " a(s, Wads, du) — j “o(s, WA(ds, du), as k— oo.
L] [}

Proof of (2.16). Since g is uniformly continuous, g([2"]/2", u) con-
verges to g(f, u) uniformly on [0 T'] X I', where [c] is the largest integer
< c. Suppose sup, ,|g([2"s]/2", u) — g(s, u)| < e. Then

'], &6 wids, aw — /| &ts, wyicds, du)
<[ o~ (22

L o0 a0 - 120, a0
< 2¢t + 2nd term.

(A(ds, du) + A(ds, du))

Appealing to (2.15), we see that the 2nd term tends to 0, as k& — oo, for
any n. Hence we can conclude (2.16).

Let ¢,i=1,2 be Myior M([O T] % I'))-valued random variables,
which may be defined on different probability spaces. v, denotes the proba-
bility distribution of £,. So, v, is a probability on (M, d,) (or (M([0 T] x I'),
dy) respectively). Let 7, (or ;) denote the totality of M, (or M([O T x IN)-
valued random variables. We endow the following Prohorov metric
D(or 15T) on mylor M, resp.),

DGy, €)= Lv, w)
DT(Cu Cz) = L(”u Vz) .

Since M, and M([O T1x I') are compact metric spaces, (i1, D,) and
hy, D,) are also compact spaces.

For o« = (@, F, P, &, B, Y, q), we sometimes denote & by &, and so on,
when any confusion might occur. Let X(= X,) be a solution of (2.1) for .«7.
Then (X, & B, Y, q) becomes a M, = C([0, T]1— R") X R x C([0 T] — R")
X ([0 T]—R") X M([0 T] x I') valued random variable. Endowing M,

2.17)
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with a usual metric d,(=sum of metric of each component) M, turns
out as a complete separable metric space. Let m, denote the totality of
M,-valued random variables and D, the Prohorov metric on m,. Hereafter
we denote (X, &, B, Y, ¢g) by (X, &) for simplicity if no confusion occurs.
We also say that «/, — o (in Prohorov topology), if (¢., B., Y., ¢.) —
(¢, B, Y, ¢) in Prohorov topology. £,, F,, P, can also depend on n. £,
B, and (Y., q,) are independent for any & ¢ and B, is a Brownian
motion. Therefore we have

PROPOSITION 2.2. &, — &, iff &, — & in law and (Y,, q,) — (Y, q) in
Prohorov topology.

Now we put the set 2, = totality of probability distributions of (Y,, q,),
A € WAy), A(p) defined later (3.8). Since &, B, and (Y, q,) are independent
for o/ e, #, does not depend on g, say #. Moreover 7€ 2, iff # is a
probability on C([0 7] — R") X M([0 T] x I') such that the first compo-
nent ¥ is a Brownian motion under = and its increments y(f) — y(s) is
independent of ¢,(y, A) for ¢ > s, where 2 is the second component, (see
§ 2 of Fleming-Pardoux [8]). Since C([0 T] — R") X M([0 T1 X I') is a prod-
uct of complete separable metric space, it becomes a complete separable
metric space. So we introduce the Prohorov topology on . Then &£ is
a compact metric space, because the first component is a Browian motion
and M([O T] x I') is a compact metric space. Now we have

ProposITION 2.3.

i) & = totality of probability distribution of (Y, q,), L c¥, is a
compact metric space with Prohorov metric.

ii) & = totality of probability distribution of (Y, q.), & € U(y), for

any p.
iti) For o, o' € W), D((X,, &), (X, &) = 0 iff probability distri-
bution of (Y, q,) = probability distribution of (Y,, q,).

§3. Existence of optimal relaxed control

Let N be a compact subset of probability measures on R™ with Pro-
horov metric. Put P, = Probability law of 7 and

% = (X, #); P, eN}.

ProposiTioN 3.1. N is @ compact subset of (m,, D;).
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Proof. By the condition (Al), {X,; P, €N} is totally bounded in
Prohorov topology. B, and Y, are Brownian motions for any «/e¢.
Since 1, is compact, {q,; «/ € A} is totality bounded. Therefore

R = {(X, «); P., e N)

is a totally bounded subset of (m,, D,).

Now we will show that N is closed. Let (X, «7.), k=1,2,--- be a
Cauchy sequence. Using Skorobod’s theorem, we can construct (X7, &,
B¥, Y¥, q¥) and (X*, &%, B*, Y* q*) on a probability space (2%, F*, P¥),
so that
8.1) (X3 & B¥ Y¥* g¥) has the same probability law as (X, &, By, Yi,
qk)’ k=1,2, STt
(8.2) As k— oo, (X¥, &%, B¥, Y¥, qF) converges to (X*, &%, B* Y* g*) in

d, metric, P*-almost surely.

Hence &*, B* and (Y*, q*) are independent and B* and Y* are Brownian
motions. Moreover we see that, for a.a. o(P*), ¢*(-, w)eM([O T x I')
and d,(g*(-, ), ¢*(-, ®)) tends to 0 as k — oo, by virtue of Proposition 2.2.
On the other hand (2.15) implies that g*(t, A, -) is F*-measurable. Since
q(t, A, w) is continuous in ¢, ¢* (-, A, -) is B,[0 T'] X F*-measurable. Name-
ly g* satisfies the conditions (v) and (vi). (3.2) again tells us that Y*(¢)
— Y*(r,) is independent of ¢,(Y*, q*) whenever s <r, <t Since Y* has
continuous paths, this implies that Y*(f) — Y*(s) is independent of ¢ (Y*,
q*), Therefore &* = (Q*, F* P* &% B* Y* g*)edl.
Next we will show that X* is a solution of (2.1) for «/*.

@3 || [ 1,0, wards, du,w) — [ [ 1006, 0, werds, du, o)
< [ ], 1rXete, 0, 1) — 106, 0, wlar(ds, du, o)

+ [ 76, 0, wiaids, du, @) — q*(ds, du, )

the 1st term < KJW | X ¥(s, w) — X*(s, w)|q¥(ds, I, w)
0
=Kﬁﬁ@@—p@w@.
0

Since X}(-, w) converges to X*(., ) uniformly in [0, T], the 1st term

https://doi.org/10.1017/5S0027763000020742 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020742

80 W. H. FLEMING AND M. NISIO

converges to 0, as £k — co. Appealing to Remark of Proposition 2.1, the
2nd term converges to 0, as k— c. So, we have

(3.4) j L T(X (s, ), Wa(ds, du, ) —> j ° j T(X*(s, @)g*(ds, du, o).
Using a routine method we get
(3.5) fo (X #(s)dBH(s)) —> f 0 «(X*(s)dB*(s))  in proba (P¥).

From (3.4) and (3.5), we conclude that X* is a solution of (2.1) for
&/*. This completes the proof of Proposition 3.1.
CoroLLARY. If o, — o, then (X, o7,) — (X, &) in D,.

Let f and ~A be bounded and uniformly continuous functions on R".
Define a pay-off function J(«/) as follows,

(3.6) () = EfXATHIAT, )

where E stands for the expectation in (2, F, P), and
T 1 T

3.7 (T, /) = exp ( f R(X(s))d Y(s) — _f |R(X(s)) Fds)
0 2 Jo

where X =X, and Y=Y,
For a probability measure p, we denote

(3.9) W) = (o e%; Py, = 1)

i.e. the set of all admissible system where initial distribution equals to p.
For a given ¢ we want to maximize J(&/) by a suitable choice of

o € Up).
THEOREM 2. There exists an optimal admissible system <7 ¢ U(y), that
is
3.9 dset:.(g‘)J(d) = J().
Proof. Let 7, € U(p) be approximately optimal, i.e.
(3.10) lim J(Z,) = sup J().

k—oo S EA(p)

By virtue of Proposition 3.1, some subsequence (X, «/;) converges to
(X, &) in Prohorov topology. For simplicity we may assume (X, <;) —
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(X, /) as k— oo. Again Skorobod’s theorem tells us that their suitable

version satisfy (3.1) and (3.2). So we again assume that (X, </,) and

(X, o) satisfy (38.1) and (3.2), since J(«/) depends on only probability law.
From boundedness of f and A, we have

(3.11) E(fX(TOLT, )y <|IfIFe™, k=12, ---.

Hence {f(X.(T)I(T, «), k=1,2,---} is uniformly integrable. On the
other hand I(T, o/,) tends to L(T, </) in proba. Appealing to the con-
vergence theorem we get

(3.12) lim J(Z,) = ) .

k=0

Combining (3.12) with (3.10), we complete the proof.

Remark. Appealing to Corollary of Proposition 3.1, we see that if
oty — of, then J(oZ,) — J().

Now we treat the following case; r(x, u) = b,(x) + by(x)u where b,(x)
is'n X k matrix.

THEOREM 3. If r(x, u) = b(x) + b, (x)u, then q = q, can be replaced
by a I'-valued a,(q)-progressively measurable process U (i.e. usual admissible
control under partial observation). That is, X = X, is a unique solution of
the following S.D.E.

(3.13) {dX(t) = (X@)dB() + 1(X(2), U(t)dt

X0 =¢
where B= B, and & = &,.
Proof. Our required U is obtained by the following lemma.

LEmMA. There exists a o,(q)-progressively measurable I'-valued process
U such that

(3.14) j t J uq(ds, du) = f Us)ds, for Vi< T.
oJrr 0
Proof. Define U, as follows

2kj wq(t, du, ©) — qt — 2°%, du, @),  for ¢ > 2-*
r

1

3.15) Uyt,0) =
—t—j uq(t, du, ), for 0 <t << 2%,
r

https://doi.org/10.1017/50027763000020742 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020742

82 W. H. FLEMING AND M. NISIO

Since I" is convex compact, U,(t, ) € I' and ¢,(q)-progressively measurable.
Moreover the compactness of I' tells us that {U,, k = 1,2, ---} is weakly
totally bounded in LX[0 T] X 2). Hence some subsequence converges
weakly and their suitable convex combinations converge strongly; say
>N, atU, (¢, w) converges to U(Z, ) in LX[0 T] X 2), as £ — co. So Uis
a I'-valued ¢,(g)-progressively measurable process.

On the other hand the definition of U, implies

(3.16) L Ui(s, w)ds — L uq(t, du, w)(: J f ug(ds, du, a))) .

as k— co. Taking the convex combination of U,, we can conclude that
U satisfies (3.14) by bounded convergence theorem.

Now we return to the proof of Theorem 3. Since & B and U are
independent, (3.13) has a unique solution. So it is enough to show that
X = X, satisfies (3.13). By the Lemma we can see

(3.17) L bo(X(5) f  ug(ds, du) = L b(X(s)) U(s)ds .
Using © j " b(X(s))q(ds, du) = L b(X(s))ds”, we have

(3.18) j f T(X(s), wads, du) = j o 1(X(s), U(s))ds .

This completes the proof of Theorem 3.

DEeFINITION 3. A I'-valued process U is called an admissible control
under partial observation, if & B and (Y, U) are independent and Y(¢) —
Y(s) is independent of oY, U). Precisely speaking &7, = (2, F, P, ¢, B,
Y, U) is called an admissible usual system.

An admissible control U can be regarded as the following relaxed

control g,
13
(3.19) a(t, 4, 0) = | duo(A)ds =[5 < & Us, 0) € A]
0
where J, is the d-measure at a. Appealing to Theorems 2 and 3, we can

derived,

CoroLLARY. If r(x, u) = b(x) + b(x)u, then there exists an optimal
admissible usual system <7,. That is,

(8.20) J(Zy) = sup J(Ay) = sup J(&).

#y:ad.usual sys o EU(u)
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This fact was directly proved by Haussmann [9] and in a slightly
different form by Fleming-Pardoux [8].

§4. Approximation by usual controls
For o = (9, F, P, &, B, Y, q) we define P, by

%Q(t, Ao 0<t<2"
(Q(t, As (D) - q(t - z—n’ A, co))2", 2-" < t’

(4‘1) Pn(t7 A, (l)) =

namely P, is an approximate time derivative of q. P,(-, 4, -) is ¢,(9)-
progressively measurable and P,(¢, -, ) is a probability on I'. Define ¢,
by

(4.2) 0.t, A, 0) = j "Py(s, 4, 0)ds.

Then q, satisfies the conditions (v) and (vi) and &/, = (2, F, P, ¢, B, Y, q.)
€Y. Since we have
43 gt Ao -t A0 <2 +2 [ (g6 A 0) = g, 4, 0)|ds,
t—2-n
for a.a. o(P),

the condition (iv) implies, as n— oo,

4.4 sup|q.@¢, A, w) — q(t, A, ®)| — 0, uniformly on [0, T'].
A4

and

(45) &T(qn( ) C()), q( ’ CD)) —> 0.

Fix u,e I' arbitrarily and define P, , by

P,,([zﬂ, A, a)) R for ¢t > 2-*
(4.6) Pt Aoy =] "\ 2 =
3..(A) for ¢t < 27,

Then P, is a step function in the time variable {. Put g, , as follows.
12

“.7) Gnilt, A, 0) = f P, (s, A, w)ds.
0

We call q,, a switching relaxed control with interval 2-*. It is clear that
(‘Q’F’P:f,B, Yaqmlc)egr and

(4.8 €t A, ©) — qu(t, A, 0)| < 277718 + 27,
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Therefore we get

4.9 lim sup |q,, (¢, A, ©) — q.(t, A, 0)| = 0.

k—oo (ST, A4
Now we conclude the following proposition,

ProrosiTiON 4.1. For o =(Q, F, P, &, B, Y, q) e, there exists an
approximate sequence of switching relaxed control q, with interval 2-%, such
that q.(-, A, -) is o,(q)-progressively measurable and moreover

(4.10) lim sup |g.(t, 4) — q(t, A)| =0, P-almost surely
k—oo 0<E<T,A
and
4.11) lim d,(q., q) = 0, P-almost surely.
k—oco

Putting 7, = (2, F, P, ¢, B, Y, q,), we can see the following corollary,
by virtue of the Remark of Theorem 2.

CoRrOLLARY. There exists an approximate admissible switching system
o, such that

4.12) oAy —> A, as k— co.
Hence J(s/,) converges to J(&).

THEOREM 4. There exists a ['-valued a,(q)-progressively measurable
process U, such that

t
@13 ai(t, 4,0) = [/ duo(A)ds
approximates q in the following sence; <, = (£, F, 13, & B, Y, q,) satisfies
(4.12).

Proof. By the Corollary of Proposition 4.1, we may assume that o/
is an admissible switching system with interval 2-¥. Appealing to a Chat-
tering Lemma [5], we will construct our desired U,, in the following way.

Let {u;, ---,u,} be an enet of I', and V,, ---, V,,e B(I') a partition
of I" such that
(4.14) lu, — u|<e for Yue V,.

Since a given g is a switching relaxed control, it can be written by

att, A, @) = [ p(s, A, a)ds
0
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with p of step function in s. Define p = p, and § = §, as follows,

415) Bs, {u o) = p(s, Vi, @)
and
.16) 4(t, (), 0) = [ 5o, {ud, )ds.

Then p(t, -, w) is a discrete probability on I" and for Yge C(I")

.17 f 8Wh, du, ) —> f 8@p(t, du,w), as < 0.

Define 6,i =0, --.,m as follows: Let j>" <s, <s,<(j+ 1)277,
00((1)) = §

(4.18) . _

01(60) = ;1.“8 ﬁ(t’ {ué}, w)dt + S1 1= 1, e,

Then s, = )(0) < O(w) < -+ < 0,(w) = s, and

("] swatds, du,w) = [ [ gpts du, wra

@9 = 38w [ Bt (), 0)dt = 33 8)O.) — 0.-(0)
= .[ : 8(U, w)dt = Jij fr g Wiy, w(du)dt

where

(4.20) U(t; (l)) = U;)sl,“(t, (D) = U, on [(01:_1(0))’ 01((0)) )

Therefore U, ,, ,,(t) is 0;,-~(q)-measurable. Putting e = 2%, s, = £2-%(k > N),
we define U, by

Uk(t, w) = UZ"‘,52"7‘,(2+1)2""(t, (1))

4.21
“.21) for £2F<t<(4+1)2F% £=01 2.

Consider the SDE

(4.22) {dfk@ = a(@D)dB(@) + 1(&.0), Ul2)dt

Ek(O) =¢.

If we regard U,(f) as dy,q), then &, turns out a solution of (2.1) for &, =

L, F, P, & B, Y, q.) where q.(t, A, 0) = jz Oppis,m(A)ds.  Moreover (4.19)
0

means
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(4.23) qu(827%, - ) = §,-(£27%, -, w), £=0,1, .-, [2T1.

Hence, combining with (4.17), we can see that, as k— oo,

(4.24) &T(qk, g —> 0, P-almost surely.
Evidently this completes the proof.

§5. Continuity of conditional expectation

According to [8] we define L pathwise. Hereafter we assume the
following smoothness on A.

2

A3 n 0 _Th

ox; 0x,0x;

Putting X = X, Ito’s formula tells us that

i,j=1,.--,n are bounded and uniformly continuous.

[} nxopaye = nxayya - | vadnxey
GR — WXV - 3 [ 1) 2 XKD,

[} Yoae orxeyar

where

(.2) At, Qh = % 3 ay@ -2 4+ 3R, %, 03 9) 2
0x,0x; ox,

with

(5.3) R(,x,0;q) = lim 2* j 7, u)aCt, du, o) — q(t — 277, du, ).

n— oo

So, R is ¢,(q)-progressively measurable for any x, and Lipschitz continuous
with respect to x. Moreover for any (x, w),

(5.4) R@, x, w; @) = —gt— J' Y(x, w)q(t, du, ) for a.a. t.
r

For ye C([0 T]— R*) and 1€ M([0 T] X I') we define & by
20, B,5,)
65 = exp|yOhO) — [ 2©AG DhG(s)ds — - [ [he)Fds

Sy ROEJCOFTOLIC)

https://doi.org/10.1017/50027763000020742 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020742

STOCHASTIC RELAXED CONTROL 87

where 7 is a solution of S.D.E.

56 {dﬂ(t) = a(O)ABO) + | 10, WA, dw
70) = §.
Applying a successive approximation, we can see that » is a Borel func-

tion of & B and 2. Hence . is Borel measurable with respect to 6, &, B,
y, & From (Al) and (A3) we have the following evaluation,

-F 0 oxp [_ 5 jo ¥(®) %(y)(t))a“(r)(t))dB/(t)

ry

R - [ 2 (60 2 2 arasten) at]

0x;

<20,6 By, y<e o exp |- [ B - 3 [ - dt]
% 0 0
where F(y,0) = K(sup|y®)| + D0 + D).

Since (C[0 T]1 — R"), || [)) and (M [0 T) X I', d,) are complete separable
metric spaces, the regular conditional probablity P((X, ¢, B, Y, q) ¢ -/Y =y,
g = 2) exists. This regular conditional probability is nothing but the
probability distribution of (7, &, B, y, 2), because (¢, B) and (Y, ¢) are inde-
pendent. Putting x = P.(= probability distribution of &), we have a
version of conditional expectation as follows.

E(f(XO)LO, «2)|Y =y, q = 1) = Ef((6))20, ¢, B, y, )
- jEf@(a, )20, x, B, y, )du(x),  for bounded Borel f,
where 7(f, x) is a solution of (5.6) with 7(0, x) = x. The right side of (5.8)
is Borel measurable with respect to 6, y, 2, which depends on f and p.
So we denote the right side of (5.8) by C(@, y, 4, ¢, f). Moreover C(@, y,

A, i, f) depends on the value of y and 2 up to time 4. Stressing p we
denote E by E’,,. That is,

5.9) C@, Y, ¢, 1 f) = BAXO)LO, Nlox(Y, )
= E(f(X()LO, «#)/c (Y, q),  P-almost surely.

Using (5.7) we have
(5.10) e T < CO, Y, qpl) Le™N,

Now we define C(, Y, q,v,f) for a positive measure v as follows
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(.11) €O, Y, 0% f) = M1 C(0, ¥, q, L f)
Y

where ||v|| = v(R") and we apply the same notations E, for a general
positive measure v, that is

(56.12) E(f(XO)LO, )| Y, @) = C@O, Y, q, v, f)
with & = (2, F, P, ¢, B, Y, q) for P, = yf||v|. The left side of (5.12) stands
for

(.13 E(f(XONLO, D)oY, @) = II»|E(FXONLO, )oY, ).

Since ¢ is independent of (B, Y, q), the right side of (5.13) does not depend
on a special choice of &.
Define A9, y, 2, v)(A) by

(5.14) A0, y, 2, v(A) = C@O,y, 4, v,X,), A€B,.

Then 4, y, 2, v) is a positive measure on R” and for any bounded Borel
function f.

(5.15) {f, 40, ¥, 2, v)y = C@6,y, 2, v, f)

where {f, 4> = JR“ f(x)A(dx). From (5.10) we see

(5.16) Iller e < 140, 5, 2, )] < [lv]| e

On the other hand #(, &, B, y, 7) is continuous in 4, P-almost surely, and
(5.7) implies the uniformly integrability of {9, &, B, y, 1), 6 €[0, T1}.
Hence |4, y, 2, v)|| = ||v|| EZ(, &, B, y, 3) is continuous in 6.

Define a metric 4 on M(R") (= totality of positive measure on R")
as follows

1 1
G17) A y) = L(J‘—, v 1 .
el ™ vl fll vl
Then (M(R"™), 4) is a complete separable metric space and v,, k. =1,2, - --
is a Cauchy sequence, iff {f, v,> converges for any fe C,(R"), as k— oo.
and lim,_. {1, v, ) (=) > 0. Recalling Prohorov’s theorem we have

) - Ul = ol +

ProposiTiON 5.1. N D M(R"™) is 4d-totally bounded, iff there exist pos-
itive constants ¢ and ¢’ and for Ye > 0 there is a compact subset K, — R*
such that
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(5.18) < vi<e and v(K9)<e forveN.

Put m = totality of M(R")-valued random variables, which may be
defined on different probability spaces. We endow the Prohorov metric
on m, (called § metric), namely

0, &) = L(,Un Il-z)

where p, is the probability distribution of ;. Then (m, §) is a complete
separable metric space, because (M(R"), 4) is a complete separable metric
space.

Concerning the continuity of 4, we can prove the following theorem.

TaEOREM 5. If y,—y in C(0 T1— RY), v, —>v in 4, 3, — 1 in d, and
0, — 0, then

(5'19) A(ﬂk) yln 1k, vk) —> A(ﬂa Y, 17 l") in A .
Proof. Firstly we remark that

(5.20) j RG, x, 2,)dt —> j R, x,2) dt.

Recalling the definition of R for 2e M([0 T] x I') (see (5.3)), we get, for
any x,

(6.21) R, x, 2,) = El_'m Ir T(x, WA, du) — 2.t — 27, du))2"

for a.a. t.
Hence the bounded convergence theorem implies
f‘ R(t, x, 2,)d¢ = lim [ j : f 27 (x, WAt du)ds
0 N0 oJr
(5.22) - j j 277 (x, U (t — 2-, du)dt]
22y r

- L 7(x, wa(s, du) .

Since 4, — 1 in dy, (5.22) means (5.20).
Consequently we can easily see

Lemma. If ¢, — ¢ and 4, — 4 in C([0 Tl — R™) and C([0 T]— R
respectively, then

(5.:29) [ Bt 0.0, 2vi0dt — [ Bt, 40, Doyt
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Putting 4, = A@,, y, A, vi) and A = A0, y, 2,v), we will show

(5.24) {f, 4y —>f, 4)  for fe C(R™).

Consider the SDE on (2,, F,, P,

(5.95) {dm(t) = el (O)AB®) + [ 700, WAL, dw)

and on (2, F, 15)

Ié

(5.26) {dv(t) = a(/O)ABE) + | 760, Wi(d, du)
7(0) = ¢

where &, and & have probability distributions v,/||v.| and v/||v|| respectively.
Since {(:, & B, Bk = 1,2, - - -} is totally bounded in Prohorov topology and
any convergent subsequence tends to (y, &, B) in Prohorov topology, (7.,
& By, B=1,2, - itself converges to (3, & B) in Prohorov topology.
Appealing to Skorobod’s theorem, we will assume that 2, = 2, F, = F,
P, = P and P-almost surely 7,— 7 in C([0 T]— R"), B,— B in C([0 T]— R")
and &, — & in R". Therefore the lemma guarantees

G2 [ rAG Wk (s)ds —> [ H©AG, DhG(s)ds
P-almost surely.

Furthermore, using a routine method we have

62 [ 360 T e )dB @
—> f: y(s)g% ((s))ex;;((s))dB(s) in proba P.

Hence we have
(5'29) g(ﬁk’ Eln Bln ym Zk) —> g(ﬂ, S, B, y, 2) in pl'Oba Io).

Since (5.7) means the uniformly integrability of {f(p.(0.)ZL 0. &, Bss Yir A1)
k=12 ---}, (6.29) implies (5.24).

By virtue of Proposition 5.1, (5.16) and (5.20) guarantee the totally
boundedness of {4,k =1,2, ---}. Consequently, again (5.24) tells us that
A, converges to 4 in metric 4. This completes the proof of Theorem 5.

Now we apply this theorem to admissible systems.
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TuEOREM 6. Let o, = (24, Fi, P, &, B, Yi, q) and o = (2, F, P, ¢,
B, Y, q) where &, and & have probability distributions v f|v.|| and v/|v]|
respectively. If (Y., q.) — (Y, q) in Prohorov topology, v, —v in 4 and 0,
— 0, then

(5.30) Ay, Yy, gy vi) —> A@, Y, q,v) in metric o.

Proof. By the assumption «/, — .« in Prohorov topology. Hence
(X;, o) — (X, o) in Prohorov metric D,, by virtue of Corollary of Pro-
position 3.1. By Skorobod’s theorem we can construct copies (X}, o)
and (X*, o*) of (X,, «7,) and (X, &7) respectively, so that Qf = Q% F¥ = F*,
P} = P* and P*-almost surely (X}, &, Bf, Y¥, qF) — (X*, &%, B*, Y*, g*%)
in d,. For non-exceptional we 2% we put 2, = ¢f(-, 0), y. = Y¥(-, w),
2=q*(,w) and y = Y*( , w). Then y,, 1, y and 2 satisfy the condition
of Theorem 5, Theorefore we have

(5.31) A@,, Y¥, gF, v) —> A@, Y*, q*,v),  P*-almost surely.

On the other hand Theorem 5 tells us that the mapping 4@, -, -,v);

C([0 T]— RY) X (M([0 T} X I')) - M(R") is continuous. So A4, Y, q,v) is

a random variable, i.e. 40, Y, q,v) e m. Consequently (5.31) implies (5.30).
Recalling Corollary of Theorem 4, we get

CoroLLarY. For any o € (), there exists an approximate admissible
switching system <, € Ap), such that

(5.32) A, Y., g, v) —> 40, Y, q,v) in metric o
where p = v/||v].

§6. Semigroup

Let C be the Banach lattice of the totality of bounded continuous
mappings from (M(R"), 4) into R', with supremum norm and the order < ,

ie.

(6.1) ¢ <P d() <)  for Yve M(R").

For v e M(R"), o € A(v/||v|)) and ¢ € C we define J by

(6.2) J(t, ., ¢) = B4, Y, q, )
E[E(@AG, Y, q,v)o(Y, 9)]

(6.9)

E(g(At, y, 2, v)a(dy, d3)

J.cqo T1-R1)X M0 TIXT)
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where z is the probability distribution of (Y, g). Since E‘(¢(/1(t, ¥, 2, v)

depends only on ¢, v, ¢,y and 2, J(¢, &, v, ¢) can be denoted by J(t, x, v, ¢).
Define S(t)¢ by

(6.4) Sp() = sup J(@, ,v,¢).

s €A/l

Then by Proposition 2.3 (ii) and (6.3) we have
(6.5) S¢() = sup J(¢t, 7, v, ¢).
T€EP

ProrositTiON 6.1. J(2, 7, v, ¢) is continuous in (t,m,v)el[0 T1X P X
M(R™).

Proof. Let t,—t, n, — = and v, — v in their topologies. Take 7, ¢
A/llvel) (and o € A(/||v|)) such that the probability distribution of (y,, q,)
(and (Y, @) is #, (and n respectively). Then ./, — & by Proposition 2.2.
Therefore Theorem 6 guarantees that A(Z, m, vy, §) — AL, 7, v, §) in metric
o that is in the Prohorov topology. By Skorobod’s theorem we can take
a copy AF of A(t,, my, vi, ) and A* of A(t, z, v, §) so that AF converges to
A* almost surely on (2%, F* P*). Since ¢ is bounded continuous, we see

that
J(tk’ Ty Vi ¢) = E°k¢(A(tk’ Yk, Qx,s "’k) = E*¢(A;:k)
(6.6) J(t, 7, v, ¢) = Eg(A@, Y, q,v) = E*¢(4*)

E*g(4F) — E*g(4¥) .

This completes the proof of Proposition 6.1.
Since & is a compact metric space by Proposition 2.3 (i), we can
conclude the following proposition.

ProposiTiON 6.2. S(f)¢ € C whenever ¢ C. That is, S(t) is a mapping
from C into C. Recalling Corollary of Theorem 6, we see

(6.7) S@p() =  sup  J(E A,y ¢).
o

TueEoREM 7. S(t + 6) = S(£)S(d), S(0) = identity.
Proof. Consider the SDE on (2, F, P), for 1e M([0 T] x I')

(6.8) {dv(t) = a(p()dB(@) + L 7((2), w)A(dt, du)
7(0) = &.
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Since a solution 7(-, &, B, 2) is unique, 5 satisfies the following relation
(6.9) 7t + 0, & B, 2) = 50, 9 & B, 2, Bf, 2})

where B;(s) = B(t + s) — B(t), A/ (s, A) = At + s, A) — i, A).
Using Ito’s formula we get

(6.10) Z(t +s,& B,y, ) = L, & B, y, DL(s, 9t & B, D), B, yi, A7)
Define v: [0 T] X R* X C([0 T] - R") X M([O Tl x I') x C(R") — R' by
(6.11) ut, %, 5, A, f) = Ef((t, x, B, D)Z(t, x, B, , 2)

where E of the right side stands for the expectation with respect to B,
since the starting point x is not random. From (6.10) and (6.11) we have

u(t + s, x,5, 4 f) = EfGyt + s, x, B, )t + s, %, B, y, )
(6.12) = E[#(t, x, B, y, DE(f(y(s, 9(t, x, B, 2), Bf, %)
X Z(s, 7, x, B, 2), B}, y/, 2/ [e(B))] .
Since 5(t, x, B, 1) is ¢,(B)-measurable, we see
E(f(y(s, 72, x, B, 3), Bf, 3:)Z(s, 1(t, x, B, 2), Bf, yt, 2)|a(B)))
= U(S, 77(t7 x; B, 2)7 yt+’ Z:', f)

and, combining with (6.12) we get

(6.13)

u(t + s, %, 5,4 f) = Eu(s, 5(t, x, B, 2), ¥, 27, [)Z(t, x, B, y, 2)
= ut, x,5, 4, 0(s, -, 55, 4, 1)) .

Recalling (5.8) and (5.15) we get

(6.15) ARy, 2,0y =ty -0, 8,v),  fe C(RY.

Hence, by (6.14), we have

FAC + 8,5, 2,0)) =t + s, 0,9, 8, v)
= <v(t’ 5 Y 2, U(S, 'yy;’ Zfaf))’ ”>

(6.14)

(6.16)

= <U(S, "yt+7 2t+1f)y A(t’ Y, '2, y)>

= f, A(s, 57, 25, A(t, 3, 2,v))y ,  fe C(R).
Consequently
(6.17) A+ 8,5, 4, v) = A(s, 55, A, A, 3, 4,v)) .

Since (6.17) holds for any y € C([0 T] — R") and 1€ M (0 T] X I'), we have,
for any o = (2, F, P, ¢, B, Y, q) € U(v/|v|)),
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(6.18) At +s,Y, q,v) = A5, Y, qF, A4, Y, q,v), P-almost surely .
This implies

J@t+ s, ,v,¢) = EgAt + s, Y, q,v))
= E[E(§A¢ + s, Y, g, »)a(Y 9)))]
= Eg(A(s, Y, qt, At Y, g, v)))
= EE(§(AGs, Y7, q7, A, Y, q,v)[a (Y, @))) .

Under the regular conditional probability P( /oY, q)), (Bf, Y;) is a (n+ 1)-
dimensional Brownian motion, (Y}, q;) independent of (B, &) and Y; is
(Y7}, ¢/)-Brownian motion, i.e. independent increments. Hence y(t, &,
B, q), Bf and (Y;/,q}) are independent under conditional probability
P(-/o(Y, q)), P-almost surely, although the probability distribution of g;
might depend on the past value of (Y(4), q(0, A), 8 < t, Ac B(I")). Hence
there exists a null set Ne oY, q), such that for we N, (2, F, P(-/a[Y, q))
(), (¢, & B, q), B/, Y/, q/)eU. Therefore

(6.20)  E(§(AG, Y, g7, A, Y, g, )oY, @) < (SE)8)ALE, Y, q,v)),
P-almost surely .

(6.19)

Combining (6.20) with (6.19), we have
(6.21) J(@ + s, o, v, 8) < SES(E)P)() .
Taking the supremum with respect to < € A(v/||v|), we have
(6.22) S(t + 8)¢(v) < SENS(S)P() -
For the converse inequality we will show some lemmas

Lemma 1. Let N C (M(R"), 4) be totally bounded. Then {A(t, Y,, q.,v);
o € AW/||v]), v € N} is totally bounded in (m, d).

Proof. Consider the SDE, for & = (2, F, P, &, B, Y, g) ¢ A(/||v|).
(6.23) {dn(t) = a(y(t)dB@®) + L 7(y(t), wa(dt, du)
7(0) = &.
Then, using this unique solution 7(¢) = (¢, & B, 2) we have
(6.24) A(t, y, 2, v)(A) = V| EX,(q()Z (¢, &, B, y, ).

Hence, by (5.7)
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A(t, y, 2, )(A) < |vPPG() € A)ELE, &, B, y, D)

(6.25) < |Iv|FP((t) € A) exp [2K(t + 1)(|y]. + 1)

where ||y]l, = sup,<,|¥(s)] This means

6.26) At ¥, 4 »)A) < ||V BG(t) € A) exp [Ki(t + (L + a)],
whenever ||y, < a.

On the other hand the condition (Al) implies that, for ¢ > 0, there
exists b = b(¢/, t, N) such that

®27) Pyt & B, >b) <& for Yae M0 T x I), xzea(- '”_) veN.

vl
Since Y is a Brownian motion, for ¢ > 0 there exists a = a(¢) such that

(6.28) Psup|Y(s)| < a) >1—¢ for Vor e U.
§<t

Putting ¢/ = gle-?X:+00+e0? (6.26) gives

(6.29) At y, 2, (KS) < elly]|  for 2e M([0 T] x I

whenever ||y||, < a, where the compact set K is given by

(6.30) K ={xeR":|x| < b,t, N)}.

Therefore combining (6.28) and (6.29), we see, for « € AQ/{|v]),

(631) 1-¢e< 13(8;;13! Y(s)| < a(e) < P(A®, Y, g, )(K) < e||]) .
Recalling the condition “0 < ¢’ < ||v|| < ¢ for Yv e N, (6.31) implies Lemma

1 by virtue of Proposition 5.1.
Applying Prohorov’s theorem, Lemma 1 gives

Lemma 2. For ¢ >0 and a totally bounded set N C (M(R"), 4) there
exists a compact set N = N(e, t, N)  (M(R"), 4) such that

6.32)  PUELY,q)eN)>1—¢ for e 9{(1’2} ) veN.
Vi

LemmA 3. Suppose that M(R") = M,U ---UM, is a Borel partition of
M(R"). Let v,eM, and o = (2, F, P, &, B, Y, q)eUv/|v.|). For any
fixed o = (Q,F,P,&, B,Y,q) e Av/|v|) we define O,F P& B, ¥,q as
follows.
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D=0XQXDX-X02, F=FXFx--X%F,
P=PxP x. .. -xb, &=¢

- B@), 6<t

B(ﬁ): ¢

Y is defined in the same way.

q0, 4), 6<t
Q(ﬁ7 A) = ¢
Q(t, A) + Z(:) Q1(0z - t, A)XMi(A(ty Ya Q7 l")) ’ 0 2 t-

Then 7 = (2, F, B, £, B, ¥, §) e W/|1v]).

Proof. ¢ is independent of {(B, Y, q), (¢, B;, Y;,q),i =0, ---,4}. Soé
is independent of (B, Y, g).

B is a Brownian motion, because for ge C,((R")*) and 4, > ¢, j =
1 ..., k,

E@B0) — BW,j=1, Bo(B,Y,q) V o(Yq) i =0, -, 0)

(6.33) : _ .
= Ez(g(Bz(aj - t))] = 17 Y k) lf A(t7 Y’ q, "') € Mi'

Hence (ﬁ(s) — 1§(t), s > t) is a Brownian motion which is independent of
aB, Y,V oYy, q)V --- Va(Y,q,), since B, is a Brownian motion.
This implies that (B(s) — B(f), s > t, B(d), 6 < t) is independent of ((Y, q),
(Y,q),i=0, .-, %), since B is independent of (Y, q), (Y;,q),i =0, ---, 4).
Therefore B is independent of (17, q), because (17, ) is measurable with
respect to o(Y, q, Yy, q, - -+, Y,y Qo).

Using a similar calculation as (6.33), we see that for ge C, (R*) and
0,=>60>tj=1---,k

Blg(T0) — 70,5 =1, - koY, ) V 00-¥sr @ -~ Y0 )

(6.34) = E(g(Y\6) — Y{0),j =1, ---, k), if At Y, q,v)eM,.

Therefore (Y(s) — Y(6), s > 6) is a Brownian motion which is independent
of a,(¥, d).

It is clear that ¢ satisfies the conditions (v) and (vi), from the defini-
tion of §g. This completes the proof of Lemma 3.
Now we prove the inequality (6.35) for Theorem.

(6.35) S(t + s)¢() = SE(S()P)() -
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Since J(s, 7, v, ¢) is continuous in m, v and & is compact, J(s, v, §) is
continuous in v uniformly in = € &, namely for ¢ > 0 there exists d(c, v) =
8, v, s, ¢) such that, if 40/, v) > d(, ») then

(6.36) |J(s, 7, v/, @) — J(s, 7, v, §)| < e.
Hence
(6.37) |S(8)g(v) — S(s)p()| < e, if 40, v) < d(e, v).

Applying Lemma 2 for N = {3}, given ¢ > 0 we can take a compact
set N as in (6.32). From (6.36) and (6.37) we can take a Borel partition
of N, say N = M,U---UM,, such that, if v/, v/ e M,, then

(6.38) |J(s, 7, V/, @) — J(s,m, v, )| < ¢
and
(6.39) [S(8)p(v") — S(8)g(v")| < e.

Fix v,e M,, i =1, ---, ¢, arbitrarily and take ;e %A(y,/|v;|)) such that
(6.40) J(s, w5 v, ¢) = S(S)P(v,) — €

where z;, = probability distribution of (Y,, q.,). Then, by (6.38) ~ (6.40),
we see

(6.41)  J(s, 7, V', @) = J(8, 7 14y ) — & = S()P(vi) — 26 > S(s)p(v) — 3e
for v e M,.

Let « e A(/|v|]) and M, = N° and take v, € M(R") and .o, € Aw,/||v, )
arbitrarily. Then M,, i =0, - - -, £ is a Borel partition of M(R"). According
to Lemma 3 we have (2, F, P, & B, Y, §) e %(/|v]). Then

I+ 5, 7,9, ¢) = BgAG¢ + 5, 7,8,)
(6.42) = Eg(AGs, ¥7, a1, At Y, g, )
= E[E($(AGs, Y, G, At Y, g, )oY, @)1

On the other hand, by (6.41) we have
Blg(AGs, T, @ty A, Y, g, )oY, @)
= 2 [Eg(AGs, Y, g, ACt, Y, ¢, DA, Y, g, )

M =

T

~

= J(S, 'Mi’ A(ta qu, lJ))XM;-(A(t, Ya Qa y))
0

(2

[l
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> 3% SEOHAE Y, ¢ WA, Y, ¢,) — 3 — |6 %(4, Y, 0,)
= SEHACE, Y, ,) — 3 — [ §] LA, Y, 0, 9)
Combining with (6.42) we see

J@E + s, o, v, ¢) = E(S(S)eNAL, Y, q,v)) — 3¢ — ||¢]| P, Y, q,») e N)

(6.43) > E(S(s)g)(A(t, Y, q,v)) — 3 — ||p]e.

Since 7 € AQ/||v])) we see

(6.44) S(t + )¢() = E(S©)g) A, Y, g, v)) — (3 + [ 6]) -
Taking the supremum with respect to 7 € UA(v/||v|), we conclude
(6.45) St + 8)() = SOS(S))v) — €@ + (18] .

Tending ¢ 0, we get our desired inequality (6.35). This completes the
proof of Theorem 7.

§7. Generator and properties of S(z).

We can easily see:
PropositioN 7.1. The following properties hold,

(i) monotone, S(t)¢p < S(t) whenever ¢ <
(ii) contraction, ||S®)¢ — SOVI < lI¢ — vl
(iii) continuity, S(@)¢(v) — SE)P(v) as 6 — ¢,
uniformly on any compact set of M(R").
That is, S(t) is a monotone contraction weakly continuous semigroup on C.

Proof. (i) From the definition of J, (7.1) is clear
(7.1) J@ v, ¢) <JE w9, i <.

Hence taking the supremum with respect to = € #, we have (i).
(i) [S@g() — SOV
< sup |E¢AQ, Y., q.,v) — E9(AG, Y., g4, )]

T e/l
<llg— vl -
Hence taking the supremum with respect to v € M(R"), we have (ii).
(iii) By Proposition 6.1. J(¢, 7, v, ¢) is continuous in (¢, x,v)e[0 T]
X # X M(R"). Since £ is compact, S(t)¢(v) is continuous in (,v). Hence
it is uniformly continuous on [0 T] X F where F is compact in M(R").
This implies (iii).
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Now we calculate the generator of S(¢), according to [6]. We intro-
duce the following set 2 of functions ¢ which depend on finitely many
scalar products. Fix Hy € C*([0 o) — [0, 1]) such that Hy(x) = 1 on [0 N],
=0 on [N + 1, o) and decreasing in x.

2 = {¢; M(R") —> R'; §(v) = F({f,, v}, - -, {fo v))H:(L, v))

7.2
( ) WithFeC;o(Rl),fl,"',ﬁGC?(R"),Z=1,2,"‘,N=1,2,"'}

where C; denotes the space of C~ functions with compact supports and
C7 the space of C~ functions with any bounded derivative. Clearly 2 c C.
Moreover we have

ProprosITION 7.2. For ¢ € C there exists @, e D such that O,(v) — ¢()
k—oo
for any v e M(R").

Proof. We can apply the same method as [6]. Let v(x;, 27%) (= open

ball with center x, radius 2°%) i=1,2,--- be a covering of R* with

kv v(x, 2°Y) D [—N, N]* (say Iy). Let gF, ¢ =1,2, --. be a C~-partition
of unity such that

(7.3) supp g¥ < v(x,;, 27") for some i

(7.4) g=1 on I,.

Take y) € supp g’ NIy arbitrarily. Putting c}(v) = (g7, v), we define v, by
(1.5) vy = 36y

Then [jv]| > |jvx]l = v(Iy) and for ge Cy(R")

(7.6) (g, vxy—>{g,v)>, as N— oo.
Hence
(7.7 Ay,v) >0, as N—co.

Denote Fiy(z, - -+, 25y ¢) = ¢(220% 2,0,x). That is,
(7.8) Pw) = Fy((81, 0D, -+ 5 8o ¥): D)
Therefore, by (7.6), we have
(7.9) Poy) > ¢() as N—oo.
From the definition of Hy, lim,_., Hy((1,v>) = 1 for any v € M(R"). Hence
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(7.9) gives

(7.10)  Fa(C&l,v), -5 & v )HA(KL v)) > 6(v), as N—oo.
Take F, e Cy(R?") such that

(7.11) 1Ey ~ Fyllsaym <27

Then we have

|Fu(<gl,v), - -+, <8N v HAW((L, )
- N(<g{Va 1J>, A} <g11’v1v7 ”>: ¢)HN(<1’ l)>)] <2,

Combining with (7.10), we complete the proof.

We calculate the generator of S(t), recalling (6.7). For an admissible
switching system . € A(y/||v|)), we have the following Zakai equation for
Aty = A, Y, q.,v), (see Theorem 5.2 in [8]),

{d<f, A@®)y = CAUU@), A)ydt + <hf, A(8))dY(?)

7.12
(712 G Ay = vy for fe CRY,

where

Y=Y, AW=3a@ 2 -+ I7)

0
0x,0%, 0x;

and U(¥) is a ¢,(q)-progressively measurable process for g (see Theorem 4).
Therefore using a routine method we have

o (2
(7.13) EKf, AWy — {f,vdP < Kt + 1) j E{1, A(0)yde
(7.14) EQL, 4@y = (1, v) = |||
and
(7.15) EAQ@|P < ||v|Pex
where K, and K, are independent of /. Combining these evaluations,
we have
(7.16) EKf, A®)Y, — {f, vDF < Ko|lw|f(t + Dtexe.

Let @ € 2, say O() = F(f,, v, - - -, {f, vD))Hy((1,v)). For simplicity we
put /, =1, and F(z, 2, - -, 2) = F(z, ---, 2)Hy(2,). Appealing to Ito’s
formula, we see
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do®) = 3 az (o 4O, -+, <foy AOYKAU@NS, A@)>dlt
2:1 a a z,

(<ﬁ» A@)), - -+, Lfo ARDX A, A))AY(D)

(7.17) (for @)Y, -+ -5 {Fos AODKAS,, ADNAS,, A(D))dt

i[_\/]« wl

Using (7.16) we have, for s £ 1,

[ :E"|§—f—<<fo, AQDD, - -y {for ADAURf0 AD)

(7.18)
v, ooy L fos AU, v)|dt < K||v] s
and
J‘SE, aa F (<fo’ A@®), - - -, {fo A(t)))(hfi, /.l(t)><hfj9 (t)>
0 zzazj
(7.19)
- aza for 095+ {fir VOB )R, vy | dE < K v s

with K; which is independent of <« and v.
Define GO® as follows

GOE) = sup (z ﬁE«fo, Dy s Ly KAWF %)
(1.20) )
+ 5 Z

1j=0 azia s

(<ﬁ)’ >, | <fh V>)<hfn v><hfj9 )J>.

Since F is smooth and {A(w)f;,v)> continuous in u and v, GO(v) is con-
tinuous in v. Moreover GO(v) = 0 whenever ||v]| > N + 1. Therefore G®
is bounded. This implies that G@ ¢ C for @ ¢ 2.

We remark that

5[ BIEGR . - <o XA, vy

< [1un (5 2 Cfois -2 KA, )

@ =ssup <§*(<fo, D, o o DKAWS, )
= sup 3 [ L fy ), -y XA, 93

u€l i=0J0

3, o {fo VIXAU@S, vydt.

£ s o aﬁ‘

< sup 2. I E

U; usual control for i= 0 azi
switch relaxed syst.
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Taking the supremum of left side of (7.21) with respect to U(¢) for switch-
ing admissible systems, we have

oF

v, -+ 5 {fo AU, vydt = GO).

122 1 sup jE
S

U; switch syst. i=0

On the other hand (7.17) ~ (7.19) tell us that

E0(A(s, Y., 4., %) — () — jZ;) E— (<ﬂ, 3,5 {fo XAU@), v)

(7.23) + —;- > 9 2 a FE (3, e, (Fo D) 3ChE 3
1j=0 4 j
< 2K(n + 1)*||v] s**.

Appealing to (7.22) we have

(7.24) %(S(S)(D(v) — O() — GO() | < 2Ky(n + 1)*|v||s”
Recalling (5.16) we have

(7.25) || A(s, Y, q,, v)|| = ||| e Fra+hien whenever St‘i?ly”(t)l <a.

Since Y, is a Brownian motion, a martingale inequality implies

(7.26) P(sup|Y.()| > @) < —27 :

Putting a = 1/y e and N() = (N + 1)eXr@+0%¢+) we gee, from (7.25) and
(7.26)

127 PAG, Y., q.,0)| <N+ 1) < P(supm(m > L ) <es

7e
whenever |[v] > N().

Therefore, if ||v|| > N(), then

(7.28) E\O(A(s, Yo, s V)| < [P e5.

This implies, by virtue of “@(v) = GO() = 0 for |v| > N()”,
(7.29) %(S(s)(b(») — O@) — GOW)| < |Dlle,  whenever [v]| > N().

Appealing to (7.24), we have
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(1.30 |1 (SE006) — 06) — Gow)| < (L + 2],
whenever s < ¢/2Ky(n + 1)N()).
This implies that 1/s(S(s)@(») — ®(v)) converges to G®(v) uniformly on
M(R™), as s 0.
THEOREM 8. 9(®) D 2 and
(7.31) &0 =GP on 9

that is, the generator is an extension of Q.

§8. Time discrete approximation

First we recall an approximation theorem of Proposition 4.1 and
Theorem 4, namely, for &/ = (2, F, P& BT q) there exists an approximate
usual control U,, such that

8.1) U, is an ¢,(qg)-progressively measurable I'-valued process

8.2) q.@ A) = .r 0y,»(A)ds is a switching relaxed control of .7, = (2,
F P& B Y,q)

and

8.3) J@, A, v, ¢) =lim,... J@E, ,,v, ¢) for Y6 e C.

Now we define a usual admissible system &7 = (2, F, P, & B, Y, U) as
follows: (2, F, P& B, Y) satisfies the same conditions as an admissible
(relaxed) system, U is a I'-valued process, & B and (Y, U) are independent
and Y is a ¢,(Y, U)-Brownian motion.

% denotes the totality of usual admissible systems, and we apply

13
similar notations as for the relaxed case. Putting q,(, A) = j Opis,m(A)ds,
0

we see Ly, =, F,P,§ B, Y,G,)eW. Thus a usual admissible system
can be regarded as an admissible (relaxed) system. Moreover a unique

solution X of the SDE,

(8.4) {dX(t) = a(X(t)dBQ) + 1((2), U(t))dt

X0 =¢

gives a unique solution'Xd”(:- X).
Since (¢, B) and (Y, U) are independent, we can calculate
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E(f(X(O)L(G, D)oY, U))

in the same way as (5.8), and get

E(fROLO, 2)]Y =y, U(t) = v(t) a.a. 2)
(8.5) = Ef(7(0)%(0, ¢, B, y, q.)

= E(f(X.,(O)LO, )Y =y, gy = 2,)

where A,(2, A) = f‘ 3,(A)ds. We remark that, if v(t) = v*(¢), a.a. ¢, then

0
2, = 2, The unnormalized conditional distribution /A(t, &7, v) is defined by
©.6) {f, A, Z,v)) = ELFXONLO, )oY, U))  for fe C(R.
Hence (8.5) implies
(8.7 A, Z,v) = 4@, Y, q,,v), P-almost surely. We sometimes put (4,
j, 1J) = /’I(ﬁy Y: U, ”) and j(ay Jg) Y, ¢) = E¢(/’i(6) 'M?: 2J)) = j(ﬁ, Y9 U’ v, ¢)'

We approximate U, of (8.1) (say W for simplicity) by a switching

usual control, by a routine method, i.e. ﬁk and ﬁk,,, are defined as follows

87 O =2[_ Weds and 0,0 =0,(21).

Then lim,_. lim,.. U, () = W in L0 T] x ). This fact implies that
there exists an approximate switching usual control W,, which is ¢, (U)-
progressively measurable and satisfies

8.8) E j " |Wi(s) — W(s)Pds — 0, as k—» oo
0
and
(8.9) J@, Y, W,v,¢) = limdJ(t, Y, W, v, ¢) .
koo

By (8.8) some subsequence of W, converges to W a.e. in [0 T] X 2, we
assume “W, — W a.e.” for simplicity. Therefore, for a.a. o(P),

[ e@ant aw = [ | ews,(dwds

(8.10) = [ aWi@nds —> [ eWoDds = | gwan, du)
for any ¢ and ge C,(I").

This implies, as k— co.

https://doi.org/10.1017/5S0027763000020742 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020742

STOCHASTIC RELAXED CONTROL 105

(8.11) &T(qwk, dw)— 0, P-almost surely .

Hence by Propositions 2.2 and the Corollary of Proposition 3.1 we see
(8.12) Ay, — Ay and (Xy,, Ly) — Xy, &y) in D,.

Therefore Theorem 6 implies that, for 4,

(8.13) A, Y, W, v) — A6, Y, W, v) in metric 4.

So we have

ProrosiTioN 8.1. For o = (2, F, P, ¢, B, Y, q) there exists a switching

usual control W, k = 1,2, --., which is ¢,(q)-progressively measurable and
for any @

A6, Y, W,,v) — A0, Y, q, v) in metric 8, as k— oo.

This means that switching usual controls are rich enough in the class of
relaxed controls.

Put A, = totality of usual admissible systems whose usual controls
are switching with time interval 2-%, ie. & = (2, F, P e, B, Y, U)ec%,,
iff Ut) = U([2"#]/2Y). We denote 7€, if U is constant control. So
A < Ay. When P, = v/||v|, we say .7 € Uy(/|v]). Put A = Usz_, Ay

From Proposition 8.1 we see

S(t)¢(v) = sup j(t, JJ’ vy, ¢)
(8.14) 280/ _
=lim sup J(, v, ¢).
Newo 2E8y(o/Ib
Define @ = @y by
(8.15) Q) = sup J@2, ,v,9).
ZEAy (/)

We remark that

J@2Y, o, v, ¢) = E¢(A27, Y, U(), v))
(8.16) o
— [ B@dE™, Y, U0, )/UO) = P dw).
Since (Y(6), 6 > 0) is independent of U(0),
(8.17) E(¢(A@2-Y, Y, U0), v/U®©0) = u)) = J (2%, Y, u,v,¢) .

Moreover the value of the left side depends only on N, u, v, ¢, since Y is
a Brownian motion with respect to P(-/U(0) = u). We put
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(8.18) J2, Y, u,v, ¢) = Oy, v; @)
and
(8.19) Q) = sup 0,(u, v, 9).

Then @y(u, v, ¢) is continuous in (u,v) e I' X (M(R"), 4) and J@N, Y, u,v, ®)
< Q¢(v). Combining with (8.12), we see
Qé() < Q) = sup JQ2Y, ,v,9)

7€ %o/

< sup J@, v, 9) = Q).

T @efy /vl

(8.20)

Hence we have

~

8.21) Qv=Q.

Since I' is compact, using a measurable selection theorem, we can
take a Borel measurable mapping, v = v;: M(R") — I" such that

(8'22) Q)N(U¢(U), Y, ¢)) = ig? ¢N(u: Y, ¢) .
This gives
(8.23) QH¢) = J(27, Y, v,), v, §)

We have, for 7 € Ay (v/|lv])

J@ o, v, ¢) = Eg(A2 7V, Y, U, v))
= E¢(A(2", Yier, Ui, 4277, Y, U, v)))
< (QHAER, Y, U, ) < QQH)()
= Q@) .

(8.24)

Define U, = U, 4, by

Vo), 0 <t < 27V

&2 00 = i oo, 27 < .

Then «/* = (2, F, P, &, B, Y, Uy) € %,(/|v]) and
J(2 -V 7%y, @) = E¢(A2-V+, Y, U, v))
= EE((A2Y, Yix, v(A(277, Y, vgyv), v)),
(8.26) /I(Z_N, Y, UQ¢(U), v))[o;-3(Y)))
= E(Qp)(4(277, Y, Ugs(¥), )
= Q@) = @9().
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Combining with (8.24), we have
Qb)) = sup J@ 7V, o, )
8.27) @ ey (/1D
= J(z—zvn’ .52{*, v, ¢) )

Repeating a similar calculation we see

(8.28) @ g) = sup J((k + 1)2-%, Z, v, §)
288y (/1)
and an optimal one U,,, = U,,,, , is given successively by
U.o.oes(D) 0<t< k2-Y
Uk-«»l(t): { k"Q¢_N -N
U (A(R27N, Y, Uy, 006, ) » k2-V < ¢,

Recalling (8.14) we see, for binary ¢ (say j2°7)
lim sup J(, o, v, ¢) = SEH) = lim QF ()
N—-oo

Nooo ZeAn(v/II)

and an approximate optimal usual switching control is given by U, .
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