
J. Functional Programming 5 (4): 653-660, October 1995 © 1995 Cambridge University Press 653

Book review

Concurrent Programming in Erlang by Joe Armstrong, Robert Virding and
Mike Williams, Prentice Hall, 1993, 281 pp.

The following impressive text is written on the back cover of the book Concurrent Programming
in Erlang by Joe Armstrong, Robert Virding and Mike Williams:

Erlang is a new functional programming language designed for building large-scale industrial applica-
tions. The language is especially suited for programming large-scale fault-tolerant real-time applications,
and has many features which are essential for non-stop industrial applications. It provides the following:

• Mechanisms for changing software in running systems without stopping the system.
• Lightweight processes for expressing concurrency.
• Advanced error detection mechanisms for building robust and fault-tolerant systems.
• Real-time garbage collection which also eliminates memory fragmentation.

Anyone who is working in a telecom company knows how important the requirements
are for which the designers of Erlang claim to provide a solution: on-line replacement,
concurrency at lightweight-process granularity, advanced error-handling, real-time garbage
collection - it's really everything a telecom software supplier can ever dream of!

I work in a telecom company myself and I also have some knowledge about functional pro-
gramming. Therefore, when I first saw the book, I was really curious from the practical point
of view, to see if all these promises were real and, from the theoretical point of view to see how
Erlang deals with the important topics stated above. I have not tried out Erlang on very large
programs (yet), but my first impression of Erlang is very positive. The language designers and
implementors have, in my opinion, realized an important piece of work. Erlang offers its user
simple and elegant concepts which enable her or him to write excellent telecom applications.

It is also clear to me that the Erlang designers have chosen for a pragmatic approach.
The language offers a set of extra concepts which make it more useful to program telecom
applications. Many of these concepts, especially the ones for dealing with parallelism, have
no evident corresponding concepts (yet) in pure (referentially transparent) functional pro-
gramming languages. Some results have already been obtained in this direction by Hudak
and Jones (1993): they propose a monadic parallel programming style, in the same spirit as
the monadic input/output programming style proposed by Peyton Jones and Wadler (1993).
Anyhow, Erlang can serve as an inspiration for researchers of the functional programming
community who want to provide their favourite pure functional programming language with
concepts for making the language more useful and therefore, by definition, more popular.

One minor point: Erlang is not a strongly typed language. This has the well known
disavantages. I have personally had some problems with a program dealing with lists of lists.
Inserting a list element instead of a one element list gave me much runtime trouble which
could have been avoided at compile time.

About the book

The book is written in a very clear style. It can be used as such for giving a course on some
of the more important aspects of concurrent (functional) programming, although it does not
contain exercices. Many courses on (functional) programming do not deal with the fascinating

https://doi.org/10.1017/S0956796800001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001519


654 Book review

aspects of concurrency at all. This book provides readers with a lot of interesting examples
which will hopefully convince them of the usefulness of having multiple threads of control at
their disposal.

On the one hand, the book is intended for functional programmers which are not familiar
with techniques for concurrency and robustness. On the other hand, the book is intended for
imperative programmers which are familiar with the problems related to large-scale programs,
but which are not familiar with functional programming. For both audiences the book offers
valuable insights in the art of programming.

The book introduces a lot of programming concepts which are perhaps not very common
to the average functional programmer, who may wonder if all these concepts have anything
to do with functional programming at all. However, all concepts are build around a nice
little pure functional programming kernel and, as mentioned above, one should consider it
as a challenge to find out to what extent these concepts could be put into a pure functional
programming framework.

Chapter 1

The first chapter introduces the reader to Erlang via a short tutorial. Erlang is a fairly straight-
forward functional language, with features we have all come to know and love, including
pattern matching. The language is strict (call-by-value) rather than lazy (call-by-need).

The basic data types are numbers, atoms, lists, and tuples. Atoms begin with a small letter,
variables with a capital. As the language is untyped, lists may be heterogenous, e.g. [l,a,X]
where 1 is a number, a is an atom, and X is a variable which may be bound to a value of any
type. Tuples are like lists, but written with curly brackets, e.g. {l,a,X>. The values [l,a,X]
and {l,a,X} differ only in their representation: the list will occupy three cons cells, while
the tuple will occupy a single cell with three fields. There are no sum types, but these are
conventionally formed from atoms and tuples, as in {left.X}- and {right, Y}.

Erlang is halfway between a first-order and a higher-order language. Functions may be
passed as arguments, returned as results, and stored in data structures, but to apply a function
bound to a variable one must first use the built-in apply function. (This point isn't made
clear until Chapter 3, however.)

Erlang is a concurrent programming language. It has primitives to spawn a. parallel process,
to send a message to a process, and to receive a message from a process. A nice property
is that message layout can be descibed in exactly the same way as function parameters: by
making use of patterns. This offers a flexible way to unpack messages.

Some minor remarks on this tutorial: first of all I had a little problem to find out how to
load the code of a module (this could have been documented in a better way) and second
I had a little problem to let the first 'concurrent program' perform something useful for me
(perhaps a slightly more elaborated example would be more appropriate here).

Chapter 2

This chapter introduces the reader to the fundamentals of sequential programming in Erlang.
The chapter contains no surprises for the average functional programmer (although its
programs may look, like all other functional programs, surprisingly simple to the average
imperative functional programmer).

Chapter 3

This chapter introduces the reader to the fundamentals of programming with lists. Again the
chapter contains no surprises for the average functional programmer. The chapter contains a
section on common patterns of recursion on lists, and introduces higher-order functions such
as map and f i l t e r , which require the above mentioned apply function for their definition.

https://doi.org/10.1017/S0956796800001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001519


Book review 655

One can make use of a whole range of built-in functions dealing with lists (and with tuples,
the subject of the next chapter). An example is the function list_to_atom which converts
a list of ASCII characters to an atom. Another example is the function setelement which
updates the value of the N-th field of a tuple T. An important family of built-in functions deals
with run-time type information. An example of this is the guard l i s t which checks whether
its argument is a list. A complete list of built-in functions is presented at the end of the book.

Chapter 4

This chapter introduces the reader to the fundamentals of programming with tuples. Again,
the chapter contains no surprises for the average functional programmer. It shows how to
use tuples to deal with classical data structures as dictionaries and (balanced) binary trees.

Perhaps one striking feature of this chapter is the ease with which one can use tuples and
atoms to deal with exceptional situations. For example: the result of a lookup (Key, Diet)
which looks for a key in a dictionary is either a tuple {value, Value} or an atom undefined.
This is similar to the approach using the Maybe monad which is often used in Haskell.

Chapter 5

This chapter starts exploring the more interesting aspects of Erlang: the possibility to use
Erlang as a concurrent programming language. All concurrency aspects of Erlang are explicit.
The basic concurrency primitives deal (not very surprisingly) with process creation and process
communication.

Process creation is dealt with using the built-in function spawn (Mod, Func.Args) which has
the same signature as the function apply (Mod, Func.Args). Both apply function Func defined
in module Mod to arguments Args. The difference is that spawn will create a new (concurrent)
process to evaluate the function call and returns immediately with the process identifier Pid
of the created process. This identifier Pid is only known to the creating process, and may be
retrieved by the created process using the built-in function self 0 . No other process can re-
trieve this identifier unless it is explicitly exported, which affords some measure of security. The
result of evaluating the function call will be lost. Thus there must exist some communication
facility between processes to let created processes perform something useful for their creator.

Process communication is only possible by means of message passing by using the language
construct ! (send) on one side and the language construct receive on the other side. The
arguments of send can be arbitrary terms. A send is an asynchronous operation. The process
which evaluates a send will not wait for anything. Every process has a mailbox which contains
all messages which have been send to it in the order in which they have arrived. If a process
evaluates a receive then it linearly scans the messages in the mailbox to see if they match one of
the patterns of the receive primitive (in the order they appear in the receive primitive). If such
a message is found, then it is removed from the mailbox and the expression corresponding to
the matching pattern is evaluated. If no such message is found, then the process is suspended
until such a matching message is found. The same binding convention as the one for function
arguments applies for the receive primitive.

The order of the patterns in a receive primitive cannot directly be used as a method to
implement priority (this can, however, be done using zero-timers, see later).

If a process wants to receive only messages from a specific process, then this has to be
arranged in co-operation with the sender who has to include its own process identifier (say
Pid) in the message (e.g. as a first field of the message). The receiver can then decide to wait
only for messages of this specific sender by using a pattern {Pid, Msg}. (Note the slightly
unusual pattern matching: variable Pid, which is bound in the outer scope, matches only
against the value bound to it; while variable Msg, which is not bound in the outer scope,
matches against any value and binds that value to the variable.)

https://doi.org/10.1017/S0956796800001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001519


656 Book review

The private context of a process is simply the arguments Args passed to it in the call
spawn (Mod .Func.Args). The only way to let a process change its context is through recursive
calls of Func with different arguments. In my opinion this is one of the most important
features of the language! (In particular, as described later, it makes it easy to do on-line code
replacement.) Of course recursion may result in run-time overhead, but the authors emphasize
how to avoid this by using tail recursion.

The authors of the book also pay special attention to the discipline of defining interface
functions through which a process can be invoked. The body of these functions will then
typically contain the concurrency primitives. In such a way the usage of the concurrency
primitives is encapsulated. Note that a send or a recieve expression can appear everywhere
in a function body. This is very flexible but it has the consequence that a process may be
descheduled in the middle of evaluating a function call. In my opinion code is structured in
a better way if the usage of the concurrency primitives is somehow limited.

The authors also pay special attention to the fact that the receiver is responsible for its
mailbox, e.g., to arrange that the mailbox does not get filled up with unprocessed messages.
This can be handled by using a default last receive pattern which matches everything.

It is possible to indicate a time interval after which a receiving process will execute a
timeout action if no matching message has been received during the interval. Timeouts
(especially the ones with a zero-time interval!) have much power of expression. They can e.g.
be used to suspend a process, to flush its mailbox, to implement priorities and to implement
timer processes. All time intervals are given in milliseconds, which is a nice indication of the
application domains to which Erlang is tuned.

It is possible to register processes (i.e. to give them a system-wide unique name) using
regis ter (Name, Pid). A send primitive can make use of registered names. In such a way a
client can use the services of any registered server. The authors pay special attention to the
way client-server applications can be written using three basic ingredients: the server code, a
protocol, and an access library. It is the functions of the access library which should be made
public for use by the clients.

High level facilities can be programmed in an easy and flexible way using the Erlang
concurrency primitives which we have discussed above. The Erlang programmer does not
have to worry about such issues as sheduling and memory management. It is up to the Erlang
implementors to guarantee that some criteria are satisfied. Typically scheduling will have to
be fair and may not block the system too long. Allocating and reclaiming memory must also
be done in such a manner that it does not block the system too long. For all those criteria
the Erlang implementors have done a great job.

Chapter 6

Erlang has mechanisms for letting a process monitor its evaluation of an expression, monitor
the behaviour of other processes, and trap evaluation of undefined functions.

The primitives used for monitoring the evaluation of expressions are catch and throw.
They can be used for protecting sequential code from errors and arrange for a non-local
return from a function. To monitor evaluation of an expression Expr one writes catch Expr.
If nothing goes wrong, this returns the value of the expression; thus catch 2*11 returns 22.
If a failure occurs, this returns {'EXIT' .Reason}, where Reason is an atom indicating the
reason for failure; thus catch 2*atom returns {'EXIT' .badarith}. If a call to the built-in
function throw is evaluated, then the value thrown is returned; thus catch 2*throw(42)
returns 42. Note that calling throw({'EXIT' .Reason}) simulates the effect of a failure.

One process can monitor another's behaviour via a link. Calling link (Pid), causes the
executing process to be linked to the process with identifier Pid (and vice versa, since links
are bidirectional). There is also a built-in function which both spawns a process and links to it
as a single atomic action. If a process terminates, a signal of the form {'EXIT',Pid,Reason}

https://doi.org/10.1017/S0956796800001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001519


Book review 657

is sent to all processes linked to it, where Pid identifies the terminating process, and Reason
is the atom normal if the process terminated normally, and is the reason associated with the
failure otherwise. By default, if a process receives such a signal it does nothing if Reason is
normal, and otherwise it terminates and propogates the signal to all other processes linked to
it. Calls to built-in functions allow one to change this behaviour so that, e.g. any such signal
is turned into a message that the process can receive and handle in the usual way.

Chapter 7

This chapter shows how to use the previously described mechanisms to design robust appli-
cations. For instance, it is shown how to use catch to guard a server against bad data and
how to use the link to design reliable server processes.

Good program structure is stressed. Clients should communicate with servers through a well
defined set of access functions. They should not interfere with the execution of the server. A
server can monitor clients and take appropriate actions when they die by creating links to them
and by trapping EXIT signals. This technique can be used to guarantee that vital processes of
a system remain alive. The chapter also describes how to write a command shell that isolates
the effects of commands by evaluating them in a separately spawned and linked process.

Chapter 8

This chapter discusses miscellaneous items like last call optimisation, unique references, code
replacement, ports and process dictionaries

Last call optimization allows tail recursive programs to run in constant space. Almost all
programs in the book are written in such a way that this optimization is possible. As such
the possible runtime-overhead introduced by realizing a context change using recursion can
be avoided.

References in Erlang are not at all like references in Standard ML. The call make_ref ()
returns a unique reference. The only thing which can be done with such references is to
compare them for equality. They can, for example, be used to implement a method of
communication with a server which provides 'end-to-end' confirmation that requests have
been processed.

On-line code replacement is a feature which is particularly useful for telecom software: one
does not want to stop a running system in order to replace old (probably buggy or slow)
code by new (hopefully correct or faster) code.

In Erlang, a call across module boundaries is always made by listing the module and the
function name together, thus Mod:Func(Args). Such calls are always dynamically linked. This
has the great advantage that Erlang code is quick to run, as there is no need for a separate
linking phase. This is especially invigorating for the Erlang beginner. Dynamic linking has
the disadvantage that code management becomes more difficult, although Erlang has some
code management features to help with this problem.

Typically, a process is written as a function that receives a message, takes appropriate
action, and then loops by making a tail recursive call to itself. If this tail recursive call
explicitly mentions the module, then it will be dynamically linked: reloading the module will
cause the tail call to be made to the old code rather than the new code. This depends crucially
on two features of Erlang. The first is that the Erlang system always maintains two versions
of the code, old and new. Thus, code can be reloaded at any time, but the switch to executing
the new code happens at the tail recursive call. Second is that, as mentioned previously, all
context is made explicit as arguments to tail recursive calls.

The resulting model of on-line code replacement is surprisingly simple to explain and to
use. One can definitely say this is one of the points at which use of a functional language has
provided great leverage!

https://doi.org/10.1017/S0956796800001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001519


658 Book review

Ports provide the basic mechanism for communicating with the external world. A port
provides a byte-oriented communication channel between Erlang and the outside world.
From the programmers point of view there is no basic difference between using those ports
to communicate with processes of the outside world or with Erlang processes. A port can be
opened and can be given a portname. It behaves like an Erlang process but can recognise
only three kinds of messages: one for sending a list of bytes to an external object, one for
closing the port and one for changing the internal process which is linked to the port. The
process which is connected to the port can receive messages from the outside world by using
a receive pattern which has a port name as its first component.

Ports can be opened for executing an external program and for connecting to an external re-
source such as a file. The kind of data which can be send to a port are output in packets of fixed
length (1, 2 or 4 bytes) or output in packets of variable length. For spawned external processes
one can also decide to use standard input/output for communicating with Erlang. Typically
an external process will be a compiled C program which, besides executing the code which
does the job the program is written for, makes use of simple routines to read and write buffers.

Dictionaries provide a restricted form of global state. Every process has an associated local
dictionary, which is accessed by the built-in calls put and get. A dictionary allow access to
the same global information in different functions of a process, and acts as a private context
in which is destructively updated (via put). The usage of dictionaries must be done with
much care and is normally discouraged.

By the end of Chapter 8 the reader has been introduced to all the features of Erlang. The
remaining chapters provide extended programming examples.

Chapter 9

This chapter shows how to write a client which makes use of a database. The interface
is through a number of access functions which encapsulate the underlying complexity of
the actual database which does the job. Thus the database may simply be a process which
maintains a dictionary or a two level database in which the processing of requests is forwarded
by a first level server to second level auxiliary servers. It is also shown how to write a database
which supports atomic transactions and roll-back. Furthermore it is shown how to introduce
fault-tolerance. Again this is done by trapping EXIT signals. Finally, it is shown how to
interface to an external database and to make use of an internal cache in order realise a safe
way to update the external database.

Chapter 10

This chapter deals with system related functions. It explains how the standard Erlang operating
system is structured. It also contains some very useful information about the primitives which
allow the Erlang programmer to build systems which permit on-line code replacement. Code
management is limited to two versions of the code of modules. Finally some standard issues
as input/output and the standard shell are discussed. Processes access externel files through
a file server process which is connected through a port to the underlying operating system.

Chapter 11

In this chapter the power of concurrent programming is shown through two real time
applications: a lift control system and a sattelite control system. During the design of both
systems much emphasis is put on the mapping of each concurrent activity onto a process of
the system. In such a way one obtains, in a natural way, a mapping of a concurrent system
to a concurrent functional program. The first example deals with lifts (or elevators, if you

https://doi.org/10.1017/S0956796800001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001519


Book review 659

are American). I had no problem to understand this example at first reading. It is also a
very natural example: everybody has an idea about how lifts (ought to) behave. The second
example deals with satellites. This example was more difficult for me to understand. Perhaps
because it is not such a common known kind of system. Satellite systems are certainly known
to one of the authors who has written a satellite control system for the Swedish Viking
satellite in Fortran. The example shows how it could have been written in Erlang. Apart from
the fact that it is a nice example of how to use Erlang, I personally think that the example is
perhaps too much involved for an introductory book.

Chapter 12

This chapter deals with a POTS (Plain Ordinary Telephone Service) system. The example is
based on a large Erlang program which is used to control an Ericsson MD10 PABX. This
example is written in a very clear style. It uses uses the standard technique of modelling the
states of a state machine as functions whose body starts with a receive expression so as to
wait for messages to arrive. In other words, the design is state based: a system is designed in
terms of its possible states and, in any state, a switch on the possible incoming messages is
done.

Just for your information: a typical C++ program which has the same concurrent behaviour
would probably be message or action based. Perhaps method based sounds more familiar to
C++ programmers, though I prefer to use action based from the moment that concurrency
issues are involved. In C++ one would also have to make use of some base class functionality
(such as that of the task library) to deal with concurrency issues. There is, at the moment,
absolutely no consensus in the telecom community about which approach (state or action
based) is the best. By the way: it is, of course, also possible to write action based programs
in Erlang. Chapter 15 elaborates on this style of programming.

Chapter 13

This is a separate chapter (written by Claes Wikstrom) which deals with ASN.l: a type
description language which is standardized by the CCITT in order to facilitate the writing
of OSI computer communication protocols. The chapter describes an ASN.l to Erlang cross-
compiler written in Erlang. It also shows how to make use of the compiler by means of an
application which is developed with the aid of the compiler.

Chapter 14

This chapter shows how to use a graphics module, called pxu, which allows to access the
X Window system. Again the port mechanism is used in order to communicate with the
underlying X Window functionality. It is shown how to write a graphical pocket calculator
and a small simulation of a TV camera and monitor.

Chapter 15

The last chapter is devoted to a very popular subject: OOP (Object Oriented Programming).
Some of the concepts of OOP have natural corresponding concepts in Erlang (for example:
modules). Other concepts can be implemented in Erlang in a number of different ways
depending on the context in which they are used (for example: objects, abstraction and
encapsulation).

Abstraction is implemented by using modules. Modules can be used to define interface
functions which operate on an unspecified type.

https://doi.org/10.1017/S0956796800001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001519


660 Book review

Objects can be represented as data structures or as processes. Erlang data structures are
passive objects which are non-destructive, and can be passed freely around for inspection
(they cannot be modified). One can encapsulate data structures using the module system.
Processes are active objects in the sense that they have their own thread of control. The only
way to change their state is by letting them evaluate recursive functions calls with changed
parameters. Encapsulation is provided through a message interface (which can itself, if one
wishes, again be encapsulated using interface functions).

In the chapter it is also shown how to define class modules and how to implement inher-
itance using a method function which for each method which it can handle calls a dispatch
function which tries to apply the method in the class and, if this fails, applies the method in
the superclass (using the superclass function). Multiple inheritance can also be handled.

The authors claim that one advantage of not having a built-in OO mechanism with classes
and inheritance is the possibility to modify the OO system to suit the application which is
using it. Anyhow, a suitable combination of object orientation and functional programming
is not realized yet and, in my opinion, there is still a lot of research to be done before one
can come up with a satisfactory solution. Some results have already been obtained in this
direction by Hudak (1992): he develops a framework to work with objects which are instances
of mutable abstract data types. Also Jones and Hudak (1993) can be seen as a step towards
using these results to introduce active objects.

In conclusion

I warmly recommend this book. Erlang boldly takes functional programming where it has not
gone before: into the realms of concurrent, real-time, and robust programming. The designers
have admirably succeeded in providing a practical language that achieves these ambitious
aims. The book itself is a clear and thorough introduction to this work. Let us hope that Erlang
will contribute to the widespread usage of functional programming languages for industrial
applications and, as such, bridge the gap between the academic and the industrial world.

To reach their goal, the designers of Erlang have taken a pragmatic approach, sacrificing
some useful features of functional languages, such as types, referential transparency, and lazy
evaluation. How much of the same advantages can be achieved in a typed language? In a
pure functional language? In a lazy language? Erlang poses these as intriguing challenges for
the future.

A cknowledgement

I would like to thank Philip Wadler for giving valuable comments on this review.

References

Hudak, P. (1992) Mutable Abstract Datatypes. Yale Report, YALEU/DCS/RR-914, December.
Jones, M. and Hudak, P. (1993) Implicit and Explicit Parallel Programming in Haskell. Yale

Report, YALEU/DCS/RR-982, August.
Peyton Jones, S. and Wadler, P. (1993) Imperative functional programming. In: 20th ACM

Symposium on Principles of Programming Languages, Charlotte, NC, January.

LUC DUPONCHEEL
Computing Science
Utrecht University
Utrecht
The Netherlands

https://doi.org/10.1017/S0956796800001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001519


J. Functional Programming 5 (4): 661, October 1995 © 1995 Cambridge University Press

Author Index to Volume 5

ABADI, M., CARDELLI, L., PIERCE, B. and REMY, D., Dynamic typing in polymorphic
languages, 111

ACHTEN, P. and PLASMEIJER, R., The ins and outs of Clean I/O, 81
APPEL, A. W. see TOLMACH, A. and APPEL, A. W., 155
BENTON, P. N., Strong normalisation for the linear term calculus, 65
BOHM, W. see HAMMES, J., LUBECK, O. and BOHM, W., 283
CARDELLI, L. see ABADI, M., CARDELLI, L., PIERCE, B. and REMY, D., 111
CLACK, C , CLAYMAN, A. and PARROTT, D., Lexical profiling: theory and practice, 225
CLAYMAN, A. see CLACK, C , CLAYMAN, A. and PARROTT, D., 225
CONSEL, C. and KHOO, S. C , On-line & off-line partial evaluation: semantic specifications

and correctness proofs, 461
DAVY, J. R. and DEW, P. M., A polymorphic library for constructive solid geometry, 415
D E HOON, W. A. C. A. J., RUTTEN, L. M. W. J. and VAN EEKELEN, M. C. J. D.,

Implementing a functional spreadsheet in Clean, 383
DEW, P. M. see DAVY, J. R. and DEW, P. M., 415
DUPONCHEEL, L., Book review, 653
VAN EEKELEN, M. C. J. D. see D E HOON, W. A. C. A. J., RUTTEN, L. M. W. J. and VAN

EEKELEN, M. C. J. D., 383
ERNOULT, C. and MYCROFT, A., Untyped strictness analysis, 37
GHANI, N. see JAY, C. B. and GHANI, N., 135
HAMMES, J., LUBECK, O. and BOHM, W., Comparing Id and Haskell in a Monte Carlo

photon transport code, 283
HARTEL, P. and PLASMEIJER, R., Special Issue on State-of-the-art applications of pure

functional programming languages, 279
HARTEL, P. H. see VREE, W. G. and HARTEL, P. H , 549
HOFMANN, M. and PIERCE, B., A unifying type-theoretic framework for objects, 593
HUDAK, P. see KISHON, A. and HUDAK, P., 501
JAY, C. B. and GHANI, N., The virtues of eta-expansion, 135
JONES, M. P., A system of constructor classes: overloading and implicit higher-order

polymorphism, 1
KAMAREDDINE, F. and NEDERPELT, R., Refining reduction in the lambda calculus, 637
KHOO, S. C. see CONSEL, C. and KHOO, S. C , 461
KISHON, A. and HUDAK, P., Semantics Directed Program Execution Monitoring, 501
LAPALME, G. see TURCOTTE, M., LAPALME, G. and MAJOR, F., 443
LUBECK, O. see HAMMES, J., LUBECK, O. and BOHM, W., 283
MAJOR, F. see TURCOTTE, M., LAPALME, G. and MAJOR, F., 443

MICHAELSON, G. and SCAIFE, N., Prototyping a parallel vision system in Standard ML, 345
MITCHELL, K., Book review, 131
MYCROFT, A. see ERNOULT, C. and MYCROFT, A., 37
NEDERPELT, R. see KAMAREDDINE, F. and NEDERPELT, R., 637
NIPKOW, T. and PREHOFER, C , Type Reconstruction for TypeClasses, 201
OKASAKI, C , Simple and efficient purely functional queues and deques, 583
PARROTT, D. see CLACK, C , CLAYMAN, A. and PARROTT, D., 225
PIERCE, B. see ABADI, M., CARDELLI, L., PIERCE, B. and REMY, D., I l l
PIERCE, B. see HOFMANN, M. and PIERCE, B., 593
PLASMEIJER, R. see ACHTEN, P. and PLASMEIJER, R., 81
PLASMEIJER, R. see HARTEL, P. and PLASMEIJER, R., 279
PREHOFER, C. see NIPKOW, T. and PREHOFER, C , 201
REMY, D. see ABADI, M., CARDELLI, L., PIERCE, B. and REMY, D., I l l

https://doi.org/10.1017/S0956796800001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001519


662 Index

RUTTEN, L. M. W. J. see DE HOON, W. A. C. A. J., RUTTEN, L. M. W. J. and VAN EEKELEN,
M. C. J. D, 383

SCAIFE, N. see MICHAELSON, G. and SCAIFE, N., 345
SPACKMAN, S. P. see ZIFF, D. A., SPACKMAN, S. P. and WACLENA, K., 317
TURCOTTE, M., LAPALME, G. and MAJOR, F., Exploring the conformations of nucleic acids,

443
TOLMACH, A. and APPEL, A. W., A Debugger for Standard ML, 155
TRONCI, E., Defining data structures via Bohm-out, 51
VREE, W. G. and HARTEL, P. H., Communication lifting: fixed point computation for

parallelism, 549
WACLENA, K. SEE ZIFF, D. A., SPACKMAN, S. P. and WACLENA, K., 317
ZIFF, D. A., SPACKMAN, S. P. and WACLENA, K., Funser: a functional server for textual

information retrieval, 317

https://doi.org/10.1017/S0956796800001519 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001519

