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Velocity and stress fields in grounded glaciers: a simple
algorithm for including deviatoric stress gradients
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ABSTRACT. A new and efficient algorithm for computing the three-dimensional
stress and velocity fields in grounded glaciers includes the role of deviatoric stress
gradients. A consistent approximation of first order in the aspect of ratio of the ice mass
gives a set of eight field equations for the five stress and three velocity components and
the corresponding boundary conditions. A coordinate transformation mapping the
local ice thickness on to unity and approximating the derivatives in the horizontal
direction by centred finite-differences vields five ordinary differential and three
algebraic equations, This allows use ol the method of lines, starting the integration
with preseribed stress and velocity components at the base, and a simple iteration
procedure converges rapidly.

The algorithm can be used [or a wide range of stress strain-rate relations, as long as
strain only depends on deviatoric and shear stresses and on temperature. Sensitivity tests
using synthetic and realistic ice geometries show the relevance of normal deviatoric
stresses in the solutions for the velocity components even for ice sheets. Stress and velocity

fields may deviate substantially from the widely used shallow-ice approsimation.

1. INTRODUCTION

This paper explores a new and efficient algorithm [(or
computing the three-dimensional stress and velocity fields
in glaciers and ice sheets including the role of normal
deviatoric stress gradients. The algorithm is based on a
two-dimensional version developed by Muller (1991). A
set of field equations and boundary conditions in a
consistent approximation ol first order in the aspect ratio
of the ice mass can be solved using the method of lines and
a simple iteration procedure. The algorithm is effective
for a wide range of stress—strain-rate relations (low laws),
as long as only deviatoric and shear stresses are involved.
Temperature-dependence of the flow rate may be
introduced through a temperature-dependent rate factor.

The mechanics and thermodynamics of an ice mass
constitute a Stokes problem. where the geometry and the
temperature field evolve with time, but the velocity and
stress fields are quasi-stationary. This allows one to
calculate the flow as a steadv-state field for a given
transicnt geometry and transient viscosity field at a given

time. In this work, the evolution of the geomertry and of

the temperature field are not considered. The viscosity
field is, of course, the result of transient evolution of other
internal fields, such as the temperature, moisture content,
impurities anck crystal size.

[tis generally assumed that deviatoric stress gradients
are negligibly small for the modelling of the overall
behaviour of large ice sheets. although it is admitted that
this may not be true near ice divides and near ice
margins. However, attempts to model ice-sheet evolution
over several glacial-interglacial cveles demand a fast
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algorithm. This consideration forces more restrictive
approximations (Mahafly, 1976: Herterich, 1988: Huy-
brechts, 1992),

rigorously established by Hutter

such as the shallow-ice approximation
1983). On the other
hand, Dahl-Jensen (1989) showed that longitudinal
deviatoric stress and shear stress are both of lead order
[or a plane-strain transverse section of the Greenland ice
sheet and neither one can be neglected. The same holds
even more for glaciers with larger aspect ratios than ice
sheets, where deviatoric stress gradients account for
important features, such as crevassing and wavy-surface
topography.

Obviously, there is no single algorithm optimal for
cach application and numerical methods must be chosen
according to the type of study. The advantage ol the
numerical scheme promoted in this study is its simplicity
and easy application for an interesting range of ice-sheet
and glacier situations. 'To demonstrate this, the algorithm
is applied to a simple synthetic ice-sheet geometry and is
also used to simulate infinitely long parallel-sided slabs. A
scaling tailored to the type of geometry reduces the
number of parameters and thus allows the performance of
the algorithm to be investigated for a wide range of sizes
and aspect ratios.

2. GOVERNING EQUATIONS
2.1. Field equations

lee is wtreated as an incompressible viscous fluid. Tis
mechanical properties may depend on other ficlds of
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physical quantities, such as temperature and stress. The
geometry of the ice mass is deflined by the upper free
surface § = S(z,y) and the basal surface B = B(x.y) in
Cartesian coordinates (z,y,2z) with the z axis pointing
opposite to the direction of gravity. The equation for mass
continuity then becomes

du v

- ow
dr  dy

;=0 (2.1)

where u, v and w are the velocity components in the x,y
and z directions, respectively, and for linear momentum

BTJ'.I' 07—.1'1; (r)T.r:

=i, 7,
dr  dy dz % (22)
Oy Oy O
i, ——ry _— = (). 2.‘
dr  dy dz ' 23
O Oy | O
- =rg (2.4)

W+ dy Ba

where p is the density of ice, g is the acceleration of
gravity and Teg, Ty Tesr Tos, Tye 20d Tay are the com-
ponents of the symmetric Cauchy stress tensor 7;;. Glacier
ice is generally treated as a non-Newtonian fluid with a
stress-strain-rate relation of the form

du . o
= AF (o, (2:35)
dv
7 = AF()ou, (2.6)
1 /0w Ow ‘
! (a_z+a7) = AF()ms, @7
1 /v Ow
——4+—) = e 2%
2 (45 = 4F U 28)
1(0u Ov

where @ =T — (%)'r;,.g.é,;_f- is the deviatoric stress tensor
and o, and o, are the normal deviatoric stress
components. Due to the incompressiblity condition in
Equation (2.1), an additional equation relating dw/dz to
.. is redundant and can be omitted. The term AF(:)
represents a (low law. In this study, a flow law of the form
(Nye, 1953; Glen, 1958; Meier, 1958)

1

AF() = A(T‘_’_l_jﬂn'i)ln—])/z =

2.1
o (2.10)

is used, where T is the effective stress (second invariant of
the deviatoric stress tensor), g is the viscosity and
Ly = I/ATU”_l is the viscosity in the limit of vanishing
stress. The rate factor A is usually assumed to depend
exclusively on temperature. The absence of pressure-
dependence, e.g. considered in Weertman (1973), is
crucial for the applicability of the algorithm introduced
below. Substituting Equations (2.5) and (2.6) into
Equation (2.1) vields

dw

i —AF (Y0 wz + Oy

(2.11)

which is easier to handle than Equaton (2.1) in the
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numerical integration scheme described in sections 3.1
and 3.2.

For the upper free surface S = S(x,y), the boundary
conditions [or stress are

Ny Tep + My Try + Mg Tipe = — ”:f'Pe (2'12)
M Tay + Ny Ty + Ty = — My P, (2.13)
NiTare = MyTie + MaTaz = — NP (2.14)
where
as A0S
e e ny=——>— and n,=1 (2.15)

are the components of the normal vector m pointing
outward from the ice and P is the pressure on the outer
side of the surface. Note, in this simple form, the vector n
is not a unit vector. In the case of a grounded ice sheet
with no hasal melt or freezing and no isostatic uplift, basal
motion is to a good approximation parallel to the bed

B B

Wiy = Up—=—+ Vb —=
' " Ox "y

(2.16)

in the case of sliding, and u = v=w = 0 in the case of
non-sliding conditions.

2.2. Scale analysis

To arrive at a consistent simplified set of equations, we
need to estimate the order of magnitude of the various
terms in the equations. To this end. we introduce a
scaling for spatial variables x, y, 2z, S and B,

(z.y,2.5, B) = {L}(Z.7, €3, €S, eB), (2.17)
the velocity components u, v and w,
(u,v,0) = Ag{ H}(pg{ H}e)" (. 0 ciw) . (2.18)
the stress components 7;;., oy and the pressure P,
(7ijs oues P) = pg{ H}e(7ij, Gans P) (21.9)
and for the rate factor A
A= AjA (2.20)

where {L} and {H} denote the characteristic horizontal
and vertical extents of the ice sheet, respectively, Ay is a
typical rate factor, and Z, g, 2, S, B, @, 0, 0. Tik Os P
and A are the corresponding dimensionless scaled
variables of order unity. This specific scaling only applies
it we assume ice behaves according to the generalized
Glen flow law (Equation (2.10)). Since the extent of an
ice sheet is much larger than its thickness, the aspect ratio
e={H}/{L} <1 is used as scaling paramecter. We
define the first-order approximation by deleting terms of
order € but retaining terms of order 1 and e. Although
the first-order approximation can also be considered as a
shallow-ice approximation (Dahl-Jensen, 1989), the term
“shallow-ice approximation” will be used only for the
“zeroth”-order approximation in the rest of this paper;
for simplicity, the first-order shallow-ice approximation
will be referred to as “first-order’™ approximation.
Scaling the continuity Equation (2.11), the stress
Equations (2.2) (2.4) and the constitutive Equations
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(2.3)—(2.9) yield

o =
d“ —AF()(Gan +3yy), (2.21)
s Di—.}'q afr:
= — = [k 2.22
“or oy oz s
()Tr Sy ()T",' Y ()TU 0 .
=0 23
€2z +e a0 - — 53 ) (2.23)
o ()7_',; 9 aj:lj‘, 0%:: .
g o =i 2.24
o o5 T o (224)
fﬁf AF()é,, (2.25)
dr
O ;
G =5 F(')Uuq (22())
Ay
ot 5 O i
= e — - AT
o5 + € 5= = 2AF (). (2.27)
f)f_! .70'&.' - n "
e c—=2AF()7, 2.28
5z ¢ 0y )y (2:28)
(‘)” +ﬂ) = 24F ()7, (2.29)
dy  Or :

and the surface-boundary conditions for stress in

Equations (2.12)-(2.14) in the scaled form are

()'S_Y ~ (}S a8 - N
_Fﬁr_r.r — i — ()y T',,,. + Tz = Fﬁnm. (2'30)
a8 a8 85 -
o0 ‘-” g " Tyz = 7_—Pu: 2.31
‘ or Ty € ‘:)3‘)' Ty h Ty € (')y ( )
s as ) ) |
—g ET—J-: = F('T!}TU: + Tox = — P (2.32)

To eliminate the normal Cauchy stresses in Equations
(2.22)-(2.24), we follow the usual procedure (see e.g.
Herterich, 1987) by deleting terms of order O(e?) in
Equation (2.24) and integrating the truncated equations
from % to the surface § and applying the result in

Equations (2.22) and (2.23). Integration yields

Ty = ) —%(S'f Z). (2.33)

Using Equation (2.32) and the relation between Cauchy

stresses and deviatoric stresses in the form

Taz = Taw — Oy — 200, = Tyy — Gux — 26y, (2.34)

: % 5 . S . - 9
in Equation (2.33) and dropping terms of order O(€?)
vields

1
Tax = (}_.',t_q =} 2(}4: = F (S == E) = Puil'- (23‘5)

- ” . 1 =
Tyy = Oz =t 20’;m _: (S == :) = Pnil'-

(2.36)
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We differentiate Equations (2.35) and (2.36) and
substitute the result in Equations (2.22) and (2.93),
respectively, to obtain

86y BBy Ot , 07 B8 .
( B o &) e -~ 9F’ G

DG, 6. OF 8%, o5 __
[ 99w o Zy YE T R
F( T az-) B oy

Similarily, eliminating 7., 7, and 7.. in the boundary
(Uudm(ms in Equations (2.30)-(2.32) and dropping terms
of order € gives the corresponding first-order boundary

conditions (Morland and Shoemaker, 19892: ;\Iorldnc],
1984 )
) s i dS
Tz — fE (2'7!* ~ Fy) + F(r)_:aT-r.u =0, (2.39)
0S ds
F oo ‘d (264 — Gu) +em2 Ty =0, (2.40)
i

Finally, we get vighl independent Equations (2.37),
(2.38), (2.21) and (2.25)-(2.29) for the eight unknown
field variables 7., Gyys Tezs Ty Tyzs Uy U anid . This set of
cight equations only constitutes a well- posed problem for
the eight unknown field variables. if the rate factor A is
independent of pressure (i.e. of normal Cauchy stresses).

3. NUMERICAL SCHEME
3.1. Coordinate transformation

The numerical scheme used for integrating the ahove set
of first-order equations was developed by Muller (1991)
for the two-dimensional plane-strain approximation, and
is extended here for the three-dimensional case. We apply
a coordinate transformation (Phillips, 1957; Jenssen,
1977)

z— B(i,9)

(= P (3.1)

S(&,§) — B(#,§)
which maps the local ice thickness on to unity (Fig. 1).
Equations (2.37), (2.38), (2.21) and (2.25)-(2.29) are

transformed to
7, Glay o (3
e T S
¢

== e (‘) 7 . (l)\ (I) T . () ]
3 T ra Tyy Try - _E o (3R

87y [(’)(",. . e
Bl

A === t)(' (201;11+U:1)]

o 06, 06, OF,\ 08
—(5-DB)|e| 22X 4+ —2) ——1, (3.3
: “( 0:4]+03}+0i') 1
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Fig. 1. Typical ice-sheet shape (a) and the transformed
shape (b) by mapping the ice thickness on lo unity. The
grid is uniform in the transformed coordinates.

i | o e o = ;
()_C = _;(S i B)AF(U.J'J" & Uu_r,')- (‘5'4)
o e e oE S . * A
& =2(8— B)AF[r,. + e(eyTay + Colyy + 20_,.0_,._,.)],
(3.5)
00 .z A e E - N3
f)_C =2(S5 — B)AF[T,, + e(CyTuy + €y + .foyaw)}.
(3.6)
9 == . e
= B ‘4F(2€C.J-T.r 3 (T.r.r)- (37)
oT
A | o R 5
b= fb; ~ AF (2ecyTy + Gyy), (3.8)

(R

ou  Jv o s . .
=g (5—1]' s E) —2AF (‘T‘,-H + ec,Te + ec_,.Ty) (3.9)

with the newly introduced variables

7:,.1' = 7:.)': = f(f‘g%.ry aii ('.r(}_r,'y -+ QCJ'(}A!J‘)'! (‘310)

1:!1 = 7:!;‘? = E(C.l'ff'y e 1 ("r,'(}.r‘r 3 26‘11&5'."1) (311)
and the abbreviations
aB oS
C=(1 = — 3512
e =(1-¢) BT (3.12)
aB oS
=1 —()—+(—. el
ey = <) 55 Q(’)]} ( )
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The quantities ¢, and ¢, correspond to the inclinations in
the & and ¢ directions of the surface ¢ = const. through
the given point P(z.¢) in the ice. Introduction of new
variables 7, and 7, transforms Equations (3.2) and (3.3)
to a form that can be integrated using the method of lines.
Additionally, 7, and 7, have a simple physical inter-
pretation. To first-order approximation, they correspond
to the components of the shear traction with respect to the
surface ¢ = const. Consequently, the first-order boundary

conditions (Equations (2.39) and (2.40)) at the free upper

surface S, which corresponds to the surface ¢ = 1, yield

(3.14)

Tge=Tys = 0.

3.2. Integration

Introducing a discrete grid (Fig. 1) and approximating
the & and 7 derivatives by centred differences, Equations
(3.2)-(3.6) can be rewritten as ordinary differential
equations (ODE) and Equations (3.7)-(3.9) become
algebraic. For each vertical grid line (4,7), this estab-
lishes a set of five ordinary differential equations for the
five unknowns 7., Tyij, Ui Uy and @y, and three
coupled algebraic equations for @, . Gy and ey
These equations can be integrated simultaneously starting
at the base, by using an ODE solver and solving the three
algebraic equations by using an efficient root finder. To
test the algorithm, second-order centred diflerences were
used for the & and gy derivatives, a Runge-Kutta scheme
ol second-order for integrating the ODEs, and a Newton
Raphson algorithm for solving the algebraic equations.

This integration, started at ¢ =0 with some pre-
scribed basal wvalues for shear stresses and velocity
components, does not automatically satisfy the surface
boundary conditions in Equation (3.14). In order to solve
the houndary-value problem, the proper basal values for
Tieijbs Tyiihs Qijhs Uijp and @ijp, must be found iteratively.
For non-sliding conditions, we have 1y, = 11, = O =0
and for sliding conditions we need the information for
basal sliding velocities [rom some sort of sliding law. In
both cases, basal velocities are given and we need to [ind
Teijb and T,4n. A good initial choice is

’ & = R )

Tfll'.i_j.]) = —{(Sy— Bij) o i (3.15)
L)

() s & (?g . §

Tyijb = —( 8y — Byj) ) (3.16)
i

which corresponds to the shallow-ice approximation of
the basal shear stresses. With these assumptions, the
algebraic Equations (3.7)-(3.9) can be solved for the
basal values of Fppijbs Typiibs Tagijb- Lhe subsequent
integration from the base to the surface yields values

0. 40 and 'f'f,:.u_s ikl

which generally do not meet the boundary conditions in
Equation (3.14). The iteration is carried out by sub-
sequently choosing new values

ale g =~k “
=5 ... — B.F (3.18)

rijh Mt e
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2 =~k
g ‘j.f.'T

uu-« (5 ]9)

=7

where 3, and 3, are chosen iteration parameters.

It is interesting to note that the solution for @ of the
continuity Equation (3.4) does not feed back to the
solutions of the seven remaining equations, and can be
uncoupled from the iteration scheme, In fact, the
continuity equation in any form can then be reduced to
a quadrature, e.g. Equation (3.4) vields

| = S
W = iy, — = (& —B) | AF(63s + 64y)dC’,

S0

(3.20)

and can be integrated separately after the iteration has
converged. In the rest of this paper, the scaled Equations
(3.2)(3.9) are used. The unscaled version of these
equations can be recovered by setting € =1 and using
the unscaled variables instead of the scaled ones.

3.3. Plane-strain approximation

Let us assume that no quantity depends on g, then
Ad/dy =0. From Equation (2.26), it then follows that
Gy = 0. If we further assume that ice flows parallel to the
Z¢ plane, © = (), then from Equations (2.28) and (2.29) it
follows that 7,, = 7,. = 0: however 7,, # 0. With these
assumptions, the set of eight equations, Equations (3.2)
(3.9). reduces to

a7 e - 9G,, OS
o SRS, Pt Ty - - W L BT
ac ‘¢~ 8 -Bl\ e — 5z ) (B20)
(oITH Lz =5
— = [ ()6 3.22
ac = (8- DAF()a, (3.22)
i g moma . g
a 2(8 — B)AF(- )(T + 2ec6,. ), (3.23)
o:eﬁ—f () (2ect — Gyy) (3.24)
or

with the new variable
T = Ty = 2((’5'.,-_,- (325)
and the abbreviation

B oS
c=(1—-()—+(—. 3.26
( 0 ar ¢ i ( )
The transformed boundary condition for stress at the free
surface is

7 =0, (3.27)

The iteration scheme is the same as for the three-
dimensional case. An initial choice is

0 s _ )99

Bi) 5= (3.28)

which corresponds to the shallow-ice approximation of
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the basal shear stress. With this shear stress and the
preseribed  values for the basal-velocity components,
Equation (3.24) is used to caleulate the basal value for
Grrih- Integrating up from the base vields surface values
7lo# 0. The iteration is caried out by subsequently

choosing a new value

bl _ sk gk
Tih — Ty = jT.&H

(3.29)

where 3 is the iteration parameter.

4. PERFORMANCE TESTING OF THE
ALGORITHM

4.1. Stability and convergence pattern

Muller (1991) provided a detailed analysis of the
accuracy and stability of the two-dimensional algorithm
for a Navier Stokes fluid. He gave a eriterion lor the
convergence of the iteration scheme

2M{H 2
0< 8 < 2exp —%—} = Zexp| — J;. (1]

where M is the number of grid points in the horizontal
direction, and {H} and {L} are the vertical and
horizontal extents of the ice mass, respectively. Equation
(4.1) suggests a strong dependence of the convergence
range on the aspeet ratio e = {H}/{L} and the chosen
longitudinal grid resolution A = 1/M. The eriterion in
Equation (4.1) uses global quantities of the ice geometry.
However, local conditions may require a smaller 3 1o
achieve convergence. This is especially true if the surface
slope locally displays large longitudinal variations, such as
in icefalls or near-steep glacier snouts. The iteration
process must start with larger residuals when the aspect
ratio is larger and, additionally, the iteration parameter 3
must be chosen smaller for larger €, which also makes the
convergence progress slower. Both eflects together make
the number of necessary iteration steps grow rapidly with
increasing €. Furthermore, if the ratio €/ A7 is o0 large,
convergence cannot be achieved at all. no matter how
small the iteration parameter 3 is chosen.

The aim of the iteration is to approach the surface-
houndary condition 7 = 0. The convergence rate was
tracked in many numerical experiments by monitoring
the largest residual A7, until this residual drops below a
prescribed level. If the iteration parameter 3 is chosen
much too large. the residuals start growing right at the
beginning of the iteration. With 3 close to the con-
vergence range, the iteration often starts promisingly with
steadily decreasing residuals but, at a certain point,
convergence becomes very slow or stops altogether. For
an appropriate choice of 3, the convergence progresses
approximately exponentially until round-off errors stop it
and the residual begins to vary randomly within the
round-ofl’error interval. For single-precision computation
(eight relevant digits), the levelling-off occurs near the
1 Pa level, which is considered to he accurate enough for
the convergence threshold. Figure 2 illustrates the various
convergence/divergence patterns for the scaled plane-
strain geometry shown in Figure 3, with an aspect ratio
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10~2

residual

104

109 Li ! ! I i
0 50 100 150 200

iteration step

Fig. 2. Convergence/divergence pallerns Jfor ovarious
iteration paramelers: (a) 3= 00065, (b) 0.09, (¢
0.096, (d) 0.105 and (¢) 0.28. The example corresponds
to the scaled plane-strain cross-section as shown in Figure 2
and with an aspect ratio € = 0.05. With the chosen grid
resolution AT = 0.025, the convergence criterion ( Equal-
ion (3.31)) vields 3 < 0.03

e = 0.05 and a horizontal grid resolution of A = 0.025.
Although the chosen geometry may not look very natural,
the behaviour of the iteration is the same as for realistic
glacier geometries.

4.2. Scale length

A given scaled geometry, S = b(r y) and B= B(.x 7) in
the three-dimensional case or S = §(&), and B = B(Z) in
the plane-strain approximation, represents an infinite set
of afline glacier geometries. For the case of a grounded ice
mass with no basal sliding, the scaled solutions only
depend on the temperature distribution, represented by
A= A(z,y,zZ) or A= A(&,Z%), respectively, and the
aspect ratio €. For isothermal ice masses, A = Ay, with
given geometry S and B, the first-order equations only

0.8
b
= T
[}
= &}
0.0 | 1 , 1
-10 05 0.0 0.5 1.0

distance

Fig. 3. Scaled cross-section, fourth-order parabola S =
1— @ and B=0.2S, used for the numerical exper-
iments, of which the results are illustrated in Figures 4-6.
The central thickness of the ice mass is 0.8{ H} and its
diameter is 2{L}.

Q6
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depend on one single parameter, the aspect ratio €. The
shallow-ice approximation becomes unique by setting
e =0 in Equations (3.21)-(5.24) or in Equations (3.2)
(3.9). It is interesting to note that, in this case, the stress
fields do not depend on the choice of Ag but the velocity
fields are proportional to Aj.

It seems reasonable to assume that the largest basal
shear traction occurring in ice sheets and glaciers of a
wide variety of shapes and sizes does not appreciably
exceed 107 Pa. Tt is informative to reduce the set of
shallow-ice masses with a given scaled shape S and B by
fixing the maximum occurring basal shallow-ice shear
stress at a given value 7y. The true size of an ice mass is
now a function of € and 7. In this case, the scaled
shallow-ice approximation is unique and thus does not
depend on e and 7. From the scaling definition,
Equations (2.17) and (2.19). it follows that

{L} x {H}? fx} (4.2)

for the shallow ice approximation. Similarly, with
Equation (2.18), it follows that wee ety and w is
independent of e

(3.24) yields

Applying this result in Equation

B e (4.3)

which indicates the growing importance of the normal
deviatoric stress with growing aspect ratio €. A limiting
basal shear traction of 10° Pa now implies that even
continent-size ice sheets cannot become thicker than a
very few kilometres. On the other hand, this also implies
the known [act that smaller ice masses tend to have larger
which makes the application of the
described numerical algorithm more difficult; thus the

aspect ratios,

iteration is slower for smaller glaciers than for larger ice
caps and ice sheets.

This pattern is illustrated in the [ollowing numerical
experiments using a simple synthetic geometry. As an
example, a fourth-order parabola was chosen (Fig. 3) to
represent the scaled images of the surface and basal
profiles.
plane-strain approximation, they represent the geometry

These profiles were used in two ways. In the

of a plane cross-section through an ice mass. In a second
set of numerical experiments, these profiles are rotated
around the Z axis to define a circular ice sheet having
cylindrical symmetry. Table 1 gives the scale values for
{H} and {L} as a function of e for this geometry and a
maximum basal shallow-ice shear stress of 10° Pa

Figure 4 shows the scaled values of the basal shear
stress and the longitudinal deviatoric stress at the surface,
and Figure 5 shows the velocity components at the surface
for the plane-strain approximation. Figures 6 and 7 show
the same quantities but for the radial section along the
7 = 0 plane of the three-dimensional geometry. As can be
expected,
component in the shallow-ice approximation are the
samc for the plane-strain approximation and for the
circular three-dimensional geometry. The differences
between plane-strain and three-dimensional solutions of

the shear stress and the radial velocity

the first-order shear-stress and horizontal-velocity com-
ponents are also small. However, the differences between

plane-strain and the llut-c--rhm(‘n.«nonul case are signif-
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Table 1. Scale values for {H} = 11.694/€ and { L} = {H} /e for given € for a plane-strain ice mass with scaled shape as
shown in Figure 3, if the maximum occurring basal shear stress is 10° Pa. The smallest possible number of ileration steps,
n, the corresponding best choice for the iteration parameter 3, and the largest residual A7g afler the first iteration step are

chosen al 10 Pa

given for some examples of € and Az, The theoretical upper imil for the ileration parameter By ( Equation (4.1)) is
gwen for comparison. 'The ileration was started with the shallow-ice basal shear stress and the convergence threshold was

€ 0.05 0.025 0.01 0.005

{H} (m) 234 467 1170 2340

{L} (km) 4.7 18.7 117 168
Ag 0.025 0.025 0.0125 0.025 0.0125 0.025 0.0125
ATy 0.1297 0.0411 0.0487 0.0084 0,0105 0.0024 0.0032
Evtigor 0.037 0.27 0.037 0.9 0.4 1.34 0.9
6} 0.085 (.38 0.065 1.0 0.7 1.0 0.98
n 69 L5 a1 5] 6 3 3

icant for the radial deviatoric stress and the vertical-
velocity component. which is mainly due to the spreading
ellect of the circular ice mass. Furthermore, deviatoric
stress components and the vertical-velocity compaonent
strongly depend on the aspect ratio.

The cvlindrical symmetry of the assumed three-
dimensional geometry should be reflected in the results
for stress and velocity components. This is used to test the
influence of grid size and the resulting polygonal margin
of the circular ice mass. The solutions for the vertical-
velocity component w and the total horizontal velocity
vt = u® + o7 must be cvlindrical. It is interesting to note
that the same is true for the quadratic forms 7% =

stress

| 0-4 | | 1 I |
0.0 0.4

distance

Fig. 4. Basal shear stress 7. and devialoric stress G, at
the surface of the two-dimensional plane-strain section of
the ice mass tllustrated in Figure 2, for different aspect
ratios: € = 0.05 (solid lines ), € = 0.025 (dashed lines )
and € = 0 (dotted lines), and ty~ = 0.1. The horizontal
coordinale axis denotes the sealed distance from the centre of
the ice mass.
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Taz + Ty and Oy = Oy 4 Ops® + DOy + 7> It s
straightforward to show that the quantity 7,. is indeed an
invariant under rotations of the coordinate system around
the z axis and the same holds for o, since the sum
722 4+ 0p? equals the square of the effective stress, i.e. the
second invariant This
invariance is not a result of the cylindrical symmetry of

ol the deviatoric stress tensor.
the chosen ice mass but is generally valid. Figure 8 shows
a contour plot of the basal 7., for the circular ice sheet
with cross-section as shown in Figure 3. The contours are
close to circles except for a narrow marginal zone, where
they seem to be influenced slightly by the polygonal shape
of the margin.

0.4 |
0.0 |
=]
=
O
9 =
[
=
—04
|
0.0 0.4 0.8
distance
Fig. 5. Horizontal velvcily component 1w and vertical

veloctty component w at the surface of the two-dimensional
Plane-strain section of the ice mass illustrated in Figure 2,
Jor different aspect ratios: € = 0.05 (solid lines),
€= 0.025 (dashed lines) and € = O ( dotted lines ), and
to. = 0.1. The horizontal coordinate axis denotes the
scaled distance from the centre of the ice mass.
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0.8 |

0.4

stress

_0_4 | | | ] ] X |
0.0 0.4 0.8

distance

Fia. 6. Same as Figure 4 but in the radial cross-section
along the plane i = 0 of the three-dimensional circular ice
mass with the cross-section illustrated in Figure 2.

0.4

=
o
I

velocity

|
=
N8
|

0.0 0.4 0.8
distance

Fig. 7. Same as Figure 5 but in the radial cross-section
along the plane § = 0 of the three-dimensional civeular ice
mass with the cross-section illustrated in Figure 2.

4.3. Plane-strain parallel-sided slab

In this section, the effect of longitudinal strain on the
stress components is re-investigated (Collins, 1968; Nye,
1969; Budd, 1970; Hutter, 1981) by applying the first-
order algorithm to a plane-strain parallel-sided slab
geometry. This simple geometry is chosen to separate
the eflect of longitudinal strain from effects due to changes
in ice thickness or longitudinal variatons in the ice
temperature. The coordinate system (x, z) is chosen to lie
parallel to the slab direction with the z axis pointing
perpendicular to the slab. The momentum equations are

3
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C)-r,.".i" 07—.['?
+

B el sin o, (4.4)
OTp: | 072
B | B PO Eese (4.5)

where « is the inclination angle of the slab normal with
respect to the direction of gravity. The same procedure as
described in section 2.2 yields the corresponding first-
order stress equation

i rr ‘) L2 S &
‘2—0,{-;" + 2 ,T' =py (,)—bcos o — sino |, (4.6)
dx 0z dx

For the parallel-sided slab with surface S = H and base
B =0, we get 85/9x=0.

The slab is defined by its thickness H and its
inclination angle «, which suggests a somewhat different
scaling than used in the previous sections:

(T Tue) = pyEsinicy (768); (4.7)
(u,w) = AgH(pgHsin o)" ™ (@, @). (4.8)
(z,2) = H(&, 3) (4.9)

where Ay is a typical rate factor. For an isothermal slab,
A = Ay, Equations (4.6) and (3.22)—(3.24) in scaled form
are

%:—2%—1. (4.10)
C:)‘i = — ()&, (4.11)
% = 2F()F (4.12)

:3;:* F(:)é (4.13)

s o o 5 & 9 = O = D
Fig. 8. Contour plot of 7y, defined by 7. =Tp.” + Ty,
al the base of the circular ice mass with the cross-section
ilustrated in Figure 2. The aspect ratio is € = 0.05 and
S : E : 5

70" = 0.1. The polygonal line represents the discrelized

margin of the cireular ice sheel.
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again with the flow law of Equation (2.10). For the slab
geometry, the scaling alone yields a set of equations
suitable for the ﬁrst-m‘g)]t'r algorithm and the only
remaining parameter is £y in the flow law F(-).

For a parallel sided slab, the characteristic long-
itudinal length scale {L}, and thus the aspect ratio e, can
be defined by H/{L} = ¢ = sin . With this, the stability
criterion in Equation (4.1 becomes

2

0 <3< 2exp| —
; P\ 2z

(4.14)

The stability of the iteration does not depend on the slab
inclination, as also can be concluded from the scaled
Equations (4.10) (4.13), which no longer contain the
angle a. Moreover, convergence could only be reached
for Az > 1, which limits the resolution of the longitudinal
grid s])a(‘illg] to roughly one slab thickness. For Glen’s flow
law, with f,~ = 0, the iteration sometimes stalled, possibly
due to the singularity occurring at positions where stress
vanishes, e.g. near the ice surface in the locations where
longitudinal strain vanishes. This is a problematic feature
of the Glen flow law and confirms the necessity of
knowing the flow law accurately, especially if effects of
longitudinal strain are taken into account.

4.4. Effect of longitudinal strain

In the shallow-ice approximation, the shear stress is
independent of longitudinal strain, This is no longer true
for the first-order approximation. A look at the Grst-order
equations for a Navier Stokes [luid
= -2
F()=1y
reveals an interesting relation between longitudinal
velocity variations and shear stress. With Equation
(4.15), the algebraic Equation (4.13) becomes linear in
a and can be solved for . Applying the solution in
LEquation (4.10) gives
o7 2 9

(4.16)

9 08

To avoid a singularity in the shear stress, 9*i/dE* must
be finite. This not only excludes a jump in the velocity
field, which is ruled out for obvious reasons. but also a
jump in the longitudinal gradient of the velocity field,
which is less obvious. This may explain the singular
results reported by Hutter and Olunlove (1980) and
Barcilon and MacAvyeal (1993) for abrupt sliding/non-
sliding transitions at the bed of ice slabs. With the flow
law in Equation (2.10), the solutions for @ of the first-
order LEquation (4.13) also depend on 0da/dr, and
consequently the shear stress in Equation (4.10) depends
on &i/0F*. Thus, o avoid a singularity in the stress
field, the same conditions as for a Navier Stokes fluid
must be met.

On the other hand, for a Navier-Stokes fluid, the
shear stress only deviates [rom the shallow-ice shear stress
il the longitudinal gradient of the velocity field also
changes with Z, i.c. 0*i/07 # 0. The same pattern holds
for a generalized Glen-type fluid. Equations (4.10) (4.13)
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contain only first derivatives with respect to 7 and 2 of the
velocity components @ and 1. Therefore, il (i,@) is a
solution of the equations, then (@ + @y, w) is also a
solution, meeting the boundary conditions for stress and
wy, = 0. The constant field 4, plays a role equivalent to a
global change in the sliding velocity. When the sliding
velocity is a linear function of Z, or equivalently

dy,

—— = coust.,
ar

(4.17)

a change in 4 is also equivalent to a shift of the velocity
field parallel to the & axis, hence

F -.‘ c-')‘-.
% E%E const., (4.18)
d8 08 B O s (4.19)

To study the effect of longitudinal strain on the stress
lield. the shear stress and the longitudinal deviatoric
stresses were calculated as a function of the prescribed
longitudinal variations of the basal-velocity ficld. The
algorithm was used to solve Equations (4.10)-(4.13) for a
How (2.10)) = B
Vertical profiles of stress and velocity components were

non-linear law (Equation and
preseribed as boundary conditions at the upper and lower
ends of the slab with finite length. Near these ends, zones
with no longitudinal strain were defined by prescribing
constant hasal-velocity components. Between these zones,
the basal-velocity components were varied as required for
the specilic study.

A constant longitudinal gradient of the sliding
velocity, Equation (4.17). was assumed in a first set of
numerical experiments. A typical result is illustrated in
Figure 9. The longitudinal stress at the surface of the slab
remains zero in the homogencous zones and is constant in
the zone where sliding velocity increases linearly. The
shear stress only varies slightly in the two positions where
the longitudinal gradient of the sliding velocity changes
but is unaflected in places where the longitudinal sliding
gradient is constant. This confirms the pattern suggested
by Equation (4.16) for a Navier Stokes (luid, in so far as
shear stress is undisturbed in this case and Equations
(4.18) and
longitudinal stress on the longitudinal sliding gradient is

L19) stll hold. The dependence of the

depicted in Figure 10,

The shear velocity, @, — iy, also depends on the
longitudinal gradient of the hasal velocity. This is a result
of the non-linear flow law (Equation (2,10)), which
contains the effective stress and thus, the longitudinal
deviatoric stress . which the ice softer with
increasing a. Figure 11 illustrates the dependence of the

makes

shear velocity on the longitudinal gradient of the basal
velocity for three diflerent f. together with one example
ol a constant viscosity (Navier Stokes fluid). for which
the shear velocity no longer depends on the sliding
eradient.

This cannot hold anymore in the case of a long-
itudinally changing sliding gradient. In the [ollowing
example, a sliding velocity is a quadratic function of 7.
Figure 12 shows a typical result for a constant value of
@iy, /OF°. The result indicates that the longitudinal

541
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longitudinal stress

12 P

R

0.8

0 80 160

Fig. 9. Typical result for the dimensionless basal shear
stress (solid line) and dimensionless longitudinal devial-
oric stress at the surface of the slab versus longitudinal
spatial coordinate &, given by the number of the grid point.
The chosen parameters are Ot /0T = 0.5 ( stretching)
and 7o = 0.25. The unil on the T axis corresponds lo one
slab thickness.

0.0

- 0.4

- 0.8

0.0 0.2 0.4
longitudinal sliding gradient

Fig. 10. Dimensionless longttudinal deviatoric stress al the
surface of the slab versus {inm nsionless ionqalrrf/mrrl' sliding
aradient O, [OT for 702 = 0 (solid line), Ty> = 0.25
(long-dashed line) and 7ol = 0.5 (dashed line). The
dotted line represents the result for the Navier—Stokes fluid

Jfor i = 0.8,

4.9
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1.2

facalt
(=]

&=
co

shear velocity

=
>

0.0 0.2 0.4
longitudinal sliding gradient

Fig. 11. Dimensionless shear wvelocily tis — 1ty at the
surface of the slab versus dimensionless longitudinal sliding
gradient Oy, /OT _for 22 =0 (solid line), T° = 0.25
(long-dashed (ine) and 70> = 0.5 (dashed fine). The
dotted line represents the result for the Navier—Stokes fluid
Jor Tyt = 0.5,

deviatoric stress is mostly determined by the local
Ay, /0. Seemingly, the shear stress also rl(‘pcn(ls musll\'

on the local variation of the sliding velocity: a4 i,/ O: e

and Oy, /0.

5. CONCLUSIONS AND DISCUSSION

The numerical algorithm developed by Muller (1991) for
calculating stress and velocity fields in two-dimensional
(plane-strain) grounded ice masses also takes into account
the effects of the normal deviatoric stresses. The algorithm
was extended to three dimensions and its applicability
was examined for various situations. It works efficiently
for large ice-sheet configurations and the necessary
iteration to match the stress-houndary conditions at the
surface converges rapidly. However, the efficiency
decreases with increasing horizontal spatial resolution
and with increasing aspect ratio, corresponding to a
smaller ice mass. Compared with the isothermal case, the
introduction of temperature layering also slows the
iteration,

The algorithm can become unstable for an ice
geometry having a large aspect ratio or a grid with too
fine a longitudinal spatial step. Such instabilities often
originate where horizontal gradients in surface or bed
topography are large. Instabilities can arise in different
parts of the algorithm: (1) the ODE integrator (e.g.
Runge-Kutte scheme) may become unstable if the
vertical grid size is inadequate, (2) the root finder (e.g.
Newton-Raphson scheme) may become stalled or run
away, and (3) the iteration procedure may diverge. The
third cause

is most [requent and limits the range of
applicability of the algorithm. If convergence can be
reached, the best choice for the iteration parameter to
achieve fastest convergence must be found by experiment
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C1 1 I | | | I
0

80 160

Fig. 12. Dimensionless basal shear stress (lower graph),
longitudinal deviatoric stress at the surface of the slab
(solid line in upper graph) and dimensionless sliding
velocity a0 (long-dashed line) versus longitudinal
spatial coordinate T, given by the number of the grid
point. The dashed line depicts the resulting shear velocity
us — iy, and the dotted line the longitudinal sliding
gradienl Oty /OE. In the sliding part of the slab, the
second derivative of the sliding wvelocity (')"'&],/(‘):Fﬂ2 =
0.037. The unit on the T axis corvesponds lo one slab
thickness.

for each geometry and aspect ratio.

The limits of applicability of the algorithm were
explored and this points the direction for future research.
The value of the method could be greatly enhanced if the
horizontal resolution of the discretization grid could be
improved. This is an essential prerequisite addressing
such interesting questions as the stress field near a calving

front, and the patchy basal stress and velocity field of

sliding glaciers, where the characteristic size of the
patchiness may be smaller than the average ice thickness
(personal communication from G. K. C. Clarke).

The inclusion of floating ice shelves would necessitate
a hybrid iteration procedure. In the ice-shell part, the
shear traction vanishes not only at the upper ice surface
but at the floating base. To adjust to this situation, it
would be necessary to specify the velocity at the floating
base and shoot to satisly the stress-boundary condition at

the upper surface. As shown in section 4.4, the relation of

the stress field to the basal velocity field is weak and more
complex than the relation of the stress field to the basal
shear stress. This makes the iteration difficult for the
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Noating parts and, thus far, no converging iteration
procedure has been found. Van der Veen (1987)
mtroduced an iteration scheme usable for both grounded
and floating parts of an ice mass. However, the applied
vertical averaging of the longitudinal stress may be a
viable option for floating ice shelves but may be difficult
to justify for grounded glaciers.

Despite the above-mentioned limitations, the algor-
ithm works efficiently for an interesting range of ice-sheet
and glacier configurations. Its coding is very simple,
which makes its application very flexible. The required
input is the surface and basal geometry, and the basal
velocity. In contrast to other numerical schemes
incorporating deviatoric stress gradients, it is not
necessary to start the iteration with an initial guess for
the whole stress and velocity fields. The only necessary
field input is the rate factor, or equivalently, the
temperature field, which may be supplied from other
sources. T'he required initial guess for the basal shear
traction can easily be calculated if the shallow-ice
approximation is used or it can be taken from the
previous time-step if' the code is incorporated into a
transient ice-sheet model. The computation time for one
iteration step is comparable to the computation time for
the shallow-ice approximation of the velocity field. For ice
caps and ice sheets of intermediate (100 km) to large size,
the algorithm usually converges within less than ten steps.
The number of iteration steps drops to one or two for each
time-step, if the surface geometry is not changing fast and
the result of the previous time-step is used as a starting
point. Thus, the algorithm can be readily incorporated in
a thermo-mechanically coupled transient ice-sheet model.
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