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ABSTRACT 

Ice sheets consist of several disjoint regions, each with 
physically distinct behavior. Parts are cold; others are 
temperate and either partly or completely saturated. Varying 
dust content, impurities, debris content, etc., may affect the 
ice flow. Usually, these regions are separated by material or 
non-material surfaces or boundaries. We use mixture 
concepts, involving the balances of mass, momentum, energy 
and entropy. When applied to regular domain points these 
concepts and appropriate constitutive postulates yield the 
field equations for the evolution of the constituents. When 
formulated in terms of singular surfaces, boundary and 
transition conditions emerge. Our presentation takes the 
form of an extended abstract of work that is presently 
under consideration (Hutter and Engelhardt 1988; Hutter and 
Engelhardt, in preparation). 

DEFINITIONS AND NOTATION 

M ixture quantities: 

46 

Mixture (barycentric) velocity: vi 

Diffusion velocity: u~ = v~ - vi 

Mixture mass density: p = Lp ex ex 

) . 
-L p v' pex ex ex 

Mixture stress' lij = I: [Iij - P ui uj ) . a<X aaa 

Mixture body force: p/ = L Pex f~ 
ex 

Mixture internal energy density: 

Mixture heat flux: 

qi = ~[q~ + Pex(Eex + }u~ucxk)u~ - t~ Uexj] 

Mixture internal energy supply density: 

Mixture entropy density: pTI = r Pex Tlex 
ex 

Mixture entropy density supply: ps = L Pex Sex 
ex 

Mixture entropy density production: P'/ = L Pex '/ ex 
0< 

Mixture entropy density flux: 41i = I: (41~ - Po< Tlo< u~) 
0< 

Constituent quantities: 

Cex Rate of mass production of constituent ex 

Co< Specific heat of constituent 0< 

Dij Components of the stretching tensor of constituent 0< 

f~ Body force components 

gi Components of gravity 

R 0< Rate of energy production 

m~ Momentum production rate components 

nex Volume fraction 

Po< Pressure 

q~ Heat flux components 

r 0< Energy supply 

Sex Entropy supply 

To< Temperature 

lij Partial Cauchy stress tensor components 

I~ Second invariant of the partial Cauchy stress tensor 

v~ Material velocity components 

'/0< Specific entropy production rate 

Eo< Specific internal energy 

Tlex Specific entropy 

Pex Partial density 

Po< True density 

41~ Entropy flux 

Other quantities: 

A( . ) Rate factors 

ai Melting/ freezing rate at cold-temperate transition 
surface 
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ei Components of the unit vector perpendicular to the 
singular surface 

f(tll) Creep response function 

k Darcy's permeability 

L Latent heat of fusion 

Time 

v~ Seepage velocity components 

xi x,y,z Position components and coordinates 

Zc (x,y,t) z-coordinate defining cold-temperate transition 
surface 

wi Singular surface velocity components 

). Density ratio = 'P/pw 

~ Gravitational potential 

INTRODUCTION 

Ice sheets consist of several disjoint regions, each with 
physically distinct behavior. Parts are cold; others are 
temperate and either partly saturated or completely saturated 
with water. Varying dust content, impurities, grain-size and 
crystal orientation may affect the ice flow. At depth, gravel 
may be dispersed within the ice and affect the mechanical 
properties of the pre-basal layer. Sub-basal conditions may 
be dominated by sliding over hard rock or by the 
deformation of water-saturated sediments. Water pressure in 
the sub-sole drift turns out to play a decisive role. Of a 
special nature is the sub-sole water drainage system, which 
may exhibit distinct modes of water flow, with different 
flow characteristics . A thick sub-sole deformable sediment 
bed is permeable to water flow, and a Darcy-type 
water-flow regime may be applicable. Generally, the 
tranSItIOn from one kind of behavior to the other is 
gradual, but transition times are often small, so that an 
abrupt change may be a reasonable approximation. The 
various domains are then separated by material and 
non-material surfaces where some of the field variables may 
suffer finite jump discontinuities. Such surfaces are the free 
surface, the transition surface between cold and temperate 
ice, the phreatic surface, the ice-ocean, the ice~ediment 
and the sediment-rock interfaces. 

Figure I illustrates how the situation may realistically 
arise. The entire grounded ice sheet consists of the 
following separate regions: 

(1) Cold ice 
Temperatures are below freezing and vary according to 

the amount of heat that is advected and conducted . 

(2a) Saturated temperate ice 
Ice and water coexist in a proportion dictated by 

influx from above, discharge to the ground, and strain 
heating due to shearing and compression . Pores, veins and 
cavities are completely filled with water. 

(2b) Non-saturated temperate ice 
The conditions are the same as in (2a), except that 

there is not enough water available to fill the "pore volume" 
completely . Percolation may be a decisive process that 
governs the water flow through the pores. 

(3a) Debris-laden cold ice 
This is a relatively thin layer, where ice and dispersed 

sediments coexist. Sometimes this layer is only a few meters 
thick. 

(3b) Debris-laden temperate ice 
This is a layer up to a few meters thick, where ice, 

water and rock granules coexist. 

(4a) Water-filled sediment 
This layer exists because the temperate debris-laden ice 

above it melts at the contact surface and thus loses gravel 
to layer 4a. As the water has access to this layer, its 
mechanical properties depend upon the amount of water 
present. This layer is usually only a few meters thick. 

(4b) Abrasion wne 
Here frictional processes dominate. Till is abraded from 

the hard bedrock and transported along the base to form 
the soft deformable bed in the down-stream layer, 4a. 

This picture is not complete, as it ignores hard-bed 
sub-sole water drainage with cavity formation. We ignore it 
here in order to keep the picture as simple as possible. 
Furthermore, each domain is separated from any other by a 
surface, which may actually be a region, a thin transition 
or boundary layer and not as well defined as a surface. For 
clarity, however, we prefer the concept of a singular 
surface. 

It may be unreasonable, or even unnecessary, to 

describe mathematically the full system in all its complexity 

Fig. I. Schematic representation of a glacier or ice sheet, illustrating its various regions. For 
explanations, see main text. 
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as illustrated in Figure I. To make things simpler, we 
consider interesting parts of this system as separate from 
the rest. For instance, interpretation of temperature data in 
a bore hole drilled through poly thermal ice (upper layer 
cold, lower layer temperate) requires a clear understanding 
of the momentum and energy balances in the cold and 
temperate parts of the hole, including the processes at the 
cold-temperate tranSItIOn surface with its kink in the 
temperature profile. 

TABLE la . MIXTURE-FIELD RELATIONS 

Mass density = p : 

Constituent a: 

Mixture: 

o 

Balance: 

o 

Linear momentum density pv : 

Constituent a : 

a (Pa Y~) 
( i j - tij) . Pa f~ at 

+ Pa YaYa a 'J 

Mixture: 

a (pvi ) 
+ (pvi yj - tij) . - p/ 

at 'J 

Balance: 

Total energy density 

Constituent a: 

Mixture: 

Balance: 

Entropy density = pn: 

48 

Constituent a: 

Mixture: 

a (pn) ( . . ) 
+ pn Vi - ~I 'i 

at 

Balance: 

pr ~ 0 

ps 

mi 
a 

0 

o 

pr 

Similarly, if one wants to model the formation of the 
sediment bed, a detailed description of the abrasion 
mechanism at the cold bed is required; the motion of the 
debris into the ice, and its advection through and with the 
ice, must be described, and the deposition mechanism in the 
temperate debris-laden ice must be modeled. 

The formulation of these problems is simplified in the 
context of continuum thermodynamics. Each domain is 
regarded as a continuum, and the physical behavior is 

T ABLE lb. CONSTITUENT JUMP CONDITIONS 

Mass: 

o 
Linear momentum: 

[Pav~(Y~ - w~) - t:1] ej o 
Energy: 

o 

Entropy: 

described by formulating two or three constituent mixture 
concepts involving the balances of mass, momentum, energy 
and entropy. When applied to regular domain points, these 
concepts and appropriate constitutive postulates yield the 
field equations for ice and water flow, temperature 
distribution and for salt and dust transport. Alternatively, 
applying these concepts to singular surfaces (the transition 
surfaces) permits deduction of boundary and transition 
conditions. Sub-sets of equations describe simpler ice-sheet 
and glacier-flow problems known in the literature. 

A SELECTION OF EQUATIONS 

The governing equations involve statements that are 
common to all materials and form the foundation for all 
problems of continuum physics and statements that 
distinguish one material from the other. The former 
comprise the balance laws of mass, momentum, energy and 
entropy. Within a region where no discontinuities are 
encountered, they yield mixture-field relations (Table la). 
On interfaces these laws lead to the corresponding jump 
conditions (Table Ib). The laws which distinguish the 
materials comprise the constitutive relations. 

The distinctive features of mixture concepts are: 

(I) Mass, momentum and energy of the individual 
components may not be conserved, as there can be mass, 
momentum and energy production. The summed balances of 
mass, momentum and energy must, however, form 
conservation laws. This imposes restrictions on the 
production terms. 

Example I 
Consider temperate ice as a mixture of ice and water. 
The melting rate is a local source of water and 
correspondingly a sink of ice. The sum adds up to zero. 

Example 2 
In temperate saturated ice the water forming the moisture 
content moves through the ice much like ground water. 
The force exerted by the water on the ice is equilibrated 
by an equal and opposite force exerted by the ice on the 
water. The mathematical formulation of this process leads 
essentially to Darcy's law. 

(11) The variables describing the evolution of the mixture as 
a whole and those of each constituent are related to each 
other. For instance, 
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where 

P = Lp ex ex 

I . - r. p Vi 
P ex ex 

(I) 

(2) 

(3) 

Definitions and notation are given at the beginning of the 
paper. 

Example 3 
Consider temperate saturated ice and assume that we 
ignore the small volume changes in the mixture. Then p 
is constant and known. This loss of a field variable must 
be compensated for by the introduction of another 
varia.Qle, .u.~ually the p.T!lssure p. So we write tij = 
-p 51} + tIJ ,where tIJ is now the part of the stress 
that must be determined by constitutive assumptio.ns. How 
is this pressure distributed among the stresses t:J.? There 
is no unique way to do this , but relation (2) must be 
obeyed. One way is to write 

Pex . . . ., 
- -p 5IJ + t l } P ex 

(4) 

A second way is provided by 

(5) 

where nex is the volume fraction of the constituent. Note 
that L /lex = 1. Both relations satisfy condition (2); 

·ex 

Equation (4) is based on mass fraction, Xex = Pa/ p, and 
Equation (5) is based on volume fraction. 

(Ill) Equation (2) relates the mixture stresses and mixture 
heat flux to those of the constituents plus further quantities. 
When postulating material behavior, statements like relation 
(2) must be borne in mind . In other words, constitutive 
relations for the mixture quantities must be consistent with 
those of the components. 

Example 4 
Consider the water-filled sediment layer below the 
temperate ice region (4a in Fig. 1). Assume that both 
water and sediment as individual bodies conduct heat 
according to Fourier-type heat-flux relationships , 

qi = - k 5ij T . 
ex a a,} 

Then the second part of Equation (2) directly implies 
that in a theory that gives one single temperature, 
T = T ex' for all ex, Fourier's heat law cannot hold for the 
mixture as a whole. 

(IV) It goes almost without saying that constitutive relations 
must be objective and obey the second law of 
thermodynamics. 

Example 5 
Consider saturated temperate ice that is modeled as a 
mixture of ice and water. It is known from continuum 
mechanics that the constituent momentum ma is not an 
objective quantity and thus cannot, in general, be used as 
a constitutive quantity. The appropriate quantity is given 
in component form by 

where Cex is the mass-production rate of constituent ex. 
As a consequence, Darcy's law cannot blindly be taken 
over for temperate ice in order to model the water flow. 
The objective alternative to Darcy's law is 

(6) 

where Il is the viscosity of water (0.1 Pa s), k* is the 
coefficient of absolute permeability of the ice, nw is the 
porosity and Cw is the rate of water production per unit 
volume. Clearly, for Cw = 0, Equation (6) reduces to the 
classical Darcy's law. In what follows, we cannot give 
any detailed analysis of all the regions and interfaces 
shown in Figure I. Instead, we select a few to highlight 
the principles. 

AN EXAMPLE OF FIELD EQUATIONS: TEMPERATE 
ICE SATURATED WITH WATER 

We treat saturated temperate ice as an incompressible, 
binary mixture of ice and water, and assume that ice and 
water have a common temperature at the melting point. 
This means that two balance laws of mass and momentum 
must be formulated, but only one energy relation. This 
energy relation cannot be an evolution equation for the 
temperature but must describe how much the internal 
energy changes as the result of phase changes. Essentially 
it yields the equation for the melting rate. For earlier 
treatments of temperate ice, see Hutter (1982) and Fowler 
(1984). 

We assume both water and ice to be incompressible. 
Porosity, nw' and the true densities of the constituents, Pw 
and Pi, are then related to the partial densities of the 
constituent by 

(7) 

The porosity is usually small. With Equation (7), the 
mass-balance statements for the constituents water and ice 
become 

al1w 
~lw v~L 

Cw 
+ 

Pw at 

(8) 
a/lw [(I - /lw) v/],i 

Cw 1 Cw 
+ -- --

at Pi ).. Pw 

where }.. = Pj/Pw = 0.917. In the momentum balances we 
ignore acceleration terms, introduce the peculiar stresses 
according to Equation (5) (example 3) and emplov Da~cy' s 
law according to Equation (6) (example 5). Under such 
conditions the force balances of ice and water become 

(9) 

We still must formulate constitutive relations for the 
peculiar stresses. We suppose that the interstitial water is an 
ideal fluid, so that 

o (10) 

In the case of ice, caution is advisable; the reason is that 
incompressibility of the mixture does not impl y 
incompressibility of the ice, because the water content may 
vary due to the variation in the melting rate within the 
temperate-ice region. So Glen's flow law, for instance, 
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cannot I:!tl, taken over blindly. Consequently, the constitutive 
stress t/} may have a non-vanishing isotropic part, Pi' so 
that 

t.ij' 
1 

- Pi sij + "(.ij 
1 ° (11) 

-ij 
ti Sij ° 

An extension of Glen's flow law may then take the form 

where 

-II t· 
1 

}(v! . + vI .J 
1,) 1,1 

1. T.ij [. .. 
2 1 H) 

( 12) 

A is a rate factor, which depends on the moisture content; 
f(~II) is a creep-response function, assumed to be a 
function of the second stress-deviator invariant of 
constituent ice , and g(Pi) is a bulk viscosity. 

Adding the relations (9) yields 

tij sijPw,j + pgi = 0, (p = I1w Pw + (I - I1w) ~\) (13) 
i,j 

Alternatively, from the second part of Equation (9) we may 
deduce 

( 14) 

where gradients I1w i have been ignored . Introducing the 
gravitational potential ' such that 

gi = - g sij 4>'j (15) 

and defining the piezometric head as 

h 

Equation (13) can be written as 

v~ = -k[Sij h'j - Cw v~] 
Pwgllw 

k 
Pw g k* 

jL 

(16) 

(17) 

where k is Oarcy's permeability. Note how Equation (17) 
is modified relative to its classical expression when no 
melting takes place. Instead of relation (9) we may thus use 
the alternative relations (13) and (17). These equations more 
closely resemble the structure of the equations of soil 
mechanics. 

Let us see what we can infer from energy 
cons iderations. In terms of our binary mixture concept, we 
have 

pE 

If we write Ew = Cw T wand Ei = ci T i , where Cw and ci 
are the specific heats of ice and water respectively, we 
obtain 

50 

pE = I1wpwcwTw + (I - "w)PiciTi + }LPaU~ 
a 

Now since T w = Ti = T M (melting temperature) and 
Cw T M = ci T M + L, where L 
energy due to fusion, we have 

is the change of internal 

( 18) 

The last term is usually ignored. If we discount heat 
conduction the energy equation becomes 

( 19) 

where lij are the components of the mixture stress, and Dij 
are the components of the barycentric stretching tensor. 
With Equations (12) and (18), we have 

pLXw = 3(pw + Pi) [Xi g(Pi) Pi - } Xw D~k] + 

(20) 

The intention is that the rate of water production, cw' is 
implicitly described by Equation (20) . It may be mentioned 
in pa.s~ing that Hutter (1982) used the relation 
Cw = II} Dij I L . 

AN EXAMPLE OF JUMP CONDITIONS: COLD-
TEMPERATE TRANSITION SURFACE 

This is a singular surface where phase changes may 
take place. On the cold-ice side the material is a viscous 
fluid, on the temperate-ice side the body is a mixture of 
two fluids - one viscous, the other ideal. We postulate that 
the temperature does not experience a jump and that the 
tangential ice velocity is continuous, viz. 

[T] = 0 
(21) 

° 
Since there is no water on the cold side one may request 
that vt = 0, but this would require the water phase to be 
viscous, which we have not assumed. 

The surface consists of two separate parts: cold ice 
adjoining non-saturated, temperate ice, and cold ice 
adjoining saturated, temperate ice. We treat both at once, 
only we must make the distinction that in the saturated 
region Pw = "W Pw' whereas this is not so in the 
non-saturated region. Let 

F c(x,t) = z - zc(x,y,t) = 0 

denote the defining equation for this surface. Then (Fig. 2) 

z 

r---+---~------------7-~Y 

y 

x 

Fig. 2. Illustration of the free surface of an ice sheet, the 
kinematic equation (Equation (22» . 

https://doi.org/10.3189/S0260305500006315 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500006315


Hull er and Engelhardt: The use of continuum thermodynamics in the formulation of ice-sheet dynamics 

\ e 

/ / / / / / 
non - saturated ice~ 

/ / / 
Pw / 

\\ . 
Pr =(l-n)Pr 

P = Pr 
\\\ 

• 
ice I 

I I ~ 

Pw = n Pw 

Pr =(1 -n)P r 
I I I I I 

Fig. 3. Cold-temperate transition surface and phreatic 
surface separating cold ice, non-saturated and saturated 
temperate ice. 

(22) 

The first part of Equation (22) is the evolution equation, in 
which vi is the velocity of the cold ice (Fig. 3), IV is the 
singular surface velocity, and ai is the freezing or melting 
rate perpendicular to the surface. In Equation (22) and in 
Figure 3 it is positive as a freezing rate. The jump 
conditions of mass are expressible as 

(23) 

aC = (vi + - v· i -) .;. 
.1 w I I 

(24) 

Equation (23) relates the jump of the normal component of 
the ice velocity to the freezing rate; Equation (24) relates 
the freezing rate to the water velocity on the temperate 
side. When ai = 0, the normal component of the ice 
velocity is continuous and the water velocity at the 
interface is tangential to that of the ice. Both properties are 
to be expected. 

Next, consider the jump conditions of momentum. For 
the constituent ice we obtain 

o (25) 

The first term can be ignored; then Equation (25) requires 
continuity of the normal and shear stresses. 

The jump conditions of momentum for the mixture as 
a whole can be shown to have the form 

(26) 

It is important that we do not ignore al in Equation (26); 
if we do, we will require that either n~ = 0 or pt., = 0, 
both of which are not reasonable . In Equation (25) we may, 
however, without hesitation drop the first term. Thus the 
momentum-jump conditions imply approximately 

(27) 

n+ p+ 'i/ = [[x- v. i ] - x+ /+] p:- aC 
ww 11 WIV l.l 

Next consider the entropy balance. With the first part of 
Equation (21) it may be written as 

Since n+ 

(28) 

where L is the latent heat of fusion. This last relation is 
extremely important, as it relates the kink in the 
temperature at the cold-temperate transition surface to the 
melting rate. 

CONCLUDING REMARKS 

The above presentation only gives indications of the 
theoretical complexities one encounters when models that 
include the features shown in Figure I are considered. For 
detailed analyses, the reader may consult the papers of 
Hutter and Engelhardt (1988), and Hutter and Engelhardt 
(in preparation). It is obvious that computations performed 
with these models are still a great deal ahead of us. 
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