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1. Introduction. The purpose of the present note is to give some interesting and simple
identities connected with basic hypergeometric series of the types 20X and 3<52.

The difference operator

is of much importance in the theory of basic hypergeometric functions and has been used by
many authors : e.g., Heine (1), Rogers (2), Jackson (3) and Hahn (4), etc., in developing the
theory of basic functions. The operator, D in the theory of basic functions replaces the
ordinary differential operator d/dx.

In § 3, I use this operator to obtain some identities involving the function 2$x . In § 4,
a basic generalisation of Gauss's theorem (extended by Riemann), that any three series of
the ordinary hypergeometric type F(a+l,b+m ; c+n ; x), where I, m, n are integers (positive
or negative) are connected by a linear homogeneous relation with polynomial coeiiicients, is
given.

2. Notation. Let

and
fau ... , as+1; x\_ » (ax)w ••• («.+i)n „„

i + l S H&i . •..,&. / •to(l).(61)»...(6.)B '
Also, for the sake of brevity, we will use the notation

a = ( g - - l ) , j8s(gr-»-l), y^q-e-l),
8 = (g-<i_l) and e = (q-e-l).

3. We now prove the following identities :
(i) (a)nx"-1

2<Px{a+n,b; c ; x) = Dn[x°+»-1 &(a,b; c ; x)],

(ii) (c-w)nxc-1-"201(a, b; c-n; x)=Dn [X°-1 ^ a , b ; c ; a;)],

(iii) (o)B(6)n2*i(a+». b+n; c+n; x) = {c)nD
n[i<t>l{a, b ; c ; a;)],

so Q _ Tac-a-b+n+m)
(iv) (c - o). x"-"-1 n {- g -J ,* ! (o - n, 6 ; c ; ^

t
00 M — r « c ~ a-t+m\ ~\

m=0 I-I "-fc? ^ J

(v) (c - n)n a ^ i - 77 ( i ? J
 2 ^ (o - n, b - n ; c - n ;

[ oo
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(vi) (c-a)n(c-b)n n K- * -' 20X (a, b ; c+n; xq'-a-^n)
m-0 \y-~xH. )

To prove the first three we expand the right-hand a0x in powers of x and use the relation

Dxa = (l-qa)xa-1

term by term.
The last three are variants of the first three in order. They are obtained from the first

three by using the well-known transformation

,#, (0 ,6; c; z) = J 7 ( 1 ' ^ ^ ,#!<«-a, e-b; c; xq°+<>-°)

on both sides of (i), (ii) and (iii) respectively to transform the a&v The identity (v) is the
basic analogue of the well-known result due to Jacobi (5) for the ordinary hypergeometric
function.

4. In this section I will generalise Gauss's * theorem for ordinary hypergeometric associated
series by showing that between any four series of the type

~a+l,b+m,c+n; a;"1

d+p, e+s
_ [a+l, b +m, c+n ; xl

3 2L d+Pe+s J '
where Z, m, n, p and s are integers (positive or negative), there always exists a linear homo-
geneous relation with polynomial coefficients.

To prove this we can easily verify that the difference equation satisfied by

3^2(a, 6, c; d, e; x)
is

where Q-=xD.
Also, it is easily verified that

(fr + oc)& = a<pa+ (4.2)
and

( g i - - l ) #._ = («•+g*^- l )* , (4.3)

where <P denotes the function 3<P2 and

with similar abbreviated notations for other associated series.
Now (4.1), with a -1 in place of a, can be written as

{&2 +Q-(q1-" +q1-°-q1-<> - 1) +q*(e -«)(8 -a) -a;?0+!'+c-'i-<!+1 (&
= ̂ ( e -a ) (8- a ) (g 1 -< ' - l ) <5a_ (4.4)

Using (4.2) with a -1 in place of a we get

g2(e -«)(8 -a) ^ a - = {̂ 2 +&{q1~d+q1"' -q1-" - l)+q*(e -a)(8 -a) -a;^+!>+c-i-e+1

y)}0 (4.5)

* For similar results for ordinary hypergeometric series see Bailey, Quart. J. of Math., Oxford, 8 (1937),
pp. 115-118.
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Next, replacing e by e +1 in (4.1) and proceeding as above, we get, on using (4.3) j
xql-d-.+a+b+e ( a _ e) (^ _ €) ( y _ e) 0e+ - j

• (4.6) |

Now, by repeated applications of the relations (4.2), (4.3), (4.5) and (4.6) and similar
other relations, together with the use of the equation (4.1), we can express any associated i
series

I, b + m, c + n ; x~
d+p,e+s

in terms of <t>, &0 and &2<P. Thus between any four relations of this type we can eliminate
0, && and &2<P to get a linear homogeneous relation between four associated series of the type
3&2> with polynomial coefficients.
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