ASSOCIATED BASIC HYPERGEOMETRIC SERIES

by R. P. AGARWAL
(Received 22nd May, 1953)

1. Introduction. The purpose of the present note is to give some interesting and simple identities connected with basic hypergeometric series of the types ${ }_{2} \Phi_{1}$ and ${ }_{3} \Phi_{2}$.

The difference operator

$$
D f(x) \equiv \frac{f(x)-f(q x)}{x}, \quad(q=1-\epsilon, \epsilon>0)
$$

is of much importance in the theory of basic hypergeometric functions and has been used by many authors : e.g., Heine (1), Rogers (2), Jackson (3) and Hahn (4), etc., in developing the theory of basic functions. The operator D in the theory of basic functions replaces the ordinary differential operator $d / d x$.

In § 3, I use this operator to obtain some identities involving the function ${ }_{2} \Phi_{1}$. In §4, a basic generalisation of Gauss's theorem (extended by Riemann), that any three series of the ordinary hypergeometric type $F(a+l, b+m ; c+n ; x)$, where l, m, n are integers (positive or negative) are connected by a linear homogeneous relation with polynomial coefficients, is given.
2. Notation. Let

$$
\begin{aligned}
& (a)_{n}=\left(1-q^{a}\right)\left(1-q^{a+1}\right) \ldots\left(1-q^{a+n-1}\right), \quad|q|<1, \\
& (a)_{0}=1,
\end{aligned}
$$

and

$$
{ }_{s+1} \Phi_{s}\binom{a_{1}, \ldots, a_{s+1} ; \dot{x}}{b_{1}, \ldots, b_{s}}=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{s+1}\right)_{n}}{(1)_{n}\left(b_{1}\right)_{n} \ldots\left(b_{s}\right)_{n}} x^{n} .
$$

Also, for the sake of brevity, we will use the notation

$$
\begin{aligned}
& \alpha \equiv\left(q^{-a}-1\right), \quad \beta \equiv\left(q^{-b}-1\right), \quad \gamma \equiv\left(q^{-c}-1\right), \\
& \delta \equiv\left(q^{-d}-1\right) \text { and } \epsilon \equiv\left(q^{-e}-1\right) .
\end{aligned}
$$

3. We now prove the following identities :
(i) $(a)_{n} x^{a-1}{ }_{2} \Phi_{1}(a+n, b ; c ; x)=D^{n}\left[x^{a+n-1}{ }_{2} \Phi_{1}(a, b ; c ; x)\right]$,
(ii) $(c-n)_{n} x^{c-1-n}{ }_{2} \Phi_{1}(a, b ; c-n ; x)=D^{n}\left[x^{c-1}{ }_{2} \Phi_{1}(a, b ; c ; x)\right]$,
(iii) $\left.(a)_{n}(b)_{n} \Phi_{1}(a+n, b+n ; c+n ; x)=(c)_{n} D^{n}{ }_{[2} \Phi_{1}(a, b ; c ; x)\right]$,
(iv) $(c-a)_{n} x^{c-a-1} \prod_{m=0}^{\infty} \frac{\left(1-x q^{c-a-b+n+m}\right)}{\left(1-x q^{m}\right)}{ }_{2} \Phi_{1}\left(a-n, b ; c ; x q^{c-a-b+n}\right)$

$$
=D^{n}\left[x^{c-a+n-1} \prod_{m=0}^{\infty} \frac{\left(1-x q^{c-a-b+m}\right)}{\left(1-x q^{m}\right)}{ }_{2} \Phi_{1}\left(a, b ; c ; x q^{c-a-b}\right)\right],
$$

(v) $(c-n)_{n} x^{c-1-n} \prod_{m=0}^{\infty} \frac{\left(1-x q^{c-a-b+n+m}\right)}{\left(1-x q^{m}\right)}{ }_{2} \Phi_{1}\left(a-n, b-n ; c-n ; x q^{c-a-b+n}\right)$

$$
=D^{n}\left[x^{c-1} \prod_{m=0}^{\infty} \frac{\left(1-x q^{c-a-b+m}\right)}{\left(1-x q^{m}\right)}{ }_{2} \Phi_{1}\left(a, b ; c ; x q^{c-a-b}\right)\right],
$$

(vi) $(c-a)_{n}(c-b)_{n} \prod_{m=0}^{\infty} \frac{\left(1-x q^{c-a-b+n+m}\right)}{\left(1-x q^{m}\right)}{ }_{2} \Phi_{1}\left(a, b ; c+n ; x q^{c-a-b+n}\right)$

$$
=(c)_{n} D^{n}\left[\prod_{m=0}^{\infty} \frac{\left(1-x q^{c-a-b+m}\right)}{\left(1-x q^{m}\right)}{ }_{2} \Phi_{1}\left(a, b ; c ; x q^{c-a-b}\right)\right] .
$$

To prove the first three we expand the right-hand ${ }_{2} \Phi_{1}$ in powers of x and use the relation term by term.

$$
D x^{a}=\left(1-q^{a}\right) x^{a-1}
$$

The last three are variants of the first three in order. They are obtained from the first three by using the well-known transformation

$$
{ }_{2} \Phi_{1}(a, b ; c ; x)=\prod_{n=0}^{\infty} \frac{\left(1-x q^{a+b-c+n}\right)}{\left(1-x q^{n}\right)}{ }_{2} \Phi_{1}\left(c-a, c-b ; c ; x q^{a+b-c}\right)
$$

on both sides of (i), (ii) and (iii) respectively to transform the ${ }_{2} \Phi_{1}$. The identity (v) is the basic analogue of the well-known result due to Jacobi (5) for the ordinary hypergeometric function.
4. In this section I will generalise Gauss's* theorem for ordinary hypergeometric associated series by showing that between any four series of the type

$$
{ }_{3} \Phi_{2}\left[\begin{array}{c}
a+l, b+m, c+n ; x \\
d+p, e+s
\end{array}\right]
$$

where l, m, n, p and s are integers (positive or negative), there always exists a linear homogeneous relation with polynomial coefficients.

To prove this we can easily verify that the difference equation satisfied by
is

$$
{ }_{3} \Phi_{2}(a, b, c ; d, e ; x)
$$

$$
\begin{equation*}
\left\{\vartheta\left(\vartheta+q^{1-d}-1\right)\left(\vartheta+q^{1-\varepsilon}-1\right)-x q^{a+b+c-a-\varepsilon+2}(\vartheta+\alpha)(\vartheta+\beta)(\vartheta+\gamma)\right\} \Phi=0, \tag{4.1}
\end{equation*}
$$

where $\mathfrak{\vartheta} \equiv x D$.
Also, it is easily verified that

$$
\begin{equation*}
(\vartheta+\alpha) \Phi=\alpha \Phi_{a+}, \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(q^{1-e}-1\right) \Phi_{e^{-}}=\left(\vartheta+q^{1-e}-1\right) \Phi, \tag{4.3}
\end{equation*}
$$

where Φ denotes the function ${ }_{3} \Phi_{2}$ and

$$
\Phi_{a+}={ }_{3} \Phi_{2}\left[\begin{array}{c}
a+1, b, c ; x \\
d, e ;
\end{array}\right] ;
$$

with similar abbreviated notations for other associated series.
Now (4.1), with $a-1$ in place of a, can be written as

$$
\begin{align*}
& \left\{\mathcal{\vartheta}^{2}+\vartheta\left(q^{1-d}+q^{1-e}-q^{1-a}-1\right)+q^{2}(\epsilon-\alpha)(\delta-\alpha)-x q^{a+b+c-a-\varepsilon+1}(\vartheta+\beta)(\vartheta+\gamma)\right\}\left(\vartheta+q^{1-a}-1\right) \Phi_{a-} \\
& =q^{2}(\epsilon-\alpha)(\delta-\alpha)\left(q^{1-a}-1\right) \Phi_{a-} . \tag{4.4}
\end{align*}
$$

Using (4.2) with $a-1$ in place of a we get

$$
\begin{align*}
q^{2}(\epsilon-\alpha)(\delta-\alpha) \Phi_{a-}=\left\{\vartheta^{2}+\vartheta\left(q^{1-d}+q^{1-\varepsilon}-q^{1-a}-1\right)\right. & +q^{2}(\epsilon-\alpha)(\delta-\alpha)-x q^{a+b+c-d-\varepsilon+1} \\
& \times(\vartheta+\beta)(\vartheta+\gamma)\} \Phi . \ldots \ldots \ldots \ldots . \tag{4.5}
\end{align*}
$$

* For similar results for ordinary hypergeometric series see Bailey, Quart. J. of Math., Oxford, 8 (1937), pp. 115-118.

R. P. AGARWAL

Next, replacing e by $e+1$ in (4.1) and proceeding as above, we get, on using (4.3)

$$
\begin{align*}
& x q^{1-d-\varepsilon+a+b+c}(\alpha-\epsilon)(\beta-\epsilon)(\gamma-\epsilon) \Phi_{e+} \\
& \quad=\left\{\vartheta\left(\mathscr{\vartheta}+q^{1-d}-1\right)-x q^{a+b+c-a-\varepsilon+1}\left(\mathfrak{Y}^{2}+\mathfrak{\vartheta}(\alpha+\beta+\gamma-\epsilon)+\alpha(\beta-\epsilon)+\beta(\gamma-\epsilon)+\gamma(\alpha-\epsilon)+\epsilon^{2}\right)\right\} \epsilon \Phi . \tag{4.6}
\end{align*}
$$

Now, by repeated applications of the relations (4.2), (4.3), (4.5) and (4.6) and similar other relations, together with the use of the equation (4.1), we can express any associated series

$$
{ }_{\mathrm{a}} \Phi_{2}\left[\begin{array}{c}
a+l, b+m, c+n ; x \\
d+p, e+s
\end{array}\right]
$$

in terms of $\Phi, \vartheta \Phi$ and $\vartheta^{2} \Phi$. Thus between any four relations of this type we can eliminate $\Phi, \vartheta \Phi$ and $\vartheta^{2} \Phi$ to get a linear homogeneous relation between four associated series of the type ${ }_{3} \Phi_{2}$, with polynomial coefficients.

REFERENCES

(1) Heine, E., Theorie der Kugelfunctionen, I. (1878), pp. 97-125.
(2) Rogers, L. J., Proc. Lond. Math. Soc. (1), 24 (1893), pp. 337-352.
(3) Jackson, F. H., Quart. Journ. Math. (Oxford) (2), 2 (1951), pp. 1-16.
(4) Hahn, W., Math. Nachrichten, 3 (1950), pp. 257-294.
(5) Jacobi, C. G. J., Werke, VI., pp. 191-193.

Mathematics Department

Bedford College
London, N.W.1.

