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Abstract

This paper is devoted to a comprehensive analysis of a family of solutions of the focusing nonlinear Schrodinger
equation called general rogue waves of infinite order. These solutions have recently been shown to describe various
limit processes involving large-amplitude waves, and they have also appeared in some physical models not directly
connected with nonlinear Schrodinger equations. We establish the following key property of these solutions: they
are all in L2 (R) with respect to the spatial variable but they exhibit anomalously slow temporal decay. In this paper,
we define general rogue waves of infinite order, establish their basic exact and asymptotic properties, and provide
computational tools for calculating them accurately.

1. Introduction

The focusing nonlinear Schrodinger equation is a universal evolution equation governing the complex
amplitude of a weakly nonlinear, strongly dispersive wave packet over long time scales in very general
settings. In one space dimension, this equation can be written in normalized form as

o
g+ 5qu +lalPg =0, q=q(x1). (x.0)eR (1.1

For instance, in 1969, V. E. Zakharov studied the surface elevation of water wave packets over deep
water in the classical setting of plane-parallel irrotational and incompressible (potential) flow below the
free surface, which is subject to kinematic and pressure-balance boundary conditions [47]. He gave a
derivation of (1.1) based on the formalism of the method of multiple scales, with the wave packet ampli-
tude being the fundamental small parameter. This derivation has more recently been made fully rigorous
[36]. Being as the multiple-scale argument is based on Taylor expansions of nonlinear terms and of the
linearized dispersion relation, the derivation of (1.1) as a model equation applies in far more settings
than surface water waves [4]. For example, it is also a fundamental model in nonlinear optics [26] and
in the theory of Bose-Einstein condensation (where it is known as the Gross-Pitaevskii equation) [43].

In 1983, D. H. Peregrine found a compelling exact solution of (1.1) for which g(x, ¢) is not of constant
modulus, but nonetheless decays to the exact solution g(x, ) = e of (1.1) uniformly in all directions of
space-time [31]. Peregrine’s solution is
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The error estimate term in (1.2) is not optimal, but it is the optimal radially symmetric estimate. Since
in the setting of water waves, g(x, ) = e’ is the complex amplitude of a uniform periodic wavetrain (a
Stokes wave), Peregrine’s solution describes a space-time localized fluctuation of a Stokes wave, and as
such it is a model for a rogue wave.

The focusing nonlinear Schrodinger equation (1.1) was shown to be a completely integrable system
in the work of Zakharov and Shabat [46]. This means that the methods of soliton theory apply, including
tools for deriving numerous exact solutions such as (1.2). These tools have a recursive nature, allowing
for a given exact solution to be generalized to a whole infinite family by means of iterated Biacklund
transformations. Thus, one sees that the Peregrine solution (1.2) is by no means the only solution of (1.1)
that has the character of a rogue wave. Indeed, there exist algebraic representations in terms of determi-
nants of exact solutions of (1.1) that for any N € N can be viewed as a rogue wave of order N. At each
subsequent value of N, new parameters enter into the algebraic solution formula that affect the details
of the solution without influencing its fundamental property of decay to the background g(x, ) = e.
If these parameters are scaled suitably, the rogue wave of order N can resemble an array of a triangular
number of distant copies of the Peregrine solution on the same background, and it has been shown [45]
that the locations of the Peregrine peaks in space-time are correlated with the complex zeros of the
Yablonskii-Vorob’ev polynomials.

However, if the parameters are chosen in a highly correlated way at each order, then the numerous
peaks all combine and form a rogue wave of significantly higher amplitude, termed a fundamental rogue
wave. For instance one can see that the Peregrine solution (1.2) corresponding to N = 1 has an amplitude
|g(x,1)| that grows to a maximum value of 3 times the (unit) background level. At the level N =2, the
maximum amplitude obtainable is actually 5 times the background level. As such, the N =2 fundamental
rogue wave is a better model than the Peregrine solution for the famous Draupner event [34] in the North
Sea that is frequently cited as the first quantitative observation of sea-surface rogue waves.

To study large-amplitude rogue waves it then becomes of some interest to allow the order N to
grow and seek an asymptotic description of fundamental rogue waves as N — co. This limit became
tractable with the introduction of a modified form of the inverse scattering transform for (1.1) with
nonzero boundary conditions at infinity, which yielded for the first time a Riemann—Hilbert represen-
tation of rogue wave solutions of arbitrary order [9]. In [8], this representation was used to analyze the
fundamental rogue wave ¢ = g(x, ) of order N in the large-order/near-field limit that N — oo while
simultaneously the independent variables are rescaled near the peak (x,¢) = (0,0) so that x = 2X/N
and t = 4T /N? for fixed (X,T) € R2. It was found that a limiting profile ¥ (X, T) of 2g/N exists as
N — oo that was called the rogue wave of infinite order, and was shown (see Theorem 1.10 below) to
be a global solution of the focusing nonlinear Schrédinger (NLS) equation in the form

1
iWr + 5 Wx + |¥)°¥ = 0. (1.3)

It turns out the same solution also appeared recently in the physical literature [33] to describe a universal
dispersive regularization of an anomalously catastrophic self-focusing effect predicted by the geomet-
rical optics approximation in self-focusing Kerr media as noted in the 1960s by Talanov [35], and there
is also a rigorous proof that the solution arises in the semiclassical limit scaling of (1.1) when it is taken
with real semicircle-profile initial data matching the Talanov form [18]. Indeed, several of the properties
of W(X, T) that were proven in [8] had been also noted independently in the paper of Suleimanov [33].

The methodology developed in [9] also allowed for a streamlined analysis of multisoliton solutions
of (1.1) on the zero background, and in [7] the soliton analogue of high-order fundamental rogue waves
was analysed in a similar near-field limit. Here one considers reflectionless potentials corresponding
to a transmission coefficient with a single pole of arbitrarily high order in the upper half-plane. Unlike
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the case of fundamental rogue waves, two additional parameters appear in the iterated Darboux trans-
formation that influence the shape of the limiting wave profile. Thus one sees that the rogue wave of
infinite order W(X, T) is a special case of a more general family of special solutions of (1.3). We call
these solutions general rogue waves of infinite order.

For rogue-wave solutions, the iterated Darboux transformations are applied to a “seed solution” that
is the uniform plane wave g(x,) = e, while for high-order soliton solutions the seed is instead the
vacuum solution g(x,7) = 0. In both cases, the same type of limiting object was observed to appear in
the high-order/near-field limit. This observation was first generalized in [12] in which a family of exact
solutions of (1.1) was described involving a continuous order parameter M that when discretized in two
different ways yielded both the fundamental rogue waves and also the arbitrary order solitons, with the
same near-field limit appearing no matter how the continuous order was allowed to grow without bound,
suggesting a type of universality of the limiting general rogue wave of infinite order. This notion of
universality was fully generalized in [10], where it was shown that the seed solution could be completely
arbitrary (and need not represent any type of explicit solution at all), and the same family of general
rogue wave solutions always appears in the high-order/near-field limit.

General rogue waves of infinite order also have other applications. For one thing, the initial condi-
tion for ¥ at 7 =0 would be expected to generate corresponding integrable dynamics in any evolution
equation that commutes with (1.3), i.e., in other equations of the same integrable hierarchy associated
with the Zakharov—Shabat operator. One such system is the sharp-line Maxwell-Bloch system, and in
[24] the initial profiles of the general rogue waves of infinite order are identified with a family of self-
similar solutions of the Maxwell-Bloch system that describe an important boundary-layer phenomenon.
There are also analogues of general rogue waves of infinite order in the modified Korteweg-de Vries
equation (some constraints on the parameters are required to ensure reality of the solution) [6], and in
simultaneous solutions of arbitrarily many commuting flows in the focusing NLS hierarchy [18]. There
is also some recent interest in general rogue waves of infinite order in the analysis community due to
the fact that they lie in L?(R) for each fixed T € R (see Theorem 1.9 below) and while (1.3) is glob-
ally well-posed on this space [42], these solutions neither generate any coherent structures (solitons)
for large time T nor do they exhibit the expected O(T’%) decay consistent with solitonless initial data
in smaller spaces such as ! (R) [15]. In fact, they decay at the anomalously slow rate of O(T‘%)
(see Theorem 1.22 below) and there is no reason to expect that notions such as “soliton content” from
inverse-scattering theory apply (see Remark 1.21).

The main purpose of this paper is to present in one place all of the important properties of the family
of general rogue waves of infinite order along with related computational methods. We therefore begin
by properly defining these solutions.

1.1. Mathematical definition of general rogue waves of infinite order

In what follows, we denote by G* the entry-wise complex conjugation (without the transpose) for a
matrix G and we use the following standard notation for the Pauli spin matrices:

o o] o
ool Pl ool TP o 4

General rogue waves of infinite order are defined in terms of the following Riemann—Hilbert problem.

Riemann-Hilbert Problem 1. Let (X, 7) € R? and B > 0 be fixed and let G be a 2x2 matrix satisfying
det(G) = 1 and G* = 0,Go». Find a 2 X 2 matrix P(A; X, T, G, B) with the following properties:

* Analyticity: P(A; X, T, G, B) is analytic in A for |A| # 1, and it takes continuous boundary values
on the clockwise-oriented unit circle from the interior and exterior.
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+ Jump condition: The boundary values' on the unit circle are related as follows:

P+(A;X, T, G, B) — P_(/\;X, T, G, B)e—i(AX+A2T+ZBA*1)0—3Gei(AX+A2T+ZBA*1)<T3’ |/\| =1.
(1.4)

e Normalization: P(A; X, T,G,B) —» las A — oo,

In general any matrix G satisfying det(G) = 1 and 0»G*0» = G as in Riemann—Hilbert Problem 1
can be written as

1 a b*
= = —— 1.
G = G(a,b) WERATE [—b a*l (1.5)

for complex numbers a, b not both zero.
It is a consequence of the conditions on G and the analytic dependence of the jump matrix on (X, T)
that the following holds.

Proposition 1.1 (Global existence). For each (X,T) € R? there exists a unique solution to
Riemann—Hilbert Problem 1, and the solution depends real-analytically on (X,T) € R? and the real
and imaginary parts of the parameters a, b of the elements of G.

This follows from Zhou’s vanishing lemma [48, Theorem 9.3] and the application of analytic
Fredholm theory. The special solution ¥(X,T) = W(X,T;G,B) of (1.3) is defined in terms of the
solution of Riemann—Hilbert Problem 1 by

Y(X,T;G,B) :=2i /Pm AP (M X, T,G,B). (1.6)

This is in general a transcendental solution of the NLS equation; therefore its quantitative properties and
the qualitative the nature of its profile (for instance what boundary conditions are satisfied as X — +o00),
and how these depend on parameters are not immediately clear.

The function W(X, T; G, B) was first studied by Suleimanov [33] and independently by the authors
with L. Ling [8] for the special case of

-l _ L -1
G=Q, Q'_«/Ell ll, (1.7)

which corresponds to the choice a = b = 1 (or any positive number) in (1.5).

In order to study properties of the special solution ¥(X, T'; G, B) and how they depend on parameters,
three approaches come to mind: (i) investigate its exact properties including symmetries, special val-
ues, differential equations satisfied, and equivalent representations; (ii) work in a variety of interesting
asymptotic regimes to obtain rigorous approximations to ¥ (X, T'; G, B); and (iii) compute ¥ (X, T; G, B)
accurately in the (X,7)-plane by a suitable numerical method. In this paper, we use all three
approaches.

In the rest of this introduction section, we summarize our results in the three areas mentioned
above. To set the scene, plots of ¥(X,T; G, B) computed with RogueWaveInfiniteNLS.jl with
a = b = B = 1 are shown in Figure 1. RogueWaveInfiniteNLS. j1 is a software package for the

'We use the standard convention that a subscript + (resp., —) denotes a boundary value taken on an oriented contour arc from the left (resp.,
right).
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Figure 1. The solution ¥ (X, T; G, B) computed withRogueWaveInfiniteNLS.jlwitha=b=B = 1.
RogueWaveInfiniteNLS. j1 is a software package developed in this work for the Julia program-
ming language to compute rogue waves of infinite order through numerical solution of suitable
Riemann—Hilbert problems.

Julia programming language developed as part of this work to compute rogue waves of infinite order
through numerical solution of suitable Riemann—Hilbert problems; see Section 1.4 below.

1.2. Exact properties of ¥

Here we describe the symmetries of W(X, T; G, B) (Section 1.2.1), evaluate it and its derivative Wy at
(X,T) = (0,0) (Section 1.2.2) and give its L>-norm (Section 1.2.3), give partial and ordinary differential
equations satisfied by (X, T'; G, B) (Section 1.2.4), and give a new Fredholm determinant formula for
the initial condition (Section 1.2.5).

1.2.1.  Symmetries

In the setting that ¥ (X, T'; G, B) arises from the joint near-field/high-order limit of rogue-wave solutions
of (1.1), the parameter B > 0 has the interpretation of the amplitude of the background wave supporting
the rogue waves. However, it is not hard to see that the dependence on B > 0 can be scaled out of ¥ by
the scaling invariance ¥ (X, T; G, B) — B~'¥(B~'X, B~2T; G, B) of the focusing NLS equation (1.3).
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Proposition 1.2 (Scaling symmetry). Given G with det(G) = 1 and G* = 0G0, for each B > 0 and
(X,T) € R?, we have

¥(X,T;G,B) = B¥(BX,B’T;G,1). (1.8)

We give a proof in Appendix A. In this paper we make use of Proposition 1.2 and take B=1.
Accordingly, we write

Y(X,T;G) =YX, T;G,B=1) (1.9)

to denote the special solution under study, and similarly we generally omit B =1 from the argument list
of P going forward. On the other hand, the dependence of ¥ (X, T'; G) on the 2 X2 matrix G is nontrivial.

We proceed with two observations that concern the symmetries with respect to reflections in the X
variable and in the T variable.

Proposition 1.3 (Reflection in X). ¥(X,T;G(a,b)) = VY(-X,T;G(b,a)).
Similarly, we have
Proposition 1.4 (Reflection in 7). ¥(X,-T;G(a,b)) = ¥Y(X,T;G(a,b)")*.

The proofs of Proposition 1.3 and Proposition 1.4 are in Appendix A. The next observation we make
concerns a useful normalization of the parameters a, b. Indeed, we have the following result, which is
also proved in Appendix A.

Proposition 1.5 (Normalized parameters). For all (X,T) € R? and a,b € C with ab # 0,
¥(X,T;G(a,b)) =e @@y (X T:G (a,b)), (1.10)

where

ae 4 g pe P (1.11)

Vlal? +1b]? Vlal* +1b]?

satisfy a,b > 0 with a2+b2=1.

Therefore, up to a phase factor, there is just one real parameter in the family of solutions ¥(X, T; G)
with ab # 0, which one could take as a € (0, 1), or equivalently as an angle n € (0, %72') for which
a = cos(n) and b = sin(7n). The coordinate  was used, for example, in the analysis of [24, Section 2.3].
Combining Proposition 1.4 and Proposition 1.5 for 7' =0 shows that

¥(X,0;G(a,b)) = e 2@ Y(X,0; G(a,b))
:e_iarg(ah)lP(X,O;G(a,b))* (112)
— e—2iarg(ab)1P(X’ O, G(Cl, b))*
because G(a, b) is a real matrix. It follows that X + e'4¢(@) W (X 0; G(a, b)) is a real-valued function
of X e R.

The normalized parameters a > 0 and b > 0 with a®> + b> = 1 will be used in the proofs of our
asymptotic results to be described in Section 1.3 below. So that they are available later we record here
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the following four standard matrix factorizations of the central factor G(a, b) in the jump matrix (1.4),
which have been further manipulated to have a diagonal matrix as the leftmost factor:

b
G(a,p) =" bl g 1O 5 . (“LDU™), (1.13)
—b a —ab 1 0 1
a b 1 apf| 1l O
G(a,b) = =q 7 ,  (“UDL)), 1.14
()[_bal lOIl_g] (“UDL?) (1.14)
a b o 1L 0/fo E 10 « »
G(a,b) = =a% | g3 « Ofa . (“LTL), (1.15)
— a —_ 1 _- 0 E 1
L b
a31lo & a
& R
G(a,p)=|° bl _ e |1 b b b b|, (“UTU). (1.16)
-b a 0 1 |[-— 0]]l0 1

1.2.2. ¥Y(X,0;G) near X=0

It is straightforward to solve Riemann—Hilbert Problem 1 explicitly when (X, T) = (0, 0). Indeed, one
can verify directly that the solution is:

G, Al <1,

o (1.17)
G le A mGelN s Al > 1.

P(A;0,0,G) = {

Then, it follows from this formula assuming |A| > 1 that P(A;0,0,G) = I+ (2ic3 — 2IG™'o3G)A~! +
O(A™?) as A — oo. Therefore (1.6) yields the following.

Theorem 1.6 (Value at the origin)

: 8a"b*
¥(0,0;G) =4 (G '03G) =8abe @) = ——
0.0:6) ( 73 )lz abe lal? + b2

(1.18)

Following [24, Section 2.3.3], it is then systematic to calculate derivatives of P(A; X, 0, G) with
respect to X at X =0. For instance, setting F(A;X) = Px(A;X,0,G)P(A;X,0,G)"!, one sees that
A +— F(A;X) is analytic for |A] # 1, that F(A;X) — 0 as A — oo, and that P,(A;X,0,G) =
P_(A;X,0,G)V(A; X) implies that also

F.(A;X) —F_(A;X) = P_(A; X,0,G)Vx(A; X)V(A; X)'P_(A;X,0,G)™", |Al=1. (1.19)

It follows that (using the Plemelj formula and taking into account the clockwise orientation of the jump
contour)

1 P_(u; X X X)TIP_ (s X -1
FAX) = ——— (1:X,0,G) Vx (1; X)V(; X) " P_(1: X,0,G) du
2mi |u|=1 /J—A

1

= 27iA

(1.20)

j{ P_(1;X,0,G)Vx(1; X\)V(1; X) " "P_(11: X,0,G) " duu + O(A™?)
[pl=1

Downloaded from https://www.cambridge.org/core. 20 Nov 2025 at 06:00:12, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

8 Deniz Bilman and Peter D. Miller

as A — oo, where on both lines the integration contour has counterclockwise orientation, and where
P_(u; X, 0, G) refers to the boundary value taken from the interior of the unit circle. Since according
to (1.4) the jump matrix is given by V(A;X) := e i(AX*2A7) 03 Gel(AX+2A7) 05 e get that

Vx(A;0)V(A;0)! = —iAos +iAe A 3Gy Gle?iN o3 (1.21)

and according to (1.17) we have P_(A;0,0,G) = G~ L. Therefore, as A — o,

1
2miA

F(A;0) = ?f [—in—la3G+iuG—le—Ziﬂ"“3Ga3(;—1e2iﬂ"“3(; du+0(A™2). (1.22)
[ul=1

The first term vanishes by Cauchy’s theorem, and the second term can be evaluated by residues at u = oo
using the expansion e*2# @3 = T+ 2igu~! — 212 + O(u~?) as 4 — oo. The result is that

F(A;0) = [4iG™'03G03G 035G — 4ig3 | AT + O(A7?), A — o (1.23)

Differentiation of (1.6) then yields

P
¥ (0,0;G) =2i lim Aa—;(A; 0,0,G) =2i lim AFi3(A;0) = -8 [G™'03Go3G703G]

(1.24)
Explicit evaluation using (1.5) then yields the following result.
Theorem 1.7 (Derivative at the origin)
Py (0,0; G) = 327 142(@) qp(p? — a?) = 32a*b*M. (1.25)
(lal* +1b[*)?

1.2.3.  Exceptional parameter values and L*-norm

Another interesting result for the family W(X, T; G) of exact solutions of (1.3) has to do with special
values of the parameters.

Proposition 1.8 (Degeneration property). If either a =0 orb =0, then ¥(X,T;G) = 0.

We give a proof of Proposition 1.8 in Appendix A. The proof relies on the fact that Riemann—Hilbert
Problem 1 can be solved explicitly in either of the cases a=0 or »=0. It follows from Proposition 1.1
that the function W (X, T'; G) depends continuously on the parameters (a, b) for fixed (X,T) € RZ, so
Proposition 1.8 also implies the pointwise limit ¥(X, 7; G) — Oasa — 0orb — O foreach (X, T) € R2,
and this convergence can be generalized to be uniform over (X, T') ranging over any given compact set
in R2. To avoid trivial cases, from this point on in the paper we therefore assume that a, b are complex
numbers with ab # 0.

Another result is that for general G(a, b) with ab#0, ¥(X, T;G) lies in L*>(R) as a function of X
with an L?(R)-norm that is independent of the parameter matrix G = G(a, b). Namely, we prove the
following theorem.

Theorem 1.9 (L>-norm of ¥(o,T;G)). Let G = G(a,b) be as in (1.5) with ab # 0. We have that
Y(o,T;G) € L>(R) for all T € R with |¥(o, T} G)ll2r) = V8.

We prove Theorem 1.9 in Section 2.4 essentially as a corollary of Theorem 1.18 below. When
combined with the degeneration property given in Proposition 1.8, the independence of the L?>-norm
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of ¥(X,T,G) from the matrix G = G(a, b) asserted in Theorem 1.9 leaves us with an interesting
conundrum! While [|'¥' (e, T; G(a, b))l 12 (r) = V8 for any nonzero a, b € C, we have

lir% Y(X,T;G(a,b)) =0 and ;in(l) Y(X,T;G(a,b)) =0 (1.26)

pointwise for any (X, T) € R%. A mechanism for this limiting behaviour could be that the L?>-mass of
the wave packet ¥ (X, T'; G(a, b)) at any given time T escapes to X = +co in the limita — 0 or b — 0, or
alternately, the wave packet spreads in the same limit so as to preserve the L?-norm while still decaying
pointwise or perhaps even uniformly to zero. In fact, it turns out that a combination of both of these
mechanisms is at play. The explanation of this phenomenon lies in a double-scaling limit in which
X — 400 while also a — 0 or b — 0 at suitably related rates. The details can be found in our next paper
on the subject, [14].

1.2.4.  Differential equations
It is straightforward to derive three different first-order systems of differential equations satisfied by the
matrix function

WA X,T,G) = P(A; X, T, G)e i AN+ T2 s (1.27)

by following the procedure in [8, Section 3.2.1], which though written with the special case (1.7) in
mind, in fact does not depend at all on the details of the matrix G(a, b) and hence applies to general
rogue waves of infinite order. It follows that the matrix W(A; X, T, G) satisfies the three Lax equations

OW oW OW
oy =XW. S =TW. o5 =AW, (1.28)

wherein the coefficient matrices X, T, and A are explicitly represented in terms of the coefficients
PU! = PUl(X, T; G) in the convergent Laurent expansion

P(A;X,T,G) =1+ ZPW X, T:G)A™, |A|>1 (1.29)
j=1

or alternatively in terms of the Taylor coefficients Py := P(0; X, T, G) etc., of P(A; X, T,G) at A = 0.

Thus:
X = iAo +i[os, PU] = :\‘Iﬁ i‘i , (130)
ZiA2 + L2 L
T =i +i[os PUA +[PU), oyPl)) iy, P21 = | A VT ARG ) g
—AY" +5i¥5  iA° - 51|V
and
_ —2iTA —iX +iT|¥|*A~! 2TY + (XY +iTWx)A™! +2iPoosP- A (132)
“2TW + (X" +iT¥5)A™! 2iTA+iX —iT| P> A 0 ' '

The global existence of P(A; X, T, G) from Riemann—Hilbert Problem 1 recorded in Proposition 1.1
then guarantees that the three Lax equations (1.28) are mutually compatible. In particular, the com-
patibility condition X7 — Tx + [X, T] = 0 implies the following basic result which has already been
mentioned.
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Theorem 1.10 (¥(X,T) solves NLS). The function R*> 3 (X,T) — W(X,T;G) € C obtained
from Riemann—Hilbert Problem I via (1.6) is a global solution of the focusing NLS equation in the
form (1.3).

On the other hand, the compatibility condition X, — Ax + [X, A] = 0 is a system of ordinary dif-
ferential equations with respect to X (in which T € R plays the role of a parameter) that was shown in
[8, Section 3.2.1] to be related to the second equation in the Painlevé-III hierarchy of Sakka [32] when
T # 0 and to the Painlevé-III (Dg) equation itself when 7 =0. More explicitly, we have the following.

Theorem 1.11 (¥(X,0) and the Painlevé-III (Dg) equation [8, Corollary 4]). The function u(x)
defined for x € R U (iR) by

-1
— d 2 1.2 .
u(x) =2 (alog (x W(-1x2,0; G))) (1.33)
is a solution of the Painlevé-III (Dg) equation

a2 u

dx

(1.34)

d?u l(du)2 1du+4®0u2+4(1—®m)+4u3_4_1
x dx X u

in the case that both formal monodromy parameters vanish: g = O = 0.

Corollary 1.12 (Behaviour of u(x) near x = 0). The function u(x) defined by (1.33) is an odd function
of x that is analytic at the origin with Taylor expansion

3 5 " _ 2 2\ _ |b|2_|a|2
X +0Kx), x—0, u0)=3(0b"-a")=3

= —+ =3—.
ux) =x a2 + b2

u/// (0)
3 (1.35)

Proof. Combining Proposition 1.1 with (1.33) shows that u(x) is an odd function having a Taylor expan-
sion about x =0 with u’”’(0) = %‘{‘X(O, 0; G)/¥(0,0;G). Theorems 1.6 and 1.7 then yield the claimed
value of u”” (0). O

Since the value of ¥(0,0; G) is known from Theorem 1.6, it is straightforward to invert (1.33) to
explicitly express ¥(X, 0; G) in terms of u:

¥(X,0;G) = ¥(0,0; G) exp (2/ [L - 1] dy) , X= _le (1.36)
o luy) vy 8

We note that -3 < «’”/(0) < 3. In fact, when ®y = O, = 0 there is for each w € (-3, 3) a unique
solution of (1.34) analytic at the origin with #(0) = 0, u’(0) = 1,4’ (0) = 0, and «’” (0) = w. This family
of solutions of the Painlevé-III (Dg) equation has not only been associated with limits of sequences of
solutions of the focusing NLS equation [7, 8], but has also appeared in the description of self-similar
boundary layers in the sharp-line Maxwell-Bloch equations [24].

Remark 1.13. The parametrization of solutions of (1.34) is discussed for example in [3, Section 4.6]
(see also [44]). Solutions are parametrized by points on a certain monodromy manifold characterized
by a cubic equation in three variables. In particular, the monodromy manifold for the Painlevé-III (Dg)
equation (1.34) with parameters ®) = O, = 0 consists of those (x1,x7,x3) € C> for which
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X1X2X3 + X7 + x5 +2x1 +2x2 + 1 = 0. (1.37)

This is a smooth complex surface except at two points obtained by also enforcing that the gradient of
the left-hand side vanishes: (x1,x2,x3) = (0,-1,2) and (x,x3,x3) = (=1,0,2). Because the Stokes
phenomenon is trivial both at A = 0 and A = oo (nontrivial Stokes phenomenon would be evident
in additional jump conditions for Riemann—Hilbert Problem 1 on two contours approaching the origin
and two contours approaching A = oo), the coordinates of the Painlevé-III (Dg) solution arising for
T =0 from Riemann—Hilbert Problem 1 are determined from the matrix G alone (which plays the role
of a connection matrix in the isomonodromy theory) by (x1,x2,x3) = (G11G» — 1,-G11G»,2) =
(a® = 1,-a2,2). Since 0 < a < 1, this is a segment of a line in C> parametrized by G1;G», = a? that
is fully contained within the monodromy manifold (1.37). The line passes through both singular points
at parameter values GGy = a2 = 0 and G|;Gxn = a2 = 1, which are the endpoints of the relevant
segment. Thus, the endpoints of the segment correspond to normalized parameters (a,b) = (0, 1) or
(a,b) = (1,0) respectively. The singular points on the monodromy manifold then both correspond to
the trivial solution W(X,7T;G) = 0 according to Proposition 1.8. However, each interior point of the
segment yields a distinct nontrivial solution u(x) = u(x;a) of the Painlevé-IIl (Dg) equation (1.34)
with @) = O, = 0 related to ¥(X,0; G) via (1.33) and its inverse (1.36). Note that the presence of
the logarithmic derivative in (1.33) cancels the constant phase factor e~ 12'2(¢0) in W(X,0; G(a, b)) (see
(1.12)) so that while ¥ depends on the parameters (a, b), u indeed depends only on the normalized
parameters (a, b).

The compatibility condition Ty — A7+ [T, A] = 0 is a system of ordinary differential equations with
respect to 7" in which X € R is a parameter. This system was written out in general in [8, Eqn. (119)],
and here we expand on a remark made in that paper concerning a symmetric special case (see also [33]).
Suppose that b =a. Then according to Proposition 1.3, X — W(X,T;G(a,a)) is an even function for
all T € R, which in light of real analyticity at X =0 implies also that

Y% (0,T;G(a,a)) =0 (1.38)

as is consistent with the conclusion of Theorem 1.7 when also T =0. Thus X =0 is an axis of symmetry
of ¥(X, T; G(a,a)), and one may expect some simplification of the compatibility condition Tp — A7 +
[T, A] = 0 yielding ordinary differential equations satisfied by T — ¥ (X, T; G). To see this, we remark
that Proposition A.1 in Appendix A implies that P(0;0,7,G(a,a)) = —03P(0;0,T,G(a,a))o, and
therefore for some function s(7) # O the unit-determinant matrix Py = P(0; 0, 7', G(a, a)) has the form

s(T) —s(T)

_ 0 n(T)
" lesm) Tt @s(m)!

— 2
W o | n(T) :=2s(T)%.  (1.39)

= 2iPyo3P; ! = 2i

Using this and (1.38), and setting X =0, the matrix coefficients T and A defined in (1.31) and (1.32)
respectively take the simplified form

y 1
T = —iA? A+ =i|¥P)? 1.40
1IN"03 + _gr +21| | g3 ( )
and
5
A = =2iTAos + 0 2T FTIWPA oy + = 0 n(T) , (1.41)
2TY* 0 A? ()™t 0
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where ¥ = ¥(T) := ¥(0,T;G(a,a)). In [22] a Lax pair is presented for the partially-degenerate
Painlevé-III equation (D7 type, with parameters &/, % € C and € = +1)

2 u

du 1 (du 2 ldu -8cu?+2A4%RB R
T = 1.42
(dt) t dr * t * u’ u=u(o), ( )

that, after a Fabry transformation, resembles the compatible linear system W7 = TW and W, = AW
with the coefficient matrices given in (1.40) and (1.41). Hence we may expect that W(7) is related to
a solution of the Painlevé-III (D7) equation. To complete the correspondence, we change variables and
make a gauge transformation by

:=TiA, 1:=T2, W=V, (1.43)

and then the resulting system takes the form

1

v 0o Iyl 1 1 0 2irin
2 _(2itaos + 21 _ - (—'ﬂ ¥ 2) +— Vo (144
e HAos I T I R Sl LRl PYE R (14
and
FAY o 3| (1 1 1 0 2it~n
— =|-i2? 1 —it|P)? - — o3 — — A% 1.45
ar |7 e o |7 (21 ¥l 21‘) 77 lziz%n—l 0 R

in which we now view ¥, W*, and n as functions of ¢. This system has exactly the form of [22, Eqn.
(12)] provided we make the correspondences

2iA
D=0V, 2L _i1y, (1.46)
_AB
1 2/AD 4 AD 1 1
o+ + - i, 2O AE e - o (1.47)
_AB t _AB 2 2t
& =2ir7n, itB=2irin"". (1.48)

where the notation of [22] is on the left-hand side? and A, B, C, D, @ are functions of ¢t while & is
a constant. Using the product of the identities in (1.46) to eliminate AD/V—AB shows that the two
equations in (1.47) actually coincide, and yield of = %i. Then, according to [22, Lemma 2.1], the
second parameter 3 is determined from (1.48) up to a sign by 9% = 4&. The corresponding solution of
(1.42) is then given by u(z) = t4/—A(t)B(¢). This proves the following, which is also easy to verify
directly from the compatibility condition for the system (1.44)—(1.45).

Theorem 1.14 (¥(0,7) for b = a and the Painlevé-III (D7) equation). Fix a € C nonzero, and let
& = x1. The function

*

1 dv
u(r) := ety (‘I’ i ) , teR, ¥=%(0,G(aa) (1.49)
satisfies the Painlevé-III (D7) equation in the form (1.42) with parameters &f = %i and B = 4e.

2In [22], the symbols &/, %, t, A are written as a, b, T, u respectively, but the latter have other meanings in our paper.
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This result was known to Suleimanov [33], although to extract it from his paper one must take the
independent variable to be t = T* instead of T and correct some constants. Another simple identity
satisfied by W that follows from the compatibility condition for (1.44)—(1.45) is

ay 5
Yi+i—| =16, 1€R, ¥=%(0,7G(aa). (1.50)

dr

Corollary 1.15 (Behaviour of u(7) near t = 0). The function u(t) defined by (1.49) is an odd function
of t that is analytic at the origin with Taylor expansion

u(@) = (0)r+0(), t—0, u'(0)=4die. (1.51)

Proof. Both ¥ and W* are even functions of ¢ with real analytic real and imaginary parts, so u(z) is
odd and analytic at the origin. The value of u’(0) follows from Theorem 1.6 using b = a, or alternately,
from (1.50). |

According to [23], the conditions on u(¢) asserted in Corollary 1.15 actually uniquely determine the
solution of (1.42) because the formal monodromy parameter has the special value & = %i. This value
of o is special (so is & = i%i + k for any k € Z) in that there is a one-parameter family of solutions
that are analytic and vanishing at # =0, but the solution becomes unique once oddness is asserted. On
the other hand, for general & there is only one solution analytic and vanishing at #=0.

1.2.5.  Fredholm determinant representation of ¥ (X, 0; G)

In [8, Section 3.2.1] various transformations of (1.34) to other forms of the Painlevé-III equation were
noted, including a transformation to the parameter-free and fully-degenerate Painlevé-III (Dg) equation,
which takes the form

42 U

2 2 2
U 1 d_U _1d_U+4U +4. (1.52)
dz z dz Z

Here we report a new piece of information, which is that the relevant solution of (1.52) is expressible
in terms of a Fredholm determinant of an integrable operator [19, 20]. This in turn leads to an explicit
representation of ¥ (X, 0; G) in terms of the same determinant.

Provided that a > 0 and b € iR, the matrix S(f ;7) defined in terms of P(A; X, 0, G) by

§(¢:2) = P(A;X,0,G)e" (646 s -y — iz A = 2i(2)7 3¢, (1.53)

satisfies a related Riemann—Hilbert problem associated with the Painlevé-III (Dg) equation with spe-
cialized monodromy parameters y; = b/+/|a|> +|b|2, y» = ia/+/|a]?>+|b|?, and y3 = O (see [3,
Riemann—Hilbert Problem 9.2] and the discussion in Section 9.3 of that paper). Comparing (1.6) with
[3, Eqgns. (9.11) and (9.14)] shows that

iU (2)

¥(X.0:G) = 5 TER

z=iX (1.54)

where U(z) is a solution of the Painlevé-1II (Dg) equation (1.52). The parameters y; and y, are purely
imaginary numbers constrained by y% + y% + 1 = 0 (a reduction for y3 = 0 of the monodromy cubic
y1y2y3 + y% + y% + 1 = 0 parametrizing solutions of (1.52)), and they may be further parametrized by a
single quantity m € iR + Z according to
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i i
T — 1.55
I \/1 + e2@im 2 \/1 + e2mim ( )

The generalization of this family of solutions U(z) to allow for arbitrary m € C\ (Z + %) was proven in
[3] to correspond to a certain double-scaling limit of high-even-order rational solutions of the Painlevé-
III (Dg) equation when examined near the origin in the complex plane (the only fixed singularity of the
equation). The Painlevé-III (Dg) equation has two essential parameters, one of which is quantized for
rational solutions (n = %(@0 — O + 1) € Z) and the other of which is arbitrary and corresponds to the
value of m = %(@0 + 0B, — 1).

Going further, the particular solution U(z) with parameter m € C\ (Z + %) is shown in [3, Corollary
3.4] to be explicitly related to the Fredholm determinant of the scalar Bessel kernel:

1 o 1d d .
U(z) - 7@ =R(7) == -2i— S 1og (Dy(m) (32iz)), (1.56)

wherein x(m) := (1 +e*™™) ! = —y2 = 4?/(|a|* + |b|?) and
D, (r) = det(Id — %K) (1.57)

is the Fredholm determinant of the integral operator K, : L>[0, 7] — L*[0, ] with Bessel kernel

_ VR (VD) = o (VYA ()

Kl 26—y

(1.58)

It can be shown that D, (r) is entire in » and analytic for » € C of sufficiently small modulus. To get a
representation of W(X, 0; G), we first solve (1.56) for U(z):

U(z) = % (R(z) + VR(z)? + 4) , (1.59)
and hence from (1.54)

iU _, 1R (1.60)

200@)  “2yRG)Z+4

We now have to resolve the sign of the square root; first, according to [3, Eqn. (3.22)], one has

¥Y(X,0;G) =

_ 2
10g (Do () = — 27 + 22

2 3
2 D r+0(r’), r—-0, (1.61)

which implies that R(z) = —2i + dix + 64(x — x*)z + O(z%?) and R'(z) = 64(x — x*) + O(z) as z— 0.
Hence R’ (0) = 64(x — »*) and R(0)? + 4 = 16(x — »?). Since » = a*/(|a|> + |b|?) € (0, 1), we obtain
(using z=0 implies X =0)

8ialb
W(0.0:G) = +8ivy — 2 = 1Pl (1.62)
a? + |b|?

Comparing this with Theorem 1.6 and recalling that a > 0 while b is purely imaginary shows that we
should choose the + (resp., —) sign in (1.60) when b is negative (resp., positive) imaginary, taking the

square root as positive when X =0.
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The representation of ¥ (X, 0; G) in terms of a Fredholm determinant is easily generalized to arbitrary
(a,b) € C? with ab # 0 using Proposition 1.5, since

Y(X,T;G(a,b)) =e 2@ g(x T,;G(a,b)) and ¥(X, T;G(a,ib)) = —i¥(X, T; G(a, b))

ratab (1.63)
= Y(X,T;G(a,b)) = ie @YX T:G(a,ib)),

and the latter has parameters a = a positive and b = ib positive imaginary.
This proves the following.

Theorem 1.16 (Painlevé-III (Dg) and Bessel kernel determinant formula for ¥ (X,0)). Let
(a,b) € C* with ab # 0 correspond to normalized parameters (a,b) by (1.11). Then the function
¥(X,0;G(a,ib)) = —ie!®@2@)W(X, 0;G(a,b)) is expressible by (1.54) in terms of a solution U(z)
of the Painlevé-IIl (Dg) equation (1.52) having unit modulus for z € iR, and moreover for X in a
neighborhood of the origin,

—iarg(ab) pr
W(X.0:G(a.b) = e R (1.64)

2VR@)*+4 | iy

where

. 1d d .
R(z) == -2i— SR log (Dy2(32iz)) (1.65)

and D,,(r) denotes the Fredholm determinant (1.57) of the Bessel kernel (1.58). Here the square root is
taken to be positive when X = 0 and the formula (1.64) admits real analytic continuation to X € R.

Remark 1.17. There is a general method [5] based on factorization of jump matrices into a product
of upper- and lower-triangular nilpotent perturbations of the identity matrix, allowing one to associate
a Fredholm determinant to virtually any Riemann—Hilbert problem with jump contour being a closed
curve in the plane. The method is applicable in particular to Riemann—Hilbert Problem 1, in which case
the resulting Fredholm determinant depends on the variables (X, T) generally allowed to vary in C2, and
its vanishing detects precisely the values of (X, T) for which the solution fails to exist (we already know
that this is impossible on the real subspace (X, T) € R?). There are multiple admissible factorizations
of the jump matrix, each of which gives rise to a different Fredholm determinant (r-function) with
the same zero divisor. It might be expected for ¥(X, T; G) or its square modulus |¥(X, T; G)|? to be
expressible explicitly in terms of invariant expressions formed by suitable derivatives of any of these
Fredholm determinants, which would extend Theorem 1.16 to arbitrary T € R. We hope to address this
question in future work.

1.3. Asymptotic properties of ¥

Now we describe the asymptotic properties of W(X, T; G), i.e., how a general rogue wave of infinite
order behaves for large values of the independent variables (X, T'), and how this behaviour depends on
the parameters in G.
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1.3.1. Behaviour of Y (X, T; G) for X large

Our first result concerns the behaviour of ¥(X,T;G) as X — +oo. Let v, := 54‘%, and define two
functions of v on (—v¢, v¢) by

1 1 v2
a(—1+2cos (garccos (2v—%—1))), v, <v <0,
z1(v) == (1.66)
1 1 2 2
a(—l+2(:os(§arccos(2:—%—1)—§ﬂ)), 0<v<uvg,
and
1 1 2 2
a(—1+2005(§arccos(2:—%—1)—§7r)), v <v <0,
2(v) = (1.67)
1 1 2
a(—l+2cos (garccos (2:—%—1))), 0<v<ug,
which are equivalent for |v| < ve/V2 to
1 1 2 1
z1(v) = I (—1 +2cos (—5 arcsin (v 216 (1 - :—g)) - 371’))
(1.68)

(v)—i —1+2cos —larcsin v4/216 l—ﬁ +17r
W6 3 23T

In each case, the singularity at v =0 is removable, and with the definition z; (0) = —V2 and z,(0) = V2,
we see that z;(v), j = 1,2, are both analytic functions® of v € (—ve, ve) satisfying z;(v) < 0 < z2(v).
Introducing the function

Nz v) =z+v2+27°1, (1.69)

one can check that ¢’(z;(v); v) = 0 holds identically for —v. < v < v, and that ¢’ (z; (v); v) < 0 while
9 (z2(v); v) > 0 (here prime means differentiation with respect to z for fixed v).

Theorem 1.18 (Large-X regime). Let 7 := |b/a| and p := 5= In(1+7?%), and set v := TX~3 € R. Then
foreach ¢ > 0,

_i b)
WX.T:G) = lari(“ VIP o ) 0 i, ()4 0(0)
X+ [Nz (v);v)

VI 2K PO b0 (0 00 | 4 o(x-1). X — oo

+—
VI (z22(v); v)

(1.70)

3Note that (1.68) shows analyticity (removable singularity) at v=0 which is harder to see from (1.66) and (1.67), while (1.66)-(1.67) show

analyticity at v = +v./V2 which is harder to see from (1.68). In particular, evaluating (1.68) for |[v| > v./V2 does not provide the analytic
continuation.
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Figure 2. Left: The real part (navy) and imaginary part (yellow) of the explicit terms on the right-hand
side of (1.70) (curves) compared with numerical evaluation of ¥ (X, T; G) (points) for v = 0.5v, and
parameters a = b = 1. Right: the logarithm of the absolute difference E between ¥ (X, T; G) and its
explicit approximation in (1.70) for v = 0.5v. and parameters a = b = 1 plotted against In(X). The
purple line is a least-squares best fit, and it has a slope of —1.22883, matching well with the predicted
exponent of —%.

holds uniformly for |v| < v — § and T = O(1), where real phases ¢o(v), ¢, (v), and ¢,,(v) are defined
by

B0() 1= g1+ PIC(2() ~ 21 (1)) — arg(TGip), (1.7
and

¢ (v) = pIn(=9" (21(v);v)),

1.72
6., (v) = pIn(8” (22 (v):v)). (172

Corollary 1.19 (Large negative X). The asymptotic behaviour of ¥(X,T;G) with T = |X |%v in the
limit X — —co is given by the same formula as in the right-hand side of (1.70) except that p is replaced
with p = ﬁ In(1+ T_z) throughout, X is replaced with |X|, and the uniformity of the error requires
that T :=1~ ' = O(1).

Proof. Apply Proposition 1.3. Note that p can be written explicitly in terms of (p,7) by p =
p—In(7)/n. O

These results generalize a theorem [8, Theorem 4] of the authors with L. Ling to the general family
of solutions parametrized by the 2 X 2 matrix G(a,b), and they also sharpen the error estimate (see
Remark 2.2 below). We prove Theorem 1.18 in Section 2. Note that the leading term of (1.70) vanishes
as p — 0%, which is expected in light of Proposition 1.8 since this corresponds to b — 0. Similarly, the
leading term of the asymptotic formula valid as X — —co vanishes as p — 0%, which corresponds to
a— 0. More generally, aside from the phase factor of e 122(?) the dependence on (a, b) enters only
via the value of p, which appears in the approximate formula (1.70) as an overall multiplier \/Z and

in smaller corrections to the p-independent dominant phase terms proportional to X 2. In Figures 2-3,
the accuracy of the approximation (1.70) is illustrated by comparing with numerical computations of
Y (X, T; G) achieved using the software package described in Section 1.4.
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Figure 3. Same as in Figure 2 but for a = %ei”/‘* and b = 1. The best fit line in the right-hand plot has
slope —1.26571, again matching well with the predicted exponent o, —%.

¥(X,0X2;G)

Corollary 1.20 (Large-X approximation of the squared modulus). Under the hypotheses of
Theorem 1.18, |¥(X,T;G)|> with T = X3v has the behaviour

X T:G) = — £ \/— Plabi , \/_ B ()
X2J=07 (1 ;)87 () v) [V 7@ 05y) N 97 () )
(1.73)
+2c0s (QX, V)| +0(X7?), X — +oo,
where the phase is given by
Q(X,v) = 20()X? +pIn(X) +25(v), (1.74)
where o(v) := 93 (z1(v);v) — Hz2(v);v) < 0and ¢(v) := %(pz, ) + %Q’)ZZ(V) +¢o(v) €R.
Proof. This follows immediately from (1.70). m}

Remark 1.21. In particular, Corollary 1.20 gives the asymptotic behaviour of |¥(X, T;G)|? in the
limit X — +oco with 7 > 0 held fixed, in which case the parameter v tends to zero. After taking
the necessary square root, one can see that the function R 3 X — ¥(X,T;G) is not in L' (R) for
any T > 0. Therefore, ¥(X, T; G) is not associated with any sensible scattering data in the (classical)
inverse-scattering transform solution of the focusing NLS equation (1.3). Although general rogue waves
of infinite order are in L?(R) by Theorem 1.9 and the focusing NLS equation is globally well-posed on

L*(R) [42], the inverse-scattering method nonetheless does not apply to these solutions.

Aside from an overall factor of X ’%, the only dependence of |¥(X, T;G)|?> on X > 1 in the leading
terms for fixed v appears in the phase Q(X, v), making the leading contribution to |¥(X, T; G)|? highly
oscillatory. It is therefore reasonable to assert that |¥(X, T; G)|? is approximately maximized along
curves in the (X, T)-plane where cos(Q(X, TX_%)) = 1. Thus, we set Q(X,v) = 2zn for n € Z and
solve for X. Since o(v) < 0 is bounded away from zero, X > 0 large implies that also n = —N is a large
negative integer. The equation Q(X,v) = —27N can then be rearranged as

lg(v)X% exp (lg(v)Xé) =—-e7, p:= ud +v(v), v(y):= sv) +1n (—L) , (1.75)
p p p p o(v)
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which is solved using the Lambert W-function [27, Section 4.13]:

p2

=202

Wi (=~ F10)>. (1.76)

Using the asymptotic formula W, (—e~"7 Fi0) = — — In(57) — In(n) /5 + O(In(3)?/n?) as n — +co
(see [27, Eqn. 4.13.11]), we then obtain for each large positive integer N a solution X = Xy (v) that is
accurate up to a small absolute error:

2

sl
o(v)?
n? 2, 2mp

T
= oo Fompe MWt GR ()2 (V(V)”“(E))N

+ p 1n(N)2+ 2p2 (]+y(v)+1n( ))ln(N) (1.77)
Q(V)2 Q(V) p

2
2v(v)+v(v)2+2(1+v(v))ln( )+log(ﬂ) l
p p

Xn(v) = In(7)*

n* +2n1n(n) +21In(n) + In(n)*] + O ( ) , N — +00

2
+ P )
o(v)
+O(N"'In(N)?), N — +o.

This expansion is valid uniformly for |v| < v, — ¢ for any 6 > 0 however small, but it fails for v = +v,
where ¢, (v) and hence also ¢(v) blows up. The curves X = Xy (TX~ %) are superimposed on a density
plot of the square modulus of W(X, T'; G) in Figure 6. This shows that these curves actually approximate

the peaks of the modulus in the region |TX -3 | < v quite accurately even when X is not very large.
After some preparation in Sections 2.1-2.2, the proof of Theorem 1.18 is given in Section 2.3 below.

1.3.2.  Behaviour of ¥(X, T; G) for T large

Next, we describe the behaviour of ¥ (X, T; G) in the limit as T — +co. Let w, := 543 > 0. Define for
|[w| < w, the real quantities:

1 1
Zi(w) = 12( w—ﬂw2+8w§) <0 and Z(w):= 2(—w+\/w +8wc) 0, (1.78)

and the complex quantity

Zo(w) := % (—w +igw? — wz) eC,, (1.79)

where in each case the positive square root is taken. For convenience, we write
V(w) :=Im(Zy(w)). (1.80)

Related amplitudes are then defined by

%, () = 3 (1 cos(arg(Z1(w) ~ Zo(w)) > 0,
1 (1.81)
my, (w) = 5(1 + cos(arg(Za(w) — Zo(w)))) > 0,
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which of course satisfy m}] (w) + my, (w) =1 forj = 1,2. Now define some real phases by:

k(w) = —%(w2 +w2), (1.82)
o Zi(w) = Re(Zo(w)) + 1Z1 (w) = Zo(w)]
D(w) :=2p ln( Von) ) )
21(@M—MMMMHEWP%ww 7 '
2l T
V(w) 2
¢owyz%mvww—%wm—wmw—%wmww»wmm—%wm)
At V(W) = 2(V(w) +1Z1(w) = Zow))(V (W) = 1Za(w) = Zo(w)])
+@m(Rd%WD—&W))+2 ~Z1(W)V (W)
1Z1(w) = Zo(W)| = V(W) 4121 (W) = ZoW)13 (Za(w) = Zy (w))?
+ 2 +arg(T(p)).
(1.84)
¢”Mwﬂm%wwhﬂwm—mwr%wmwwwMM@ﬁmmw
Ea V(w)2 = 2(V(w) + |Za(w) = Zo(w) ) (V(w) — |Z1 (w) = Zo(w)])
+@m(zwm4maw») Z(w)V(w)
122(w) = Zo(w)[ = V(w) 2o (w) = Zo(w) 3 (Za(w) = Zy (w)) 2

+ 2t arg(T(ip)),

4
(1.85)
Z -7 31 1.
@, (T, w) = 2%% - 5pln(T) + @Y (), (1.86)
and
Z -7 301
@z, (T,w) = 2%% - 3P In(T) + @) (w). (1.87)

Theorem 1.22 (Large-T regime). Let 7 := |b/a| and p = 5=1In(1 +12), p := 5= In(1 + 772), and set
w = XT’% € R. Then, for each § > 0,

W(X,T;G) = ¢ re(ab) il xw) i () E\/ WwE = w275

1 { VPIZi (w)] (m}l (w)ei®z (Tw) 4 my (w)e % (r,w))

V2 (w) = Zi(w)

\Z1(w) = Zo(w)|?

VBZ2(w) (7, () T2 s (wye @2 )| :
+ 1 T724+0(T73)|, T — +c0
1Z2(w) ~ Zo(w)
(1.88)

holds uniformly for |w| < we — 6, T = O(1), and =1 = O(1).
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Figure 4. Left: The real part (navy) and imaginary part (yellow) of the explicit terms on the right-hand
side of (1.88) (curves) compared with numerical evaluation of ¥ (X, T; G) (points) for w = 0.85w, and
parameters a = b = 1. Right: the logarithm of the absolute difference E between ¥(X,T;G) and its
explicit approximation in (1.88) for w = 0.85w. and parameters a = b = 1 plotted against In(T). The
purple line is a least-squares best fit, and it has a slope of —0.66042, matching well with the predicted

exponent of —%.
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Figure 5. Same as in Figure 4 but for a = %ei”/4 and b = 1. The best fit line in the right-hand plot has
slope —0.69432, again matching well with the predicted exponent of —%.

Corollary 1.23 (Large negative T). The asymptotic behaviour of ¥(X,T;G) with X = w|T|% in the
limit T — —co is given by the right-hand side of (1.88), except that T is replaced with |T| and the signs
of the real phases ®(w), ®z, (|T|,w), ©z,(|T|, w), and k(w) (but not — arg(ab)) are changed.

Proof. Apply Proposition 1.4.

These results generalize the long-time asymptotic theorem [8, Theorem 5] of the authors with L.
Ling to the general family of solutions parametrized by the 2 X 2 matrix G(a, b). They also provide an
explicit correction term proportional to T2 not previously obtained for any parameters. After some
preliminary definitions in Sections 3.1-3.3, Theorem 1.22 is proved in Section 3.4 below. One can
see from (1.88) that aside from the factor of e~128(40) | the asymptotic formula depends on (a, b) only
via the values of p and p, which enter via 4/p and /p as multipliers of the two correction terms, and
which also appear as multipliers in the phase ®(w) and in subdominant corrections to the leading terms
proportional to T3 in the phases @, (T,w) and @z, (T, w). The accuracy of the large-T" approximation
afforded by Theorem 1.22 is illustrated in Figures 4-5.
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Figure 6. Density plot of |¥(X, T)|*> witha = b = 1 and the boundary curve (purple) X/T% = 543, over-

laid with the level curves (green) on which the cosine in (1.73) in Corollary 1.20 is maximal and the level

curves (red and mustard) on which cos(®z, (T, w)) and cos(Dz, (T, w)) in (1.89) from Corollary 1.24

are minimal (respectively).

’§12

Corollary 1.24 (Large-T approximation of the squared modulus). Under the hypotheses of
Theorem 1.22, |¥(X,T;G)|*> with X = T3w has the behaviour

¥(X.T:G)|? = @T*%
2 w2 —w? VPIZ1 (w)| cos(®z, (T, w)) . VPZ2(w) cos(Dz, (T, w)) 3
INZW) =Zw) [ 1Z(w) - Zo(w)|2 1Za(w) = Zo(w)|?

+O(T™Y, T -+
(1.89)

and for the limit T — —oo we simply replace T with |T| on the right-hand side.
Proof. This follows immediately from (1.88). m]

Comparing with the interpretation of Corollary 1.20 that the modulus of the solution is maximized
along certain curves X = XN(TX‘%) in the relevant part of the (X, T')-plane, here we see that instead
the fluctuation proportional to T-3 is a combination of two sinusoids with different phases, so that one
term is approximately maximized along curves satisfying ®z (T,w) = (2M + 1)z while the other is
approximately maximized along curves satisfying ®z, (T,w) = (2N + 1), for independent integers
(M,N) € Z?*. These two families of curves are plotted over the region |XT_% | < w, for different values
of the parameters (a, b) in Figures 6 and 7, and indeed one can see that even in the part of this region
where T is not very large, still the peaks of the fluctuation appear to be localized near the intersections
of one curve from each family, so that both terms of the fluctuation are simultaneously maximized.

Like the curves X = XN(TX‘%), the curves in the family @z (7,w) = (2N + 1)z shown with
mustard colour in Figures 6 and 7 appear to approach the common boundary in the first quadrant
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010 =10 =8 =6 i

Figure 7. As in Figure 6, but for parameters a = 4—11 and b =1.

(X>0and T > 0) of the regions of validity of Corollaries 1.20 and 1.24 (shown in purple). It seems
from the plot as though these two families of curves could be compared near the boundary curve. The
equation ®z, (T, w) = (2N + 1)z can be rewritten in the form

2|Zy(w) = Zo(w)? 2|Zy(w) = Zo(w)|? 2

) B0 g3 (20T ) 2

pZa(w) pZa(w) p (1.90)
T _leo 21Zy(w) = Zo(w)|?
T(w) = — - -®7 (w)—In ,
p r = pZ>(w)
which is solved in terms of the Lambert W-function similarly to (1.76):
3Z 3

POW ek zi0), (1.91)

" T R|Za(w) - Zo(w)P

Since a cube must be calculated in the limit xk — +co, we need the more accurate asymptotic formula

R -1 L 2_ 2
Wi (—e™* Fi0) = —«x — In(x) — k 1I1(K)+2K In(x)” — k™ In(k) (192)

+0(« 2 In(k)%), k — +oo,
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and therefore for each large positive integer N we obtain a solution 7' = Ty (w) with the approximation
P’Zr(w)?
81Z>(w) — Zo(w)I?
3
+0(ln(K) ), K — 400

K
3 2 2
(2—”) N3+3(2—”) N21n(N)+3(2—”) (w(w)+1n(2—"))N2
p p P p

Tn(w) =

> + 3% In(x) + 3 In(k)? + 3k In(x) + In(x)> + g In(x)? + 3 1n(«)

_ P’z (w)?
8122 (w) — Zo(w)|°

+ 6—”1\1111(1\02 Lo (1 +2w(w)+2In (2—”))N1n(1v)
p p p

671( ) (271) (271)2) 5
+— | +ww)+ Qo(w)+1)In[— ]| +In|— ] |N +1In(N)
p p p
+ (3w(w) + 2 +31In (2—ﬂ)) In(N)?
2 P
( 2 2m 2r\?
+ 3w (w) +9w(w)+3+3(2w(w)+3)1n(7)+3ln(7) In(N)

+@(w)® + gw(w)2 +3w(w) +3 (w(w)2 +3w(w) + 1) In (%ﬂ)
2 3
+3 (w(w)+§)ln(2—ﬂ) +1n (2_7r) +
2 p p

One can check that the first two terms of 54Ty (w)2, proportional to N® and N> In(N) respectively, have
finite values in the limit w T w.. Exactly the same is true of the two leading terms of Xy(v)? in the
limit v T v.. However, only the leading term of each expansion matches, and a discrepancy appears
at the order N° In(N). Moreover, it is easy to see that the coefficient of N> In(N) cannot be changed
in one of the expansions by adding any fixed integer to N (amounting to re-indexing the curves of the
relevant family). Subsequent terms in each expansion actually blow up as w T w, and v T v, respectively.
This computation shows that it is just an illusion that the families of curves appear to match along the
boundary curve 5472 = X3 in the first quadrant in Figures 6 and 7. Moreover, zooming in near the
boundary curve shows that the curves actually turn sharply as they approach the boundary, becoming
tangent to it as shown in Figure 8.

0 (ln(N)3

), N — +o0.

(1.93)

1.3.3.  Transitional behaviour of ¥(X, T; G)

The domains of validity of Theorems 1.18 and 1.22 and their corollaries cover all asymptotic directions
in the (X, T')-plane, except for those near the common boundary curves |T'||X| -3 = ve which is equivalent

2 . . . .
to |X]|T|3 = w. Our final asymptotic results concern the behaviour of ¥(X, T, G) in the transitional
region for large (X, T') near these curves. To formulate them, we need to first recall the second Painlevé
equation with parameter « € C:

U (x) = xU(x) +2U(x)* - a, (1.94)

every solution of which is a meromorphic function of x € C all of whose poles are simple with residue
+1. There is a unique solution U (x) of (1.94) with asymptotic behaviour I/ (x) = —i(%x)% - %ax" +

O(|x|~2) as x — oo with | arg(x)| < %ﬂ. This is one of the so-called increasing tritronquée solutions of
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Figure 8. Zoom-in plots on two different scales near the boundary curve corresponding to the param-
eters a = b = 1 as in Figure 6, showing the mismatches of the amplitude-maximizing curves near the
boundary.

(1.94). We require this solution in the situation that @ = % +ip, where p = ﬁ In(1+72) with 7 = |b/al.
Given the increasing tritronquée solution I/ (x) for such « determined by 7 > 0, a related meromorphic
function V(y; 7) is uniquely defined by the conditions

V' (y; 1 1 ¢ -3
V((yy; :))=—<§>su<—(§)3y), Vrr) == (3) (14007 yo s (195)

Then it is shown in [25, Theorem 1.4] that V(y; 7) is analytic and non-vanishing for all real y, and it has
the complementary asymptotic behaviour

rdG . L .
V(y;7) = sz—\/(;p)e—3m/4e—7rp/22—1pe—21(—y/3)3/2(_3y)—%(%+1p)(1 + 0(|y|_45't)), y — —oco. (1.96)

See [25, Corollary 1.5], which is valid for all >0 and p = 5= In(1 + 72).

1
2r

Theorem 1.25 (Transition regime). Let v := |b/a| and p = ﬁ In(1 + 72), and set v := TX™? and

Ve 1= 54‘%. In the limit X — +oo,
. _ 2,2 S5.1.,1 . iQc(X,v) 11 1 3 iQ(X,v) _5
Y(X,T;G)=2-33X"3V(2236X3(v—v.);T)e +2437ipiX e +0(X"8) (1.97)

holds uniformly for v — v, = O(X_%) and T = O(1), where phases Q.(X,v) and £, (X, v) are defined
by

Qu(X,v) = 245 X% — 12X3 (v - ve) — %p In(X) + g — arg(ab) +pIn(2) - gp In(3),  (1.98)

and

Q(X,v): = — (E)7 X} 23X (v = ve) + 2pIn(X)
2 2 (1.99)

+ % — arg(D(ip)) — arg(ab) + %p In(2) + %p In(3).

Corollary 1.26 (¥(X,T) near reflected transitional curves). The following results hold for large
coordinates near the reflections of the curve X3 =54T2% X > 0, T > 0, in the coordinate axes:
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o In the limit X — —oo with T|X|_% -V = O(|X|‘%), Y (X, T;G) is given by an analogue of the
right-hand side of (1.97) in which X is replaced by —X, T is replaced by T = 71, p is replaced by
p= ﬁ In(1 + 72), and the error term is uniform for T = O(1).

o In the limit X — +0o with —TX "3 — Ve = O(X_%), Y (X, T;G) is given by the an analogue of the
right-hand side of (1.97) in which T is replaced by —T, V(y; 1) is replaced by V(y; )%, and all
signs except that of — arg(ab) in Q.(X,v) and Q(X,v) are changed.

o In the limit X — —oco with —T|X|‘% -V = O(|X|_%), Y(X,T;G) is given by an analogue of
the right-hand side of (1.97) in which (X,T) are replaced by (-X,-T), 7 is replaced by T, p is
replaced by p, V(y; 1) is replaced by V(y; T)*, and all signs except that of — arg(ab) in Q.(-X,v)
and Q, (=X, v) are changed. The error term is uniform for T = O(1).

Proof. Apply Propositions 1.3 and 1.4. O

Theorem 1.25 is proved in Section 4. The leading term in (1.97) was obtained* in the special case
of a=b in [8, Theorem 6]. In the general case, we see that the limiting Painlevé-1I function V(o; 1)
corresponds to a variable parameter @ = % +ip depending on (a,b) viat = |b/a| and p = # In(1+72).

The relative size of the correction term in (1.97) compared to the leading term is O(X ’1]7), which
decays very slowly as X — oo. This observation motivates keeping the correction term although it is
asymptotically negligible compared to the leading term. We observe that the correction term is essen-
tially the same as the contribution to W(X, T; G) of the explicit term on the second line of (1.70),
approximated in the limit v T v.. Theorem 1.25 shows that as v T v, the contribution from the critical
point z>(v) persists at the same order while that from z; (v) becomes larger by a factor proportional to
X7 and takes on a universal form expressed in terms of the Painlevé-II special function V(o; 7).

To illustrate the validity of Theorem 1.25, we took a = b = 1 and applied the numerical method
described in Appendix B to solve Riemann—Hilbert Problem 2.1 from [25] and hence obtain V(y; 7 = 1)
for a dense grid of y-values in the interval [—0.2,0.2]. Given such a value of y, and a large value of
X >0, acorresponding value of T is defined by T = X2v=X3 (ve+2~ 33- %X‘%y). Then we numerically
computed ¥ (X, T; G(1, 1)) using the method described in Section 5, and used the result to compare with
the prediction of Theorem 1.25 as shown in Figure 9 and also to calculate the pointwise renormalized
error

E(y) := 2*'37%X%‘I‘(X, T:G(1, 1)) = V(y; 1)ei &) _ 2-13-Bx-feit0tn]
3 1 1 3 3 5 7 1 (1100)
VEve+272376X 3y, T=X2v=X2(v +272376X 3y),

fory € [-1, 1]. We next set E := max|y|<; E£(y) and plotted In(E) against In(X). See Figure 10.

1.4. The software package RogueWaveInfiniteNLS. jl for Julia

As part of this work we introduce a software package titled RogueWaveInfiniteNLS. j1 [11] in the
Julia programming language. The package is based on a theoretical framework for the numerical
solution of Riemann—Hilbert problems due to S. Olver and T. Trogdon; see [28, 29], and [39]. The
main utility of RogueWaveInfiniteNLS. j1 is that the end user can easily evaluate to high accuracy
¥(X,T;G,B) at a given (X,T) € R? for arbitrary choice of parameters (a,b) € C? (indexing the
family of solutions) and the scalar B > 0. This is achieved by numerically solving a suitably regularized

5
4The error estimate for the leading term was incorrectly reported in [8, Theorem 6] as O (X~ 6 ), but according to (1.97), this should be corrected
3
to O(X 4) in equations (251), (253), (254), and (256) of that paper.
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Figure 9. Numerical evaluation of ¥(X,T;G(1,1)) as a function of y for fixed X (points) compared
with the approximation of the two explicit terms in Theorem 1.25 (solid curves). First row: real and
imaginary parts; second row: modulus. Left-to-right: X = 4000, X = 40,000, X = 400,000. The
shaded region in each plot corresponds to an error bar proportional by a fixed constant to X/,

In(X)

Figure 10. The uniform renormalized error E over 'y € [—1,1] as a function of X. Black points are
numerical computations and the purple line is a least-squares best fit line with slope —0.162334. This

matches very well the prediction of Theorem 1.25, namely E = O(X _%), suggesting that the error term
in (1.97) is sharp.

(via numerical implementation of noncommutative steepest descent techniques) Riemann—Hilbert prob-
lem depending on the chosen value of (X, T') and extracting from the solution of that Riemann—Hilbert
problem the value of ¥ (X, T'; G, B). The user need not worry about how the parameters affect the compu-
tation or about any mechanics underlying the procedure; the computation occurs in a black-box manner.
Indeed, one can simply call the main routine

[julia> psi(2, 9.2, 2im, 4, 1)

to evaluate ¥(X,T;G,B) at (X,T) = (2,9.2) with parameters (a,b) = (2i,4) and B=1. The choice
of the appropriate deformed Riemann—Hilbert problem to solve numerically is taken care of automat-
ically. In this regard RogueWaveInfiniteNLS. j1 resembles the ISTPackage (for Mathematica) by
T. Trogdon [41]. The ISTPackage includes a suite of (again, black-box) routines for computing the
solution of the initial-value problem on the full line with rapidly decaying initial data via the numerical
inverse-scattering transform for several integrable systems. See [37] for the Korteweg-de Vries equa-
tion, [38] for the focusing and defocusing NLS equations, [13] for the Toda lattice, for example. The first
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step of the numerical inverse-scattering transform procedure involved in these works is of course com-
putation of the scattering data associated with the given initial data. In contrast, the Riemann—Hilbert
problem representation of W(X, T; G, B) given by Riemann—Hilbert Problem 1 does not arise from
an initial-value problem or the inverse-scattering transform associated with the NLS equation (1.3)
— recall Remark 1.21. Therefore, the aforementioned routines for the NLS equation do not apply to
compute the general rogue waves of infinite order studied in this work and the starting point for the
framework implemented in RogueWaveInfiniteNLS. j1 is directly the Riemann—Hilbert problem rep-
resentation, which is rather the definition of this special family of solutions of the NLS equation. There
is no computation of a forward (or direct) scattering transform. RogueWaveInfiniteNLS. j1 relies on
the routines available in the software package OperatorApproximation. j1 [40] to solve the relevant
Riemann-Hilbert problems numerically. Full details on the installation, usage, and the implementation
for the software package RogueWaveInfiniteNLS. j1 are provided in Section 5.

Sample codes using RogueWaveInfiniteNLS. j1 for the computations underlying the comparison
and error plots given in Figure 2, Figure 3, Figure 4, Figure 5, and Figure 10 can be found in the notebook
titled Paper-Code . ipynb in the public GitHub repository [2].

Remark 1.27. An alternate method for numerically computing ¥(X, T; G(a, b)) in the special case of
T =0 is made possible due to Theorem 1.16. Indeed, Bornemann’s implementation [16] of Nystrom’s
method for the numerical evaluation of Fredholm determinants could be a viable approach. It would be
interesting to compare this approach with the RogueWaveInfiniteNLS. j1 package when 7 =0 but it
is beyond the scope of this paper.

2. Asymptotic behaviour of ¥ (X, T; G) for large |X|

This section is devoted to proving Theorem 1.18 and Theorem 1.9. We begin with Theorem 1.18.
To study W(X,7T;G) for X >0 large and general a,b € C with ab#0, it is sufficient in light
of Proposition 1.5 to write W(X,T;G(a,b)) = e 2@ Y(X T;G(a,b)) where the normalized
parameters (a, b) are defined in terms of (a, b) as in (1.11).

For X >0, writing T = vX 3 and rescaling the spectral parameter A by A = X *%Z, the phase
conjugating the jump matrix in (1.4) for B=1 takes the form

AX + A°T +2A7! =X%ﬁ(z;v), Iz;v) =z +v2+27° L 2.1

From the solution of Riemann—Hilbert Problem 1 for G = G(a,b) with a,b > 0 and a2+b%=1,and
for brevity omitting G from the argument lists, we define a related matrix S(z; X, v) by

S(z;X,v) = P(X" 2z X,X2v), X >0, 2.2)
and see from (1.6) and Proposition 1.5 that
(X, X2v) = 2ie W@ X3 Jim 28, (z: X,v), X > 0. 2.3)
7—00
We consider the limit X — +oco with v € R held fixed (further conditions on v will be introduced
shortly). The matrix function S(z; X, v) clearly satisfies S(z; X,v) — [ as z — oo and it is analytic in
the complement of an arbitrary Jordan curve I" surrounding z =0 with clockwise orientation. Across I,

S(z; X, v) satisfies the jump condition

S.(z:X,v) = S_(z: X, v)e X *PE TG (g, p)eX P PEIOs e, 2.4)
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Figure 11. The sign charts of Im(9(z; w)) as v varies in the range |v| < 5473,

2.1. Steepest-descent deformation

The phase ¥ (z;v) coincides with the one in [8, Section 4.1], therefore we proceed exactly as in [8],
assuming that |v| < 542 so that ¥ (z; v) has real and simple critical points. Under this assumption, the
level curve Im(9(z; w)) = 0 has a component that is a Jordan curve surrounding the origin z=0 and
passing through two distinct (real) critical points of #(z;w), which we denote by z1(v) < z3(v) with
z1(v)z2(v) < 0. We choose this Jordan curve to be the jump contour I" for S(z; X, v). A third real critical
point is present for the indicated range of v only if v # 0, and it lies in the unbounded exterior of I". See
Figure 11 for the sign charts of Im(#(z; w)) as v varies in the range |v| < 5473,

We define the regions L*, R*, and Q* as shown in the left-hand panel of Figure 12. The explicit
formula (1.66)—(1.68) for z;(v) and z;(v) are consequences of Cardano’s formula, since z=0 cannot
be a critical point of ©¥(¢; v) and hence ¥’ (z; v) = 0 is equivalent to a cubic equation for z.

It suffices to employ the factorizations (1.13) and (1.14) of the matrix G(a, b) for the steepest descent
analysis in this case. We introduce a new unknown matrix function T(z; X, v) as a substitution based on
these factorizations:

T(z: X,v) = S(z: X, V)AST(z; X, v), (2.5)

where AS~T = AS=T(z; X, v) is defined in various regions by

1 0 1 ab —2iX'29 (zv)
ASTT = b ooy |0 7€ LY, AT i=q [0 © X , Z€R', (2.6)
Qa
AT .= gF73 2 e QF, 2.7)
b —2iX1/21‘) .
. 1 0 _ . 1 ——e (@v) _
AS™T .= qo3 [ abe2iX 28 () 1]* Z€ER, AT = a , zZ€L. (2.8)
—abe i 0 1

and we simply set AS™T := I everywhere else. See the left-hand panel of Figure 12 for the definition of
the regions R*, L*, and Q*. The jump conditions satisfied by T(z; X, v) are given by

T,(z:X,v) = T_(z: X,V (z: X,v), (2.9)
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Figure 12. Left: the regions R*, L*, and Q* used to define T(z;X,v). Right: the jump contours of the
Riemann—Hilbert problem satisfied by T(z; X, v).

where VT = VT (z; X, v) is defined on various arcs by

1 0 1 abe 2?0y
vi= _boowiraey |0 2€ i, V= [o 1 © € Gk @10
a
VIi=a?9, zel, (2.11)
b —2iX1/219( .
1 0 _ 1 —e %) _
vh.= [ abe2iX" 29 (@) ll » 2€Gy, V= a - ZECL (2.12)
- ’ 0 1

See the right-hand panel of Figure 12 for definitions of the jump contours C%, C;, and I.

Note that we have Im(f(z;v)) > 0 on C/and Cg and Im(#(z;v)) < 0 on C;and Cy. Therefore,
as X — +oo the jump matrices on these contours are become exponentially small perturbations of I
uniformly except near the critical points z = z;(v), z2(v). Since S(z; X, v) = T(z; X, v) for |z| sufficiently
large, we have from (2.3)

W(X,X3v) = 2ie  *E@) X3 |im 7715 (X, v), X > 0. (2.13)
7—00

2.2. Parametrix construction

The asymptotic analysis as X — +oco requires an outer parametrix and two inner parametrices to be
used in small disks centred at z = z;(v), z2(v). Before we proceed, we define a few quantities that let us
rewrite the constant factors in the jump matrices in (2.10)—(2.12) in a more convenient way. First, note
that the identity a® + b = 1 implies that

2
1
- =1+(§) -1, (2.14)
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and hence we may define

2
pi= %m(l + (g) ) >0, (2.15)

(2.16)
Then, using again a2 +p2=1,

ab = gaz = e 2P, (2.17)

2.2.1.  Outer parametrix

We seek an outer parametrix T (z) with the with the following properties:

« T (z) is analytic in z forz € C \ 1.
e TOU(7) —» Tasz— oo. }
e The jump condition satisfied by T°"(z) on I agrees exactly with (2.9) with jump matrix (2.11).

We define, using the principal branch of the power function,

_ ipos
TTaiv ZI(V)) ) (2.18)

,i.out(z) = Tout(z; v) = (Z - 22(v)

which satisfies all of the aforementioned properties, where the value of p is given in (2.15).

2.2.2. Inner parametrices

‘We now construct inner parametrices to be used within disks D,, (¢6) and D_, (6) centred at z = z; (v) and
z = z2(v), respectively, with sufficiently small and fixed radius ¢ > 0 independent of X. We recall that
¥ (z1(v);v) = ¥ (z2(v);v) = 0 for |v| < v, and note that ¥ (z1(v); v) < 0, whereas ¢ (z2(v);v) > 0.
Accordingly, we define the conformal mappings® ¢,, (z;v) and ¢, (z;v) locally near z = z;(v) and
z = z2(v), respectively, by the equations

¢ (z0)? =221 (v);v) = Hzv) and @, (z3v)? = 2(3(z;v) — Hza(v);v)), (2.19)

and we choose the analytic solutions satisfying ¢} (z1(v);v) < 0 and ¢, (z2(v);v) > 0. Next, intro-
ducing the rescaled conformal coordinates {7, = X %(,DZ] and £, =X %%2, we observe that the jump

5The subscript notation ¢, (<) is used to indicate the specific point ¢ = a near which the conformal map is defined. Derivatives with respect to
o are denoted with the ” (prime) notation.
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Figure 13. The jump contours and jump matrices near 7 = z1(v) and z = z(v) take the form given in
this figure when expressed in the rescaled conformal coordinates { = {;, and { = {,, respectively, for
which ¢ = 0 is the image of z = z12(v). Compare with [[25], Figure 9].

conditions satisfied by

ol
U = Te X2 ?@MM s (i) - for z near z (2.20)

and by

U= = Te_ix% P23 for 7 near 75 (2.21)

take exactly the same form when expressed in terms of the respective conformal coordinates { = £,
and ¢ = ¢, and when the jump contours are locally taken to coincide with the five rays arg({) = J_r%n,
arg({) = i%ﬂ, and arg(—{) = 0. Moreover, these jump conditions coincide exactly with those in
(for example) [25, Riemann—Hilbert Problem A.1] for a standard parabolic cylinder parametrix. See
Figure 13 for the jump contours and matrices for U¥ expressed in the coordinate { = {;, forj = 1,2.

Note that the consistency condition 72 = e*™ — | for the jump matrices at £ =0 is satisfied by
definition of p and 7; see (2.15) and (2.16).

We now let U(¢) = U(Z; p, T) denote the unique solution of [25, Riemann—Hilbert Problem A.1].
This solution has the following important properties.

» U(¢) is analytic in the five sectors shown in Figure 13, which are Sy : | arg({)| < %ﬂ, S in <
arg({) < %n, S_1: —%n <arg(l) < —%n, S, : %n <arg({) <m,and S_; : -7 < arg({) < —%n.

» U(¢) takes continuous boundary values on the excluded rays and at the origin from each of the five
sectors, which are related by the jump condition U, (¢) = U_(£)VPC(¢), where the jump contours
and the jump matrix VFC(7) are given in Figure 13.

« Importantly, the diagonal (resp., off-diagonal) part of U(¢)¢"P7* has a complete asymptotic expan-
sion in descending even (resp., odd) powers of { as { — oo, with coeflicients that are independent
of the sector in which { — oo. In more detail, we have

i0'3_ L
U(¢p,1)d" —11+2i{

0(¢?) o)
0(¢7?) o)

0 r(p,7)
-s(p, 1) 0

+

l , ¢ — o, (2.22)
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See [25, Eqn. (A.9)]. Here the error terms in (2.22) are uniform for bounded 7 and p,

. e17PeipIn(2)
r(p, 1) == 2e' " \n———, (2.23)
7I(ip)

where I'(¢) is the Euler gamma function, and

2 . .
s(p, 1) = —r—p_l_) = elg”rpl“(ip)e*%””e*‘pln(z). (2.24)

Again, see [25, Eqn. (A.7) and Eqn. (A.8)]. In the special case p > 0 relevant here, it follows that

s(p,7) = —r(p,7)*. Then (2.24) implies that |r(p, 7)| = /2p as well as [s(p, T)| = /2p; see [25,
Remark A.2]. Therefore,

r(p, 7) = \[2pel(i7+pIn(2)—are(T(ip))) and  s(p,7) = —2pe (G In2)—are(T(ip)))

(2.25)
We define the inner parametrices by
T (2 X,v) = Y (2 X ) U(L,) (o) T 1eX “P@0m a2 e p_(6), (2.26)
and
T2 (2 X,v) = Y2 (5 X, U(L,)eX PP @0mes e p(5), (2.27)

where the holomorphic prefactor matrices Y* (z; X, v) and Y% (z; X, v) will be chosen to ensure that
the mismatch with the outer parametrix on the boundaries of the disks has the behaviour I + o(1) as
X — +o0. To specify these prefactors, we first express the outer parametrix near z = z; and near z = z;
in terms of the relevant conformal coordinate to see that
riwout(z, V)e—in/Zﬂ(zl v)v) o3 (10_2) — X_i%po—3e_ixl/2ﬁ(zl (v);v)o’gHzl (Z' v){;ipO'S
’ > 'l

s

—i 71(v) — 2 ipos ' (2.28)
HZ (7:v) = _ =ipes (210 —2
(@) = (2(V) - 2) (‘le (z;v)) (i02),
and

Tout(z; V)e_ixl/zﬂ(ZZ(V);V)og _ xitpos X129 ()) o3 g2 (z V){,“Z_Zi”"?,
)\ 2.29
He ) = (- 2y 2B (229)

z2=2v)

Here all power functions are defined as principal branches, so it is easy to verify that the matrix functions
H (z;v) and H*(z; v) are holomorphic in neighborhoods of z = z; and z = 2, respectively. The product
of factors to the left of {7, P93 in (2.28) and to the left of . 5 93 in (2.29) determine the holomorphic

prefactors in (2.26) and (2.27), respectively. Thus, we define the inner parametrices by (2.26) with

Y (23X, v) i= XT1ip7se X PO@OM R (7)), 2 e D, (6), (2.30)
and by (2.27) with

Y2 (53X, v) = XiarTe X0 @Omasga 2y 2 e D, (6). 2.31)
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The analyticity properties and the jump conditions satisfied by U({) imply that the inner parametrices
T (z;X,v) and T (z; X, v) exactly satisfy the jump conditions for T(z; X, v) within their respective
disks after deforming the jump contours in the disk to agree with the preimages under A +— ¢, ., of the
five rays shown in Figure 13.

Remark 2.1. The unique solution U({) = U({; p, 7) of [25, Riemann—Hilbert Problem A.1] becomes
the identity matrix if p=0. Note from (2.15) that as b — 0, we have p — 0*. Therefore, both of the
inner parametrices degenerate to the identity matrix as b — 0.

We define the global parametrix ri‘(z;X ,v) by

TZI (Z;X, V)? z€ DZ1(6)’
T(z:X,v) := T2(z;X,v),  z€D,(6), @32
Fout (2. v), z€C\ (IUD, () UD,(9)).

2.3. Asymptotics as X — +oo

We compare the unknown T (z; X, v) with the global parametrix T(z; X, v) and define the error
F(zX,v) = T(zX,»)T(zX,v) ", (2.33)

with the meaning that the size of F — I measures the accuracy of approximating T with T. As ’i‘(z; X,v)
is an exact solution of the jump conditions satisfied by T(z; X, v) on the part of / outside the disks Dy, (6)
and D, (6) and on the arcs inside these disks, it follows that F(z; X, v) extends as an analytic function of
z € C\ X, where the contour X consists of the arcs of C;and Cj lying outside of the disks D, ., (),
and the boundaries dD;, ., (6). We orient the circular boundaries dD,, ., (§) clockwise, and consider the
jump matrix V¥ (z; X, v) that relates the boundary values of F(z; X, v) through the jump condition

F.(zX,v) =F_(z X,V (zX,v), ze€Zp (2.34)

Since T (z; X, v) is analytic in z for z € (C} U Cg) N Xy, we may express the jump matrix V¥(z: X, v)
for F(z; X, v) on these arcs as

VE(z:X,0) = F_ (2 X, v) 'Fy (2 X, v) = T (20 T_ (2 X,v) " Ty (2 X, v) T (25 v) 71,

2.35
z€ (C;UCk)NZp (233

As § >0 is fixed, out (z;v) is independent of X, and z is restricted to the arcs Cf U C; that lie outside
the disks D;, ;, (6) on which the jump matrix for T(z; X, v) becomes an exponentially small perturbation
of [ as X — +o0, there exists a constant K (&) > 0 such that

sup  [[VE(@Xov) — 1 = 0K OX), X 4, (2.36)
2€(CFUCE)NZF

holds uniformly for |v| < 5472 — & and normalized parameters (a,b) with b/a <

< &', where || o ||
denotes the matrix norm induced from an arbitrary norm on C?.
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To analyze the jump V¥ (z; X, v) on the circular boundaries 9D, (§) and dD,, (5), we use the fact that
T(z; X, v) is analytic in z at all but finitely many points on dD., (§) and dD,, (5) and hence observe that

T2 (z; X, v) T (z;v) !, oD, (6),
Vizxy =L @XT ) a(9) (2.37)
T2 (z X, )T (zzv)™', 9D, (6).
Then, recalling that {;, = X%gazl (z;v), from (2.22), (2.26), and (2.30) we have
VF(Z;X, v) = X—iipﬂbe—ixl/zﬂ(zl (V);V)0'3H21 (z;v)
1 _1 _3
Ars 1 0 r(p,T) . O(X_;) O(X_i) (238)
Wxie @y |- 0 | loxh o
.H~ (Z; V)—lein/2ﬁ(zl (v);v)a'gxi%pug, 7€ 6DZ] (5)
Similarly, recalling that {;, = X3 ¢z, (z;v), from (2.22), (2.27), and (2.31) we have
VF(Z;X, v) = X3P =X 2O (2 (V) ) o3 22 (z;v)
1 _1 _3
e —1 0 r(p, ) + O(X_g) O(X_i) (2.39)
Wien @y |- 0 | loxh o

. H® (Z; V)—lein/Zﬁ(zz(v);v)(rgX—iﬁpa'g’ z€ 6Dz2 (5)

In both (2.38) and (2.39) the error terms are uniform for normalized parameters (a, b) with b/a bounded
because the latter condition implies that p and 7 are bounded. Combining (2.36), (2.38), and (2.39) gives
in particular the uniform estimate

sup [[VF(zX,v) = 1] = 05(X"5), X — 400, |v]| <5472 —¢, bla<el. (2.40)

Z€XF

Here, the notation O.(¢) indicates that the implied constant depends on & > 0. Since Xy is a compact
contour and F(z; X, v) is analytic in z for z € C \ Xy with F(z;X,v) — [ as z — oo, the small-norm
theory for such Riemann—Hilbert problems implies that the error F(z; X, v) satisfies

F_(0;X,v) ~I=0.(X" %), X 400, |V <54 2 —g bla<s (2.41)

in the L?>(Zp) sense. See [8, Section 4.1.3] for details of the argument implying this estimate.
Reformulating the jump condition (2.34) in the form F, — F_ = F_(V¥ — 1) and using the fact that
F tends to the identity matrix as z — oo and that F.(¢; X,v) =1 € LZ(ZF), we obtain from the Plemelj

formula
. F(r. —
F(zX.v) =1+ L/ FEXNVEX =D 4 o\ s (2.42)
27 Jyp -z
Now, we have
T(z; X, v) = F(z; X, )T (z;) (2.43)
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holding for |z| sufficiently large. Recall from (2.18) that T°"(z; v) is a diagonal matrix that tends to I as
z — oo, Thus, we see from (2.13) that

(X, X2v) = 2ie @) X3 [im zF)y (2 X, v). (2.44)
7—00

Then, using the Laurent series expansion of F(z; X, v) obtained from (2.42) and convergent for |z| >
SUpscy, |s], we arrive at the exact formula

3 efiarg(ab)
P(X, X)) = ——7— [/ Fii-(z: X.v)V}5(z: X, v)dz
nX2 L% (2.45)

+/ Fir_(z;X,v) (V;‘z(Z;X, V) — 1) dz] .
g

Looking at the diagonal elements of (2.38) and (2.39) along with (2.36), we see that V2Fz(<>;X V) —1=
0.(X ’%) holds uniformly on Xp. Since Zg is compact, we also have Vze(o;X, v)—1=0.X ’%) in

L*(X) as X — +co. On the other hand, the L? estimate (2.41) implies that Fi>_(o; X, v) = OS(X_%)
holds in L*(Zy). Thus, applying Cauchy-Schwarz inequality to the modulus of the second integral in
(2.45) yields

e—i arg(ab)

WX, X = - / Frio (X VE (X )de 4+ 0o(X 1), X — 400, (2.46)
X

1
X2

when |v| < 5473 — g and b/a < &~!. We express the integral in (2.46) as

/ Fii-(zX,v) V] (z: X, v)dz = / (Fii-(z:X,v) = DVE(z: X, v)dz + / VE(z X, v)dz.  (2.47)
ZF Z:F

X

By Cauchy-Schwarz and the fact that because  is compact the L>-norm is subordinate to the L=-norm,

(Fri-(z:X,v) - DV (z:X,v)dz= 0 (||F11—(<>;X, V) — 1||L2(ZF)||V1F2(°;X’ V)||L°°(2F)) . (248)
I

Now the conjugating factors in (2.38) and (2.39) are off-diagonal and diagonal respectively, and
these factors are also oscillatory. Therefore, using the exponential bound (2.36) gives the estimates
VE (0:X,v) = 0.(X"%), VE (0;X,v) = 0.(X"%), and VF, (0;X,v) = 1 = O.(X"7) all holding in the
L™ (Z§) sense. For the L? estimate of F1;_(¢; X, v) — 1, we can improve upon (2.41) by using the fact
that the “minus” boundary value of the Cauchy integral on the right-hand side of (2.42) is bounded as
a linear operator in L?(Zg) acting on the matrix-valued numerator to obtain from the 11-entry:

IF11-(0: X,v) = Ulp2(gpy < C(Ep) [I(Fri-(o: X, v) = DV (93X, v) = Dl 25y

. . (2.49)
+[IVE (03X, ) = Uiz gsg) + 1F12- (0: X, V3, (0 X, W) 25 | -

The bound C(Z) of the operator norm depends only on the contour Xy, which in turn depends on v but
neither on X nor on the normalized parameters (a,b); however it may be taken to depend only on ¢ if

[v] < 5477 —¢. Using the L (Xy) estimate of VIF1 (0; X,v) —1, this yields (assuming X > 0 is sufficiently
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large)

1F11- (63 X00) = Ulpagsy) = O (IVE (0:X,9) = Llz2(sy) ) + O (I1F12- (05X, ) VE (03X, M) 25y )
=0, (IVE (:X,0) = 1llicsy))

+ 0 (I1F12- (05X, 2 IVE (05X s )
(2.50)

again using the fact that Xy is compact. Combining the L™ estimates for V1F1 (¢;X,v)—1and Vfl (o; X, v)
with the OS(X‘%) estimate of F,_(o; X, v) in L? implied by (2.41) then shows that Fi_(¢; X,v) — 1 =
0.(X"7) holds in the L2(Z) sense, provided [v| < 5472 — ¢ and b/a < &~ !. Using this and the
(0]0:¢ ‘%) estimate of V1F2(<>;X ,v) in L®(ZF) in (2.48) then shows that the first term on the right-hand

side of (2.47) is O (X ‘%) as X — +oo, and hence its contribution to (2.46) can be absorbed into the
error term already present in that asymptotic formula. Therefore, (2.46) gives a formula for ¥ (X, X %v)
with an explicit leading term:

3 e—iarg(ab) s
Y(X,X2v) = - / VE(z X, v)dz+0.(X73),
Py

X3 (2.51)
1

X — 400, |v| <5472 —g bjla<el.

Recalling the exponential decay (2.36), the estimate (2.51) holds with a different error, but of the same
size, if we replace the contour of integration g by dD;, (6) U 0D, (5). Thus, we arrive at

3 efiarg(ab) ¥ 5
Y(X,X2v) =——1/ Via( X, v)dz+ 0 (X™7),
X2 aD;, (6)UdD;, () (2.52)
X - 400, [V <5477 —g bjla<e .
Since H*! (z; v) is an off-diagonal matrix (see (2.28)), (2.38) shows that as X — +co,
. X i3Pe=2iX'2 9 (21 (v)w) ) 3
Vi (z:X,v) = — s(p. DH (z:v)" + 0:(X7%),  z€dD,(6), (2.53)
2iX4 ¢z (z30)
and since H?(z; v) is a diagonal matrix (recall (2.29)), (2.39) shows that as X — +oo,
. X3P e-2X120 (22 (v) ) , ,
Vi (z:X,v) = r(p. TH (z:v)" + 0:(X7%),  z€dD,(6), (2.54)

2iX3 ¢y, (z:)

where both of the errors are uniform on the indicated boundary contours, and |v| < 5473 — g and
b/a < &'. We can compute the integrals of the explicit leading terms in (2.53) and (2.54) on the
relevant circular boundaries by residues at z = zj,z2 since ¢, (z;v) has a simple zero at z = z;(v)
and ¢, (z;v) has a simple zero at z = zp(v), while H* (z;v) and H®(z; v) are analytic in D, (6) and
D, (8), respectively. Doing so in (2.52) noting the clockwise orientation of the circles dD,, ,, () yields,
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as X — +oo,

e—i arg(ab)

. )2
-itpe- 2029 () S D (1 (V);7)
Xi @ (z1(v);v)
r(p. TH? (22(v);v)?
@, (22(v);v)

W(X,X3v) =
(2.55)
i %pe—zixl/z F(z2(v)w)

+0.(X71),

assuming [v| < 5472 —gand b/a < &7\

Remark 2.2. Analogues of (2.51), (2.53), (2.54), and (2.52) were obtained for a particular choice of

the parameters (a, b) in equations (160), (161), (162), and (163) respectively of our earlier paper [8],
but with cruder error estimates.

It now remains to compute the four quantities H}(z1(v);v), ¢} (z1(v);v), H{j(z2(v);v), and
@, (z2(v); v). First, by definition

@ (z1(v);v) = =v=9"(z1(v);v)  and @ (22(v);v) = VI (22(); V). (2.56)

Next, using (2.28) and (2.29) and L"Hopital’s rule,

) _ ipo3
H (z1(v);v) = (22(v) =21 (v)) 7P (,—1) (i) (2.57)
(23 (Zl (V)’ V)
and
H? (2(v);v) = (22(v) = 21(0) P72l (22 (v); v) P2, (2.58)

Therefore, using (2.25) we obtain

S(p, T)HTIQ(ZI (V); V)2 _ B _2ip Y ) i S(p, T)
9021 (ZI(V);V) - (ZZ(V) Z](V)) ( ) (Z](V), V)) _ﬂ—//(zl (V)’V)

» . (2.59)
D pe—i(ztpIn(2)—arg(I'(ip))) . .
B \/—pe\/fw );v) (22(v) = 21 () P (=" (21 (v);v)) P
- 21(v);v
and
r(p, T)Hﬁ (ZZ(V); V)2 2ip g1/ i r(p’ T)
= -z g 7.9 5 ——
) (z2(v) —z1()) (z2(v);v) O] o

[2peilsm+pIn(2)—arg(T(ip)))

VI (z2(v); v)

Recalling that z;(v) < zz(v) and using b/a = |b/a| in the definition (2.15), we let phases ¢o(v),
¢, (v), and ¢,, (v) independent of the large parameter X be defined by (1.71) and (1.72). Substituting
(2.59)-(2.60) in (2.52), and using (1.71)—(1.72) in the resulting expressions establishes (1.70) in
Theorem 1.18.

(22(v) = 21 (V)PD" (22 (v); ).
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2.4. L*(R)-norm of ¥(X,T;G)

We now prove Theorem 1.9. Since the L?(R)-norm of a solution of (1.3) is a conserved quantity, it
suffices to compute ||'¥(0,0; G)l[2(r). We let PI(X,T;G) and P12 (X, T; G) denote the coefficients
in the asymptotic expansion

P(AX,T,G) =1+PH (X, T;GA + PRI (X, T; A2+ O(AT?), A > o, (2.61)

of the unique solution P(A) = P(A;X,T,G) of Riemann-Hilbert Problem 1. A standard dressing
calculation using the symmetry o»P(A*)*0% = P(A) shows that

PUI(X,7:G) = o | PHT:G) - RLTG) | (2.62)
2i |W(X,T;G)* —®(X,T:G)
9 2
where ﬁ(l)(X, T;G) = |¥Y(X,T;G)|*. Thus,
) Y A Y
||\P(<>’ 0; G)||L2(R) =-2i ﬁPZZ (Y, 0; G)dY
—% (2.63)
— 9T [1] . [1] .
= 2i lim_ (P22 (X,0;G) - PLI(=x,0; G)) .

Using Proposition 1.5 we can assume that G = G(a, b) depends on the normalized parameters defined
from (a, b) in (1.11). For |A| > 1, Proposition A.1 implies that

P(A;-X,0,G(a,b)) = o3P(=A: X,0,G(b,a))e oy, [A] > 1. (2.64)

Expanding the right-hand side as A — oo yields the identity

PUV (=X, 0;G(a, b)) = -PLY (X, 0; G (b, a)) - 4i. (2.65)
Using this in (2.63) gives
196,02, =8 =21 Jim (PL(X,0:G(a,0) + P (X,0:6 (b)) . (266)

Recalling that S(z; X,0,G(a,b)) = T(z;X,0,G(a,b)) for |z| sufficiently large together with (2.2) we
have

P(X 7z X,0,G(a,b)) = T(:;X.0,G(a.b)), |z > 1, (2.67)

which implies the identity
Pg] (X,0;G(a,b)) = X‘%TZ[;](X,O;G(a,b)), (2.68)
where T!!l is the sub-leading coefficient matrix in the large-z expansion of the matrix function
T(z;X,0,G(a,b)): T(z;X,0,G(a,b)) = I+ TI(X,0,G(a,b))z™! + O(z72) as z — oo. The iden-

tity (2.68) clearly holds regardless of the values of a, b, and in particular when G(a, b) is replaced with
G (Db, a). On the other hand, from (2.43) we have T(z;X,0,G) = F(z;X,0,G)T(z;X,0,G) and for |z
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large enough we have ri‘(z;X ,0,G) = ’T‘O‘“(z; 0, G), which is independent of X. Then, expanding (2.42)
for |z| large and using the definition (2.18) shows that T(z; X, 0, G) has the expansion
T(z;X,0,G) =1

+

1
i(22(0) = z1(0))po3 — 7 /Z F_(£;X,0,G) (VF(g;X, 0,G) - 11) dg] 2! (2.69)
+0(z7%, 7z co.

Then we obtain

1 1
PY06) =X [0 - 200 - o [ P (@X.0.6) VX060

(2.70)

1 | L )
“5mi J,, P2 (6X.0.6) (VE&:x.0,6) 1)d§],

which is exact. Now combining the estimates (2.40) and (2.41) shows that Pg] (X,0,G) =0(X _%) as

X — +00, and this fact holds regardless of the values of the normalized parameters a, b provided a # 0
(if a = 0 then p = o0); in particular it is true for G = G(a,b) and G = G(b, a) if ab # 0. Therefore, we
have from (2.66) that

¥ (0,0;G) 2 ) = V8 2.71)

as long as ab #0.

3. Asymptotic behaviour of ¥ (X, T'; G) for large |T|

This section is devoted to proving Theorem 1.22. To analyze W(X, T; G) for large 7 >0 and general
a,b € C with ab#0, we can appeal to Proposition 1.5, which allows us to work with normalized
parameters, replacing G = G(a, b) with G(a, b) for which a,b > 0 with a? + b2 = 1, at the cost of
including a phase factor e 712¢(@) Hence, our aim is to generalize the analysis of [8, Section 4.2] from
the specific case a = b = 1/V2 to allow for general normalized parameters; we will also compute a
correction term not obtained in [8]. ,

We introduce a real parameter w and set X = w73, and then rescale the spectral parameter A by

setting Z := T3 A. Then the phase conjugating the jump matrix in (1.4) takes the form
AX + A2 T+ 20" = T50(Zyw), 0(Z:w) = wZ+ 27> +2Z). (3.1

In analogy with Section 2, taking the solution of Riemann—Hilbert Problem 1 for G = G(a,b) with
a,b > 0 and a® + b? = 1, for brevity we omit G from the argument lists since a and b are fixed in this
section. Thus, setting6

S(Z;T,w) :=P(T"3Z;Tiw,T), T >0, (3.2)
from (1.6) and Proposition 1.5 we get
W(T3w,T) = 2ie i we@) =5 lim Z815(Z: T, w). (3.3)

The matrix S(Z; T, w) is normalized to satisfy S(Z; T,w) — las Z — oo foreach T >0 and S(Z; T, w)
is analytic in the complement of an arbitrary Jordan curve I" surrounding Z =0 in the clockwise sense.

SIn this section, we use the same symbols (e.g., S, T, VT) for quantities analogous to those in Section 2, but with different argument lists.
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The jump condition satisfied by S(Z; T, w) across I is

S.(Z:T,w) =S_(Z, T, w)e T 0ZmTsG(q, p)elT 0ZWes 7 e, (3.4)

3.1. Spectral curve and g-function

Since the phase conjugating the jump matrix for P(A; X, T, G) in Riemann—Hilbert Problem 1 does not
involve G in any way, all of the analysis in [8, Section 4.2] regarding the spectral curve and construction
of the relevant g-function’ goes through without any modification. We summarize that analysis here.

We assume that |w| < 54%, and we recall the g-function g(Z; w) defined in [8, Section 4.2], which is
bounded and analytic in Z for Z € C \ Z, where X is a Schwarz-symmetrical arc determined below. It
also satisfies g(Z; w) — 0 as Z — oo, and the boundary values taken by g(Z; w) on X satisfy the jump
condition

g+ (Z;w)+g-(Z;w) +20(Z;w) =k(w), Z€eZ, (3.5

where k(w) is a constant whose explicit value was found in [8, Eqn. (218)] to be
1 1 2
k(w) =—-1083 — §w , 3.6)

which can also be written in the form (1.82). The derivative g’ (Z; w) of g(Z; w) with respect to Z satisfies
the relation
(&'(Z:w) +6'(Zsw)* =427HZ = Zi (W) (Z = Z2(W)(Z = Zo(W)(Z = Zo(w)")

3.7
= Z74P(Z;w), 3.7

which is the spectral curve for the problem at hand, see [8, Eqn. (183)]. The double roots of the sextic
polynomial P(o;w) are the real values Z; (w) < 0 and Z,(w) > 0 defined in (1.78), and there is also a
complex-conjugate pair of simple roots Zo(w), Zo(w)* given explicitly by (1.79) assuming that |w| <
We = 54%. See [8, Eqn. (190) and Eqn. (191)]. The cut Z for the g-function connects the conjugate pair
of simple roots Zy(w) and Zy(w)* of P(¢;w), and is chosen to cross the real axis at the negative value
Z =Z;(w). The function g(Z; w) is given explicitly in [8, Eqn. (195)] by

R(Z;w)?

1
S 0(Ziw) =3 275 - o (3.8)

8(Z;w) =
where R(Z;w) is the function analytic for Z € C\ X uniquely determined by the conditions
R(Z;w)? = (Z = ZyW)(Z - Zo(w)*) and R(Z;w) =Z+O(1), Z — co. 3.9
We define
hZ,w) :=g(Z,w)+0(Z,w) (3.10)

as in [8, Eqn. (196)], and take the jump contour I" for S(Z; T, w) so that Im(/#(Z;w)) = 0 holds for
Z € T. Tt consists of four oriented arcs I'* and 2* as shown in the left-hand panel of Figure 15, and

1
7In [8, Section 4.2] this analysis is presented under the assumption that w > 0, but all of the results also hold for w < 0 provided that |w| < 543 .
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+ - + + - +
+ +
+
0 2 = E 2 2 B 0 2 2 4 0 2
Re(Z) Re(Z) Re(Z) Re(Z)
Figure 14. The sign charts of Im(h(Z;w)) for w in the range |w| < we.
2 2
w=2 w=2
11 1 1F 1
N S
= 0 i S ofF il
£
—1t J —1t J
— 1 1 1 _2 L L 1
) -1 0 1 2 -2 -1 0 1 2
Re(Z) Re(Z)

Figure 15. Left: the jump contour T' = T* U~ U X" U X" for S and the regions Ly, LS, Ry, R, and
Q*. Right: the jump contour for T.

Im(h(Z;w)) is continuous across ¥ = X* U X7, vanishing there but not changing sign. See [8, Section
4.2.1] for the construction of g and determination of ¥ and I' in full detail. See Figure 14 for the sign
chart of Im(%(Z;w)) and how it varies with w. We define the domains L{, Rf,LS, 5, Q* exactly as in
the left-hand panel of Figure 15.

3.2. Steepest-descent deformation

We make use of all of the factorizations in (1.13)—(1.16) and introduce the g-function by making the
substitution:

T(Z;T,w) :=S(Z;T,w)AS~T(Z; T, w), 3.11)

where AS™T = AS=T(Z. T w) is defined in various regions by

1 0] . V30 (7m0
AS_)T = ECZiTWQ(Z;w) 1 elT g(Z’W)O—S’ Ze LF’ (3.12)
a
1 abe_ZiTl/SH(Z;m 13 (7.
AS7T = q= s 0 | el "sZwlos 7 e Ry, (3.13)
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AS=T = qFoselT s Zmes 7 ¢ o, (3.14)
AS—)T e O3 1 0 iT' Rg(Zw) o3 7 € R= 3.15
=a —abe2iT?0(Zw) 1e ’ € K. G.15)
b airsez
ASST = |1 T o T @M 7 e o (3.16)
0 1
3
oot 1 Yoz | s
AS™T .= g3 b el 8@ s 7 ¢ RY, (3.17)
0 1
Q -2i7'B30(Zw)
AS=T .o [1 P ' le”l“g@w)“s, ZelL}, (3.18)
0 1
1 0
AS—)T —— g3 3 iT1/3g(Z;W)O'3 Z R— 3 19
O oirsezw | © ’ € Ry, (3.19)
1 of .
v l_geZiTIBE’(Z;w) 1] STIHEID, Ze Ly, (3.20)
b

and we set AS™T := i7" ’2(ZW)7s elsewhere. The jump contours for the jump conditions satisfied by
T(Z; T, w) are illustrated in the right-hand panel of Figure 15, and the jump conditions are the following.

T.(Z;T,w) = T_(Z; T,w)VY(Z; T, w), (3.21)

where VT = VT (Z; T,w) is defined on various arcs by

. 1 0 . T 1  abe2T"’h(Zw) .
vl = —geZiT‘“h@;W) e ZeCr, V= 0 | . ZeClg (322
VIi=a293, Zel, (3.23)
b sr1/3 .
1 0 1 —e 2T'"Ph(Zw)

vT .= _ , ZeCq,, vl .= a , ZeCp,, (324
[—abem‘“h@;m 1 b 0 1 fa G20

(1 P S a3 ..

1 =S 2T"P(Zw) _ & 2T Br(zZw)

vT .= [o b ] . ZeC. v ! b . ZeCsp (325)

0 1
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1 0 1 0
T._ - T._ -
V= a_362iT1/3h(Z;w) 1k Z € Cgps V= IEeZiTmh(Z?W) 1l ZeCyy. (3.26)
b
Finally, on ¥ = X* U X~ we have
V=l e b . Zes® (3.27)
_ ( ) ell Br(w) 0
a

Since T(Z; T, w) = S(Z; T, w)elT "*8Z) s for large Z, from (3.3) we get

W(T3w,T) = 2ie 148 @) =3 fim Z715(Z; T, w)ell " 8Zw)
Z—
' 1 (3.28)
= 2je~tueleb) =3 Jim ZT15(Z: T, w),

where the second equality comes from the fact that g(Z; w) — 0 as Z — co.

3.3. Parametrix construction
3.3.1.  Outer parametrix

We construct a parametrix TO(Z; T, w) with the following properties:

o TOU(Z;T,w) is analyticin Z for Z € C \ (T U I).

o TO(Z;T,w) - las Z — oo.

« The jump conditions satisfied by T"(Z; T, w) on £ UI agree exactly with (3.21) with jump matrix
(3.23)on 7 and (3.27)on X" and X~

These conditions are not sufficient to determine T uniquely. Nevertheless, we will just construct a
particular function satisfying the properties listed above. We first simplify the jump matrices defined
on X* and X~ by introducing a Szegd function f(Z; w) analytic in Z for Z € C \ X given by

o iz @ &
sz = ke[ wees forewes) 6

By rationally parametrizing the genus-zero curve R> = (¢ — Zo(w))(¢ — Zo(w)*) via stereographic
projection, one finds that an antiderivative is

dZ _ 1 (Z-U)({-U)+(V+R(Z;w)(V - R({sw))
= lo , (3.30)

R(:w)({-2)  R(Z;w) (Z-U)(&-U)+(V-R(Z;w)(V-R(:w))
where Zp(w) = U +1V. One can check that if Z is real and less than Z; (w), then taking the principal
branch of the logarithm yields a function of { that is analytic except on X and the real interval Z < { <
Z1(w), and ¢ = Z is asimple root of the numerator of the argument of the logarithm only. Therefore, with
this choice of branch, the antiderivative is suitable for evaluation of f(Z; w) with Z < Z;(w) provided
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one takes the imaginary part of the logarithm to be +r at the endpoint £ = Z; (w) of Z*. It follows that

1 (V=R(Z;w))*+(Z-U)?

F(Ziw) = 5 log ( (V+R(Z;w)2 + (Z - U)2

) (_ (Z-U)(Zi(w) = U) + (V+R(Z;w))(V = R (Z1(w); w))
(Z-U)(Zi(w) = U) +(V=R(Z:w)(V =R (Zy(w);w)) |

(3.31)

The term on the first line comes from the contributions at Z = Zy(w) = U+iV and Z = Zy(w)* = U-iV,
and it is an analytic function of Z < Z;(w) that admits continuation to a neighbourhood of Z; (w); to
evaluate it at Z = Z; (w) we need only replace Z with Z; (w) and R(Z; w) with R,.(Z;(w);w). The term
on the second line comes from the contributions at Z = Z;(w), and the numerator of the argument
of the logarithm has a simple root at Z = Z;(w) and produces a branch cut in the Z-plane emanating
from Z = Z;(w) to the right. To reveal the simple root, we may use the identity (Z; (w) — U)* + V* —
R+ (Z1(w); w)? = 0 to write

(Z-U)(Zi(w) —U)+ (V+R(Z;w))(V = R (Zi(w);w)) _

0@ =0+ (V=R (V=Re@mywy) = BWE=2100), (332)

where

R(Z;w) = Ry (Z1(w); w)
Z—Zy(w)

(Z-U)(Zi(w) =U) + (V= R(Z;w))(V = R(Z1(w); W)

Z](W) -U+

(V= R(Zi1(w);w))

o (Z;w) = (3.33)

is a function analytic and non-vanishing at Z = Z;(w) and R(Z;w) = R.(Z;(w);w) (i.e., admitting
analytic continuation through ¥ at Z = Z; (w) from the left) with

(Zi(w) - )V
2((Zi(w) = U)? + V(R (Z1 (w); w) = V)

W (Zi ()i w) = (3.34)

which one can verify is a positive number by the definitions of Z;(w) and Zy(w) = U + iV. We may
therefore write f(Z; w) in the form

(V=R(Z;w)?+(Z - U)?
(V+R(Z;w))2+(Z-U)?

f(Zyw) = %log - (Z;w)? | +1og(Z1(w) - 2), (3.35)
with only the second term not being analytic at Z = Z; (w).

Similarly, if Z is a real number greater than Z; (w), one can check that the antiderivative in (3.30) is
analytic except for £ € X and on the half-lines { < Z;(w) and ¢ > Z, and that { = Z is a simple root of
the numerator only in the argument of the (principal branch) logarithm. In particular, the antiderivative
is continuous along the minus side of %, and therefore for such Z,

I @ i
F(Zw) = oR(Zw) (/2 R =2) /2 R (C = Z>)

L ((V+R(z;w))2+(Z—U)2)
2 (V-R(Z;w))2 +(Z-U)?
o ((Z -~U)(Zi(w) -U)+ (V- R(Z, W))(V—R-(Zl(W);w))) .
(Z-U)Zi(w) = U) +(V+R(Z;w))(V = R-(Z1(w); w))

(3.36)

This is analytic at Z > Z; (w) and hence can be evaluated in particular at Z = Z,(w) simply by replacing
Z with Z;(w) and R(Z;w) with R(Z,(w);w). All arguments of logarithms are then positive and we
interpret log(¢) as In(¢).
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It is easy to verify that
fo(Zw) +f-(Z;w) = Fin, Z e X . 3.37)
Although the sum of the boundary values is constant along each arc 2*, both boundary values exhibit
a logarithmic singularity as Z — Z;(w) and are otherwise continuous. We note that f(Z; w) does not
vanish in the limit Z — oo; indeed, expanding (3.29) shows that

fZ;w)=yw) +0(Z7"), Z— o, (3.38)

where

R
=3 ([ migw ~ L. migew) & 3

As pointed out in [8], it is straightforward to verify that an antiderivative of 1/R({;w) is

' ~ ,
/R(g;w)—log@ U+R(w). (3.40)

Taking the principal branch of the logarithm gives a function of ¢ that is analytic on the complement of
¥ and the ray (—oo, Z;(w)]. This is continuous along the — side of £ and hence can be used to evaluate

y(w):

_1 a dg (X B )
y(w) = 5 (/2 R om ) ‘/? R—_(g;w)) = 1n(V (Zy(w) —=U+R_(Zi(w);w))]. (3.41)

One can check that the argument of the logarithm is positive over the whole range |w| < w., which is
why we use the notation In(o) instead of the complex logarithm log(¢). We use f(Z; w) to define a new
unknown J(Z; T, w) by

TO(Z; T, w) = YW J(Z, T, wye 4 (2o (3.42)
where
-—lln(ﬂ) eR (3.43)
=7 b ' :

J(Z; T, w) has all the properties of T°"(Z; T, w) except that it satisfies a simpler jump condition across
Y =X*U X", given by

e—iT1/3K(w)
J (Z;T,w)=J_(Z,T,w) Tk () 0 , ZeX. (3.44)
To satisfy the jump condition (3.23) on I, we write
Z-Zi(w)\""
Z;T,w)=K(Z; T, -— 3.45
JZ:Tow) = K( W)(z_zz(w)) (3.45)

where the power function is defined to be the principal branch and p >0 was given in terms of a, b in
(2.15). The new unknown K(Z; T, w) extends analytically to I, and we assume that it is bounded near
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Z =Z;(w),j = 1,2, which in particular makes it analytic at Z = Z,(w). Thus, K(Z; T, w) is analytic in
C\ X and tends to [ as Z — oo. The constant and simple jump condition (3.44) satisfied by J(Z; T, w)
across X is modified for K(Z; T, w):

K. (Z,T,w)=K_(Z;T,w) ( (ZLI(W))WT3 , ZeX.

V4 —ZQ(W)

Z-zw\"" | 0 e
Z—Z>(w) _eiTPx(w) 0

(3.46)

To convert this back into a constant jump condition on X alone, we follow [8, Eqn. (222)] up to a scaling,
and introduce another Szegd function®

Z—Zy(w)
Z - Zr(w)

Z5(w) ds

1
Rz =z Fa#W) 3.47
zw) R(EGW)(E=2) *uw) (3.47)

0(Z,w) = log( )+R(Z; w)

where the logarithm is taken to be the principal branch, —7 < Im(log(¢)) < &, and where the constant
u(w) is given by

2 0 dz 0 3.48
uiw) = ‘/Zl(w) R(K;W)> ' (.48)

Using the same antiderivative (3.40) used to integrate y(w), which is analytic for Z; (w) < ¢ < Zp(w),
we take care to evaluate R(Z; w) at the lower limit of integration by the boundary value R_(Z;(w); w)
and obtain (an analogue of [8, Eqn. (225)])

Zy(w) — U +R(Zy(w); w)
Zy(w) —U+R_(Zi(w);w) ]

p(w) =21n ( (3.49)

The function £(Z; w) has the following properties. Firstly, £(Z; w) = O(Z~!) as Z — oo by definition of
1(w). Next, it can be easily confirmed that £(Z; w) has no jump across I by using the Plemelj formula and
comparing the boundary values of the logarithm. The function Z +— ¢(Z;w) has a removable singularity
atZ = Z;(w), and the boundary value £_ (Z; w) is continuous along X, including at Z = Z; (w). However,
€+(Z;w) has a logarithmic singularity at Z = Z;(w). Thus, the domain of analyticity for €(Z;w) is
Z € C\ Z and the jump condition satisfied by the (continuous, except at Z = Z;(w) from the left)
boundary values of £(Z;w) is

Z—Z1(w)

L (Zyw) +€-(Z;w) = 2log (Z ~Z )

) +ulw), Zex. (3.50)

We next evaluate £(Z;w) for Z € R with Z < Z;(w) using the antiderivative (3.30), which is analytic
for ¢ € (Z,(w),Zy(w)), and hence

£(Z;w) = log (%;EX;) + %,u(w)

tlo ((Z —U)(Z(w) -U) + (V+R(Z;W))(V—R(Zz(W);W)))

1 ((Z —U)(Zi(w) -U) + (V+R(Z;w)(V —R—(Z1(W);W)))
(Z-U)Zi(w) = U) + (V= R(Z;w)(V = R(Zi(w);w)) |

8The scaling involves an imaginary factor for convenience. Thus the Szegd function k defined in [8, Eqn. (222)] is given by ip{ and the constants
p(w) defined in (3.48) and [8, Eqn. (223)] differ by a factor of p.

Downloaded from https://www.cambridge.org/core. 20 Nov 2025 at 06:00:12, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

48 Deniz Bilman and Peter D. Miller

The term on the middle line admits analytic continuation through X from the left; in particular it the
argument of the logarithm is positive when evaluated at Z = Z;(w) and R(Z;w) = Ri(Z;(w);w)

whenever |w| < we = 543, The term on the last line has a logarithmic singularity at Z = Z;(w)
however, coming from the denominator of the argument of the logarithm. We can write

(Z-U)(Zi(w) —U) + (V+R(Z;w))(V - R_(Zi(w);w)) _ 1

Z= U =0+ (V-RZw)V-RZwiw) o zmz-zim)
where
U - 23w + FE D (v k(23 w)
W (Z;w) = LW (3.53)
(Z-U)(Zi(w) =U) + (V+R(Z;w))(V = R_(Z1(w); w))
is a function analytic and non-vanishing at Z = Z;(w) and R(Z;w) = R, (Z;(w); w) with value
Wt (Z (w)sw) = (Zi(w) — OV (3.54)

2((Z1(w) = U2 + V2) (Re(Zy (w); w) + V)

. . . I
which one can confirm is a positive number whenever |w| < w, = 543 . Therefore, for Z near Z; (w) on
the left of X, £(Z; w) can be written in the form

(Z-U)(Za(w) =U) + (V+R(Z;w))(V = R(Za(w);w)) "1 (Z5w)
(Z-U)(Za(w) = U) + (V=R(Z;w))(V = R(Za(w);w))  Zo(w)-Z
+2log(Z(w) — Z),
(3.55)

1
(Z;w) = EIJ(W) + log

where only the last term fails to be analytic at Z = Z; (w).

Similarly, if Z > Z,(w), then once again the antiderivative in (3.30) is an analytic function of £ €
(Z1(w), Z2(w)), so the formula (3.51) is also valid in this situation. If Z approaches Z,(w) from above,
then the terms on the final line in (3.51) are now analytic at Z = Z,(w), while the terms on the middle
line produce a logarithmic singularity and a branch cut emanating from Z = Z,(w) to the left. The latter
cancels with the explicit logarithmic singularity on the first line of (3.51), and the resulting formula is
analytic at Z = Z(w):

(Zw) = Su(w
(Z = UNZi(w) = U) + (V = REZ:w)) (V = R_(Z1 (): )

027
o8 = G = 07+ (Ve R V=R o) 2~ 210020
(3.56)
wherein w’?(Z;w) is a function analytic and positive at Z = Z,(w) given by
2wy 0+ REL BB, () iz, 00
Wl Zyw) = — () . (3.57)
(Z-U)(Zo(w) = U) +(V=R(Z;w))(V = R(Zz(w); w))
In particular,
w2 (Zy(w);w) = () —U)V (3.58)

2((Z2(w) = U)? + VO (R(Zo(w); w) = V)
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We introduce the function €(Z; w) in the analysis by writing
K(Z;T,w) = L(Z; T, w)e P Zw s (3.59)

It follows that L.(Z; T, w) is a matrix function analytic for Z € C \ Z, which also tends to I as Z — o
and satisfies the jump condition

0 e~ iTP(w)+pu(w))
Lo(Z:Tow) = Lo Tow) | gyt . . Zex. (3.60)

We can directly solve for L(Z; T, w) by diagonalizing the constant jump matrix and choosing the unique
solution that exhibits —%—power growth at the endpoints Z = Zy(w), Zop(w)* of X:

L(Z;T,w) = e—%i(T1/3K(w)+PIJ(W))GsZy(Z; W)0'3z—le%i(T'/3k(w)+Pll(W))0'3’ 7 = L 1 i , (3.61)
V2 ]i 1
where y(Z; w) is the function analytic for Z € C \ X, determined by the properties
7z — Zo(w) .
Zow)t=——"—" and lim y(Z;w) = 1. 62
y(Z;w) Z-Zom O Zggoy( ;W) (3.62)

Combining (3.42), (3.45), and (3.59) finishes the construction of the outer parametrix, yielding

(3.63)

ipo3
TO(Z, T, w) := 7 BL(Z; T, w)e  PHErd (Zm) e (Z—_ Lw) )

Z -7 (w)
where L(Z; T,w) is given by (3.61). Note that unlike the outer parametrix constructed for the analysis

in the regime X — +o0, the outer parametrix TO‘“(Z ; T,w) depends on T. However, this dependence is
purely oscillatory, coming solely from the conjugating exponential factors in (3.61).

3.3.2.  Inner parametrices near Z = Zy(w) and Z = Z(w)

Let Dz (6),j = 1,2, denote the disk of radius 6 > 0 centred at Z;(w). To construct an inner parametrix

T2 in Dy, (), first note that h(Z; w) — h(Zy(w); w) vanishes precisely to second order as Z — Z(w).
We define the T-independent conformal coordinate’ ¢, by choosing the solution of

©2,(Z;w)? = 2(W(Z; w) — h(Zo(w); w)),  Z € Dz, (6), (3.64)

that is analytic at Z = Z;(w) and that satisfies (p'Zz (Zy(w),w) > 0. This choice ensures that the arc
I N Dz, (8) is mapped by ¢z, (o; w) locally to the negative real axis. We define the rescaled conformal

coordinate {7, := Ts ¢z,(Z; w) and observe that the jump conditions satisfied by the matrix

U% = T(Z; T, w)e T A o (3.65)
match exactly those shown in Figure 13 when expressed in terms of the conformal coordinate { = {7,
and when the jump contours are locally taken to coincide with the five rays arg({) = i}‘ﬂ, arg({) =

i%ﬂ', and arg(—{) = 0, with the same values of p and 7 given in terms of a, b by (2.15)—(2.16). These
jump conditions coincide exactly with those in [25, Riemann—Hilbert Problem A.1] for a well-defined

9See the footnote on page 31.
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and explicit standard parabolic cylinder parametrix U({) = U({;p, 7). Thus, an inner parametrix
T#(Z; T,w) that satisfies exactly the jump conditions inside Dz, (§) can be taken in the form

TZZ (Z:T,w) := Y2 (Z:T, W)U(é'zz;p, T)eiT1/3h(Zz(w');w)o'3 (3.66)

where Y% (Z;T,w) is any matrix analytic in Dz, (6). To specify Y (Z;T,w), we write the outer
parametrix in terms of the conformal map Z — ¢z, (Z;w) by noting that ¢z, (Z;w)~P“? is an exact
solution of the jump conditions for ToU(Z: T, w) in Dy, (6). Hence we may write

ri‘out(z; T, W)e—iT1/3h(Zz (w);w) o3 — H22 (Z; T, W) 0z, (Z; W) —ipo’g7 (367)

where H? (Z; T, w) is analytic for Z € Dz, (5) and is uniformly bounded on this disk as T — +co. We
then define the parametrix near Z = Z,(w) by the formula (3.66) in which we take

Y2(Z,T,w) = B2 (Z, T, w) 573, (3.68)
For Z € Dy, (6), the parametrix T2 (Z;,T,w) satisfies
T2(Z: T, w) T (Z: Tow) ™! = B2(Z T o) TP ULy p. 1) 0 T T8 P HA (2, Tow) ™, (3.69)

ipos

in which we note that the product U({z,;p, )¢ 7

of {7, according to (2.22), and {7z, is large of size T+ when Z € 0Dz, (6).
An explicit formula for H%(Z;T,w) is:

has an asymptotic expansion in descending powers

H%(Z;T,w) := YW L(Z; T, W)e*i(Pf(Z;w)wf(Z;W))Use*iT'”h(Zz(W);W) o3
07, (Z;w) )ipo'a (3.70)

(Z = Z1(w))P7s ( 77200

Constructing an inner parametrix in Dz, (J) is slightly more involved due to the presence of jump
conditions satisfied by T(Z; T, w) across X*UX ™. Recall that #(Z; w) is analytic in Z for Z € Dy, (6)\Z,
and the values of h(Z;w) in the left (h.(Z;w)) and right (h_(Z;w)) half-disks both admit analytic
continuation to the full disk D, (6) where, according to (3.5) and (3.10) we have

he(Z;w) +h_(Z;w) = k(w), Z € Dz (9). (3.71)

We will base the construction of the inner parametrix in Dz, (§) on a T-independent conformal mapping
@z, constructed from i_(Z; w) by choosing the solution of

907, (Z;w)* = 2(h_(Zy(w);w) — h_(Z;w)), Z € Dz, (6), (3.72)

that is analytic in Dz, (6) and satisfies go’Zl (Z1(w),w) < 0, and we introduce the rescaled conformal

coordinate {7z, := Ts ¢z, (Z;w). Letting Q. denote the region near Z; (w) complementary to Ry U, U
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R; UQ_ULS UL (ie., to the left of ¥ = X* U X7), we then consider the matrix

T3 .
T(Z:T,w) (%) *(igy)elT - @mmasios 7 e (REUQ,) N Dy (6),
g3

U” =3 T(Z, T, w) (2) (iop)el T -G asios 7 ¢ (R; UQ_) N Dy (6), (3.73)

T(Z;T, W)eiT|/3h-(Z] (w):w)ase—irl/ak(w)zrsitrs’ 7 e (LE UL; U Q) N Dz, (6).

Using (3.71), one checks that this transformation results in a trivial identity jump for U across Z*UX ™.
Now, recall the values p and 7 defined in Corollary 1.19. Taking into account that the conformal coordi-
nate {7z, := T%gozl (Z; w) satisfies go’zl (Z1(w);w) < 0, we see that the jump conditions satisfied by U%!
match those shown in Figure 13 with (p, 7) replaced by (p, T) (equivalent to swapping a and b). These
jump conditions therefore coincide exactly with those of the standard parabolic cylinder parametrix
U(¢Z; p, T) solving [25, Riemann—Hilbert Problem A.1].

Thus, an inner parametrix T (Z; T, w) that satisfies exactly the jump conditions of T(Z; T, w) within
Dz, (6) can be taken in the form

T(Z;T,w) = Y2(Z; T, w)U(Ly,3p, )i T - oy
b\

(iop)~! (—) . Z e (REUQL) N Dy (6),

a (3.74)

o' (5) s Ze (RguQ) N D),

eiT1/3K(W)(T3’ 7 e (LE U Lg U Q) N Dz, (6),

where YZ'(Z; T,w) is a matrix factor analytic in Dz, (5). To determine Y?' (Z; T, w), we first define a
matrix U%' within Dy, (6) exactly as in (3.73) replacing T(Z; T, w) with T"“‘(Z ; T, w). Then one checks
that U4 is analytic in Dz, () except on N Dy, (§) where it satisfies ﬁf‘ = U%1273. Since | corresponds
to the ray arg(—¢z,) = 0 oriented away from the origin in the ¢z, -plane and b>73 = e 27773 it follows
that U4 = H? (Z; T, w)@z, (Z; w) "7 where H? (Z; T, w) is holomorphic in Dz, (6) and bounded as
T — +oo. By analogy with (3.68) we define the inner parametrix T2(Z,T,w) by (3.74) in which the
holomorphic factor Y#' (Z; T, w) is given by

Y2 (Z,T,w) = HA (Z, T, w) 5773, (3.75)
By analogy with (3.69), for Z € Dz, (6), the parametrix TZ (Z, T,w) satisfies
T4(Z: 7w T Z: Tow) ™! = BA(Z: T, W) TSP U (L, 1) T T3P A (Z, T w) ™). (3.76)

To find an analogue of (3.70) for H# (Z; T, w) valid for Z € Dz, (6), it is enough to first assume that
Z € Q and then extend the result to Dz, () by analytic continuation. By definition,

ipo;
HA(Z; T, w) : = 7 DL(Z, T, wye L Zmraf Zn) s (Zl W) -2 ) ’

Z2(W) -7

. eiT1/3h(Z] (w);w)age—iT1/3K(w)0'3io'3 0z, (Z; w)iﬁa'3’ ZeQunN DZl (5)

(3.77)

Since the jump matrix for L(Z; T, w) across Z is constant (see (3.60)), upon identifying L(Z; T, w) for
Z € Q with Ly (Z;T,w), we see that L(Z; T,w) = L(Z; T,w) has an analytic continuation to all of
Dz, (6) that we will denote by the same symbol L. (Z; T, w) and that is given by (3.61) in which the
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branch cut of y(Z;w) is deformed toward the right near Z = Z; (w) to coincide with the corresponding
arc of 0Dz, (8). On the other hand, neither f(Z; w) nor £(Z;w) can be analytically continued from Qc,
to all of Dy, (§) without a branch cut appearing in each case that we take to agree with I N Dz, (6).
However, using (3.37) to continue f(Z;w) = fi(Z;w) from Qo N Dz, (8) through * to Dz (6) \ [
shows that the continuation has the form

F+(Z;w) = f2(Z;w) +log(pz,(Z;w)),  Z € Dz (8)\ 1, (3.78)

where f0(Z;w) is holomorphic in Dz, (&) and the logarithm is the principal branch. In fact, we can use
(3.35) to express f(Z; w) explicitly as

(V=R(Z;w))*>+(Z-U)?
(V+R(Z;w)?+(Z-U)?

- (Zw)? -

M) _ (3.79)

0(Zw) = |
fZw = 3 log( on Zow)?

This formula holds for Z € Q. N Dz, (J), but to continue analytically to Dz, (d) \ . one just replaces
R(Z;w) with —R(Z;w). In particular, to compute the value at the center of the disk, one simply takes
R(Z;w) as R.(Z;(w);w) < 0 and obtains

(V= Re(Zi (w);w))> + (Z1(w) = U)* & (Zi (w); w)?
(V +Ro(Zy(w); w)2 + (Z1 (w) = U @l (Zi(w); w)?

, (3.80)

£z (w)w) = %ln(

wherein wfr(Zl (w); w) > 0 is defined by (3.34). Similarly using (3.50) to continue £(Z;w) = £,.(Z;w)
from Q. N Dz, (8) through £* to Dz, (6) \ I shows that

C(Z;w) = 0(Z;w) +2log(z,(Z;w)), Z € Dz, (6) \ 1, (3.81)

where ¢°(Z; w) is holomorphic in Dz, (5). Using (3.55), we can explicitly write £°(Z;w) in the form

OZw) = Su(w)

o ((Z ~U)(Zw) - U) + (V+REZw) (Y - RZw)iw) o"N(Ziw) (Zi(w) -2)°
(Z-U)(Zo(w) = U) + (V= RZ:w)(V = R(Z(wiiw)  Za(W) =Z  ¢z7,(Z;w)?
(3.82)

Again, this holds as written for Z € Dz (§) N Q. but to analytically continue to Dz () \ Qe
one just replaces R(Z;w) with —R(Z;w). Evaluating at Z = Z;(w) means replacing R(Z;w) with
R+ (Z(w);w) < 0 and computing a limit of a difference quotient:

O (w);w) = ()

(Zi(w) = U)(Za(w) = U) + (V + Re(Zi (w); W) (V = R(Za (w): w))

(Ziw) = U)(Za(w) = U) + (V= Re(Zi(w):w) (V = R(Zo(w)iw)) ~ (3:83)
WP (Zi(w);w)

(Za(w) - Zi(wW)ey, (Zi(w)iw)? |

+1In

Downloaded from https://www.cambridge.org/core. 20 Nov 2025 at 06:00:12, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Journal of Nonlinear Waves 53

wherein w’!' (Z; (w); w) > 0 is given by (3.54). Therefore, using the identity ¢ = p — p, recalling that
L.(Z;T,w) is interpreted as a holomorphic function in Dy, (6), and using (3.71),

HZ (Z;T,w) = GW(W)‘T3L+(Z; T, w)e*i(Pé’O(Z;W)wfo(Z;W))UsefiT]“har(Z] (w)w) o303

Zi(w) - Z (3.84)

ipos3
, Z€Dy (5)
¢z, (Z;W)) ]

H(Za(w) = 2) 7 (

3.3.3.  Inner parametrices near Z = Zy(w) and Z = Zy(w)*

It suffices to construct a parametrix for T(Z;T,w) for Z near Zy(w) and obtain a corresponding
parametrix for Z near Zo(w)* using Schwarz reflection. Let Dz, (6) denote a disk of radius § > 0 centred
at Z = Zo(w). We define a conformal mapping on Dy, (6) by setting ¢z, (Z;w) := (2i(h(Zy(w);w) —
h(Z, w)))%, analytically continued to Z € Dy () from the arc along which h(o;w) — h(Zy(w); w) is
positive imaginary, and we choose CI’E’ ; to coincide with this arc within Dz,(6). Then within Dz, () we
choose X* to be mapped by ¢ = ¢z,(Z;w) to ¢ < 0, we choose CE’L to be mapped to arg(¢) = %7‘1’, and
fusing CE, r and Clt’ r locally we choose both to be mapped to arg(¢) = —%71’. We define a rescaling of
the conformal coordinate by {7, := TS 0z, (Z;w).

Using the facts that 2h(Zy(w); w) = hy(Zo(w); w) + h-(Zy(w); w) = k(w) (as h(o; w) is continuous
at Zo(w)) and that —a’/b — ab = —a/b (as a® + b? = 1), one can then check that the matrix P(Z; T, w)
defined by

1
203 .
P(Z;T,w) := T(Z; T, w)(ic) (2) ertin e (3.85)

satisfies the following jump conditions within Dz, (6):

1 oea
P.(Z;T,w)=P_(Z;T,w) ., arg({z) =0, (3.86)
0 1
1 0 2r
P.(Z;T,w) =P_(Z;T,w) o , arg(dz) = +—, (3.87)
e% 1] 3
and
P.(Z:Tow) =P (Z:Tow) | (1) . arg(=Lz) =0, (3.88)

where we are orienting all four rays in the direction of increasing real part of {z. Defining a matrix
l:"’“‘(Z; T,w) by the right-hand side of (3.85) replacing T(Z;T,w) with T"“‘(Z; T,w) we see that
P"(Z;T,w) is analytic within Dz, (5) except for the arc where ¢z, (Z;w) < 0, along which the
same jump condition as in (3.88) is satisfied, and f’°“t(Z; T,w) exhibits negative one-fourth power
singularities near Zy. Therefore, the matrix function defined on Dz, (6) by

HA(Z; T, w) = P (Z: T, w)V ' 0z (Z:w) 3%, ZeDy(5), Vi=— [ I

—i
1 l (3.89)

is actually analytic on the whole disk, and it is easy to check that it is uniformly bounded on the disk in
the limit 7 — +oc0. Now let A() denote the standard Airy parametrix analytic for Im(¢) # 0 except
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across the rays arg() = i%ﬂ, satisfying the exact jump conditions (3.86)—(3.88), and satisfying the
asymptotic condition

o) o™

A(QVTI737 =1
(VL o o

l , oo, (3.90)
(i.e., A(¢) is the unique solution of Riemann-Hilbert Problem 4 of [17], for instance — see [17,
Appendix B] for full details), we then define the parametrix for T(Z; T, w) in Dz, (6) by

1
-303

T%(Z; T, w) := H2(Z, T, w) T~ B A(T5 gz, (Z; w))e 210 k(0 o3 (g) (ion)!, Z € Dy (6).
(3.91)

Then, comparing with the outer parametrix, we have for Z € Dz (9),
N o _1
T2 (Z;T,w)T"(Z;T,w)"' =H?(Z; T, w)T‘ﬁmA(g“ZO)V_ng(ﬁ T3 s o3 o (Z;T,w)", (3.92)

where we recall {7, = T3 ¢z,(Z;w). Using (3.90), the fact that ¢z, (o; w) is bounded away from zero on
dDz,(9), and the fact that H? (o; T, w) is bounded as T — +oo and has unit determinant yields

sup HTZO (Z: T, w)T(Z, T, w)~! - JIH —O(T"%), T — +oo. (3.93)
ZE@DZU((S)

Since T(Z; T, w) satisfies the exact Schwarz symmetry T(Z*; T,w) = 0»T(Z; T, w)*0, we obtain an
inner parametrix near Z; by applying the same reflection to T?(Z;T,w).

3.3.4.  Global parametrix
We define the global parametrix T(Z; T, w) by

T2/(Z; T, w), Z € Dy, (9),
T%(Z,T,w), Z € Dz,(5),
T(Z;T,w) :={T%(Z;T,w), Z € Dz, (6),
o T4(Z* T, w)* o2, Z € Dz:(6),
To(Z:T.w), Z €T\ (1UD2(8) UD2(8) UDz(6) U D5 (5)).

(3.94)

3.4. Asymptotics as T — +oo

As in Section 2.3 we compare the matrix T(Z; T, w) with the global parametrix T(Z; T, w) by defining
the error matrix F(Z;T,w) := T(Z; T, w)’i“(Z T, w)‘1 whenever both of the factors are defined. It is
straightforward to verify that F(Z; T, w) satisfies a small-norm Riemann—Hilbert problem with the jump
contour Xy consisting of the disk boundaries 0Dz, (), 0Dz, (6), 0Dz,(5), and dDz; (6), together with

ot + + + + ; ;
the restrictions of the arcs CF’L, CF’R, CZ’L, and CZ’R to the exterior of the four disks.
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The jump matrix VF for F(Z; T, w) is expressed on the latter arcs as

V¥Z,T,w) =F_(Z;T,w) " 'Fo(Z; T, w)
=T_(Z; T, w)T_(Z; T, w) ' To(Z; T, W) T (Z: T, w) ™! (3.95)
=T Z T, w)T_(Z; T, w) " To(Z; T, w) T (Z; T, w) ™",

because on these arcs T(Z T,w) = T"“‘(Z ; T, w), which has no jump discontinuity. The restriction to
the exterior of the disks makes the conjugating factors bounded independently of 7 — +co, while the
jump matrix T_(Z; T, w)‘lTJr (Z;T,w) for T(Z; T,w) is a uniformly exponentially small perturbation
of the identity. Therefore there is a positive constant K (&) > 0 such that

sup IVE(ZT,w) =T = 0K ), T — 4o, (3.96)
Ze(c;LucﬁyRuchucgyR)sz

holds uniformly for |[w| < w.—& and normalized parameters (a, b) satisfying the double-sided inequality
£ < b/a < &~ For the rest of the section we assume that these inequalities on w and b/a hold for some
€ >0 and use the notation O (¢) introduced after (2.40) to indicate the dependence of implied constants
on e.

Taking the disk boundary dDz,(6) C XF to have clockwise orientation, the jump matrix on this
circle takes the form VF(Z; T,w) = T% (Z,T, w)’i‘o‘“(Z; T, w)‘l, and using (3.93) shows that VF 1
is uniformly OS(T‘%) on this circle. By Schwarz reflection a similar estimate holds for VF — T on
BDZS (5) C Xp.

The discrepancy V¥ — I is dominated by its behaviour on the boundaries of the disks Dz,(6),
J = 1,2, which we also take to be clockwise-oriented. On these two circles we have v¥z. T, w) =
T%(Z; T, w)T"(Z; T, w)~!. Therefore, the formule (3.69) and (3.76) together with the basic estimate
U(L;p,1)EP7 = T+ 0.(27") (see (2.22), here valid also with (p, ) replaced by (p, 7) due to the
double-sided inequality & < b/a < &) where ¢ is large of size T+ when Z € 0Dz, (6) immediately
gives

sup IVE(Z; T, w) = 1| = 0.(T™5), T — +co. (3.97)
ZE(?DZI (6)UODzz(5)

This estimate is sharp, and we will extract a leading term proportional to T~% below.
Just as in Section 2.3, from the L>(Z) theory of small-norm Riemann—Hilbert problems it follows
that
F_(o;T,w) —1= 04(T75), T — +c0 (3.98)

holds in the L?(ZF) sense. Therefore, again every coefficient

1
FN(Tow) = —— [ F(Z:T.w) (VF(Z; T, w) - 11) 7" ldz (3.99)
Py

in the Laurent series for F(Z; T, w)
F(Z:T,w) =1+ ZZ"”F[’”](T, w), (3.100)
m=1
which is convergent for |Z| sufficiently large, satisfies ||[F"!(T,w)]|| = OE(T‘%) as T — +oo.
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Now, note that T(Z;T,w) = F(Z;T, w)’i‘o‘“(Z; T,w), and we have T(Z; T,w) = ’T‘O‘“(Z; T,w) for
|Z| large enough. Thus, from (3.28) we obtain
Y(T3w,T)

= 2ie 1 @) T3 Yim 2T, (Z; T, w)ell 8w

Z—00
= Djetarg(ab) =3 Zh_r)r;oz (Fu (Z; T, w)TS(Z; T, w) + F1o(Z; T, w) TN(Z; T, w)) el s(Zw)
= Dje~ie(@b) 7=} Jim Z (T;’;‘(Z; T.w)+ Fa(Z: T, w))

= Dje-arz@b) -4 ( Jim ZTNZ:Tow) + Fl(T, w)) ,
(3.101)

where we have also used the properties g(Z; w) = O(Z~1), Tou(Z; T, w)-I1=0(Z"),and F(Z; T, w) -
I=0(Z ") as Z — c.
This has the form of a leading term plus a correction proportional to T-5F 1[;] (T,w), which since

|FUN(T, w)|| = OS(T‘%) for all m > 1 is of size OS(T‘%). We will now compute the leading term
explicitly, and also expand the error term to obtain a sub-leading term. For the leading term, we observe
that

Im(Z ; :
Lix(Z;T,w) = —we—lamk(w)ﬂm(m) + O(Z_Z), 7 — oo, (3.102)

and that Im(Zy(w)) = %\/ w2 — w2 from (1.79). Using this in (3.101) while recalling (3.38) and the form
of the outer parametrix given in (3.63) shows that the leading term is exactly

2i€ iar ( )T % lim Zlet(Z. T W) - _ie far ( )e i (W)e 1( 1/3K(W) (w))T %—l ‘\'WC - W
Z—00 T 3 ’

in which ¢ = In(a/b) = In(|a/b|) and 27p = In(1 + b%/a?) = In(1 + |b/a|?).
For the sub-leading term, we use (3.99) to obtain

[1] _ 1 F .
}712 (T,W) = —%AF V12(Z, T,W)dZ

1
~ 30 (F1-(Z;T,w) = DVS(Z; T, w) + F1a—(Z; T, w) (V& (Z; T, w) - 1)) dZ.
X

(3.104)

Using (3.98) and V¥ (o; T,w) =1 = O,(T~%) in L*(Z) and hence also in L?(Zf) for Sp compact,
Cauchy-Schwarz implies that

1
Fl[;](T’W):_T‘/ VE(Z: T, w)dZ + 0.(T™%)
1 F

1 (3.105)

=—— VE(Z: T, w)dZ + 0.(T73), T — +oo,
27t Jopy, (6)UdDz, (6)

where on the second line we used the fact that V}, (; T, w) = O4(T~ 3)in L1 (SF\ (8D, (5)UdDz, (6))).
Note that in the situation described in Section 2.3, VF — I had additional structure allowing for a refine-

ment of the analogous estimate; however that structure is is not present here. Now, VIF2 (Z;T,w) is given
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by the 12-element of (3.69) and (3.76) on 0D, (6) and 0Dz, (), respectively. Using (2.22) and the fact
that {7, is large of size T on the disk boundaries, along with det(H% (Z; T,w)) = 1 forj = 1,2,

T=3Ps(p, D) HA (Z; Ty w)* + T3Pr(p, D) H (Z; T, w)?
20T o7, (Z: W)

VE(Z:T,w) = +0,(T"3), Ze€dDyz(5),

(3.106)
and

T=3Ps(p, 1) H2(Z; Ty w)* + T3Pr(p, 1) H?2(Z; T, w)?

: +0,(T"3), Z€dDg(5),
2iT5¢z,(Z;w)

VE(Z,T,w) =

(3.107)

with both estimates holding in the L* sense and hence also the L' sense. Since H% (Z; T, w) is holomor-
phic in Dz (6), and Z ¢z, (Z; w) is conformal at Z;(w) with ¢z (Z;(w); w) = 0, if 6 > 0 is sufficiently
small, we substitute into (3.105) and compute by residues to obtain

T=3Ps(p, D) HA (Z1 (w); Ty w)? + T3Pr(p, DYHZ (Zy (W), T, w)?

FOlT,w) = 1
2T4 ), (Zi(w): W)

2

. , (3.108)
T=505(p, 1) HZ (Zy(w); T, w)? + T3P r(p, ) HZ (Zo(w); T, w)?
+

: +0,(T75).
2iTs ¢, (Za(w);w)

Here, r(p,7) and s(p, 7) are given by (2.25). By implicit differentiation of the equations (3.64) and
(3.72) and using the facts that ¢z (Z;(w); w) = 0 and ga’Zz (Z(w); w) > 0 while cp’Zl (Zy(w); w) < 0 we
obtain

07, (Zo(w);w) = V" (Zo(w);w) - and @7 (Zi(w);w) = —=h2(Zi1(w); w). (3.109)
Since g(Z;w) = O(Z™") and R(Z) = Z + O(1) as Z — oo, it follows from (3.1), (3.7), and (3.10) that

(Z -2 (W)(Z - Zr(w))

W(Z,w)=2 7 R(Z;w), (3.110)
implying
2wy = 2 OBV I ) 5 E=BONE=LON
(3.111)
Thus,
Wz (wysw) = 22 20N 1y 2 > 0, (3.112)
Zr(w)
Wz wyw) = 22D =20 7 4 740 <o (3.113)
Zy(w)
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and accordingly

V22 (w) = Zi(w)

07, (Za(w)iw) = Z00) \Z2(w) = Zo(w)|? > 0, (3.114)
0 (Zi(w);w) = V2A(Z(w) - Z1 () \Z,(w) = Zo(w)|* < 0. 3.115)
Zi(w)

Using ¢z, (Z>(w); w) = 0, we find from (3.70) that

HZ(Zy(w); T w)? = €307 L (2 (w); T, w) e~ 2PCZ 0030+l Za(00)iw) o= 2T (22 (o))

{(Za(w) = Zi W) [0}, (Za(w)sw)?]” e
and
H1Z§ (Za(w); T, w)? = 2V L1 (Zo(w); T, W)2e2i(pl’(Zz(W);W)+qf(Zz(W);W))eZiT‘/3h(Zz(W);W) .
(Z(w) =21 W) [gr, (Zawyw)?] 7.
Since Zp(w) — Z1(w) > 0, we use (3.115) to write
(Zo(w) = Z) () 2P = 22 In(Za(0) =21 () (3.118)
[, (Za(w): W] = 2P0 Z 0020 2122007, (3.119)

and from the definition (3.61) with y(Z;(w); w) = el@&(Z(")=20("))/2 \yith the principal branch of the
argument, we obtain using the amplitude notation from (1.81) in the introduction

) 11 N2 1
Lll(ZZ(W)7T7w) = 7 + 4 (y(ZQ(W)’W) + y(Zz(W),W)z) (3120)
= my, (w),
Lix(Za(w); T, w)? = —e AT R0 4p100) [1 (y(Zz(W);W)2 + ;) - l]
4 y(Za(w);w)? ] 2 (3.121)

= AT KO ().

Note that mz (w) > 0and m}z (w)+m§2 (w) = 1. Thus, the formulae (3.116) and (3.117) can be expressed

as
H(Zy(w): Tow)? = 2 (w)e 92T, (3.122)
HE(Zo(w); Ty w)? = 2070 AT R4 00) 1y (1)1 (T0), (3.123)

where a real phase is defined by

62 (Tow) = 2T B h(Zy(w)i w) = 3pIn(Za(w) - Zy(w)) = pln (M)

Z(w)?
+2(pt(Za(w); w) + qf (Zo(w); w)) — pIn(2).

(3.124)
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Similarly, using ¢z, (Z; (w); w) = 0, we find from (3.84) that
lell (Z1(w); T, w)? = ety 1w (Zi(w): T, W)Ze—Zi(pl’O(Zl (W)iw)+af* (Z1 (w)iw)) g =20T" Py (Z1 (w):w)

(Za(w) = Zy (w)) 2P

1 v
¢4, (Z1(w); W)zl
(3.125)

and
H122‘ (Zy(w); T, w)? = =AY Ly (7 (w); T, W)ZeZi(pi")(Zl (W) w)+qf* (Z1 (w):w)) Q2T (Zy (w)ow)

(Za(w) = Zi(w)*P

1 o
o (zl(w>;w)2l |

(3.126)
The analogue of (3.119) needed here is
+ip
! — TP INQ2(Z(W)=Z1 (W) Z1 (w) 21 Zy w)=Zo(w)l) (3.127)
&, (Zi(w);w)?

and those of (3.120)—(3.121), using y,(Z; (w); w) = iel@eZ1(w)=Z0(w))/2 with the principal branch of
the argument, are

) 1 1 2 1
Lll+(Zl (W)’ T? W) - D) + 4 (y+(Zl (W),W) + y+(Z1 (W),W))Z) (3128)
=my, (w),
. 2 _ 2T Pr(wypun)) | L L2 1 B l]
Frae GO0 Ty = e ' [4 (MZ] RN (w);w>2) 2l @)

- e—2i(T”3K(W)+1J/4(W))m}l (w),

where we again recall the amplitude notation from (1.81) with mZ (w) > 0 and m}l (w) + my, (w) =1.
Therefore, (3.125) and (3.126) become

H(Zy(w); T,w)? = =29 (w)e 197 (1) (3.130)
lezl (Zi(w); T, W)Z — —eﬁqy(w)6_21(T1/3K(W)+p“(w))m}l (W)ei¢zl (T.w) , (3.131)

where another real phase is defined by

02,(Tw) 2= 2T 1a(Z1 ()5 w) + 3pIn(Zo(w) = Z1(w) + pn (M)

Zi(w)?
+2(pl°(Z1 (w); w) + gf*(Z (w); W) + pIn(2).

(3.132)
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Using these results in (3.108) together with the fact s(p, 7) = —r(p, 7)* gives

1 iy 0 i (T eyt (1P DIZ1 (0] (2, () T 4y (w)e=i®a (7))
FONT,w) =

2TEN2(Za (W) = Z1 (W) 121 (w) = Zo(w)|2

F(p. 7)1 Za(w) (7, ()2 T 4 ()™ @) 1
+ T +0:(T73).
1220 - Zo(w)]

(3.133)
with the modified real phases
j 1
DOz (T, w) := ¢z, (T, w) = T3k(w) — pu(w) — 5[) In(T) + g —arg(r(p, 7)), (3.134)
| 1
DOz, (T, w) := ¢z, (T, w) = T3k(w) — pu(w) — gp In(T) + g —arg(r(p,7)). (3.135)

We note from the definition (2.23) that arg(r(p, 7)) = F + pIn(2) — arg(I'(ip)) and arg(r(p,7)) =
4 +pIn(2) — arg(T'(ip)), so that the modified real phases take the form

By, (T w) = b7, (T.w) = Thcw) = pu(o) — pIn(T) + = = & = pIn(2) +arg(Tip)).  (3.136)

3 2 4
1 1
2z, (T.w) 1= ¢,(T.w) = THk(w) = pu(w) = zpIn(T) + 5 = T =pIn(2) +arg(T(p)).  (3.137)

Finally, substituting |r(p, 7)| = 4/2p from (2.25) yields

C2igy () o =i(T k) () [ VPIZ1 (W) (’"2 ()% T 4 e ()i (T,w))
2T%\/22(w) - Zi(w) 1Z1(w) - ZO(W)|%

B0 [ (e sy e
1Z2(w) — Zo(w)!} o

(3.138)
Using this in (3.101) along with (3.103) yields
W(T3w,T) = _%ie—iarg(amT—%e—iT‘”x(w)ei(2qy<w>—pu<w)) W2 — w2
o VBIZ ()] (5, () T 4 (e T )
—377%
Zo(w) = Z1(w) 121 (w) = Zo(w)|
VPZa0) [z, 0T 4, e 02TV | b
+ + 3.
1Z2(w) — Zo(w)|? ’
(3.139)
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Simplifying 2gy(w) — pu(w) — n/2 into the form of ®(w) given in (1.83), and simplifying the phases
Oz (T,w) and &z (T,w) into the forms (1.86) and (1.87) respectively, we complete the proof of
Theorem 1.22.

4. Transitional asymptotics for ¥(X, T; G)

Now we analyse W(X,T;G(a,b)) for large positive (X,T) in the regime that T =~ v.X 3. Due
to Proposition 1.5 we will use normalized parameters (1.11) a,b and write ¥(X,T;G(a,b)) =
e‘iarg(“b)‘P(X ,T;G(a,b)). Therefore, in the terminology of Theorem 1.18, the parameter v := X3
should be allowed to increase into a neighbourhood of v = v, := 5471, Assuming that for some fixed
¢ > 0 arbitrarily small we have 7 := b/a < &=, we will here adapt the analysis from Section 2 to allow

forv ~ v..
As v T v, a third real simple critical point of z — ¥(z;v) collides with z;(v) to form a double
critical point at z = z. = -6, while the simple critical point at z,(v) persists with the limiting value

of zp(ve) = (%) 3, Following [8, Section 4.3], we begin by introducing a Schwarz-symmetric conformal
mapping z — ¢(z;v) on a neighbourhood of z = z. by means of the equation

20(z;v) = @ + 10— u 4.1)

where ¢ = #(v) and u = u(v) are real-analytic functions of v ~ v, determined such that the two critical
points of the left-hand side near z = z. correspond to the two critical points of the cubic on the right-hand
side. These functions satisfy

fe:=t(ve) =0, 1 :=1(v)=4- 6293, ue :=u(ve) =2- 62, u, :=u'(ve) = —12. 4.2)

The conformal map z — ¢(z; v) is locally a dilation and reflection through z.; indeed ¢f := ¢’ (zc; vc) =
~973 < 0. We denote by z.(v) the preimage under z +— ¢(z;v) of ¢ =0 for general v = v.; it is an
analytic function of v with z.(v¢) = zc.

Next, we modify the outer parametrix defined in Section 2.2.1 simply by replacing the point z; (v)
with z, (v)

_ ipos
%) pi= % In(1+7%) >0, zeC\[a®),20)]. &3

Tout(z) — Tout(z; V) = (
The definition of an inner parametrix near the simple critical point z = zp(v) is given by (2.27), (2.29),
and (2.31) with only one small alteration: the factor H*2(z; v) holomorphic near z = z,(v) is modified
from its definition in (2.29) only by replacing z; (v) with z.(v). On the other hand, we will need an inner
parametrix near z = z. that is no longer constructed from parabolic cylinder functions at all.

We now explain how to construct such an inner parametrix. The exact jump conditions satisfied
by U° := TelX' u(v)os/2 (io») near z = z. can be expressed in terms of the conformal coordinate via
(=X g ¢ and the rescaled parameter y := X 3 t(v). Locally we take the jump contours to coincide with
the rays arg(¢) = i%n, arg({) = i%n, and arg(—¢) = 0, and then the jump conditions are as shown in
Figure 17.

Now let UTT(£;y, 7) denote the solution of [25, Riemann—Hilbert Problem 2.1] (denoted by W(Z; y)
in that reference). The reason for the notation “TT” is that V(y; ) defined in (4.5) below is connected
with an increasing tritronquée solution of the Painlevé-II equation (1.94) as explained in the introduc-
tion. By a simple generalization of the argument given in [25, Section 5] to arbitrary 7 > 0, it exists for
all y € R and 7 > 0. It has the following properties.
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4 T 4 T T T
v=01345
2 2
—~ Ck Ck
nN
2 0 %> -8 g Z4 %>
£ Zs I E I
) -2
C; Cr
—4 ‘ ‘ ‘ _4 s : ‘
-4 -2 0 2 4 -4 -2 0 2 4
Re(z) Re(z)

Figure 16. Left: the jump contours in the z-plane when v = 0.1345 near v, using the points z;(v) and
2. (v) overlayed with the regions where Im(9(z;v)) has a definite sign. Right: the jump contours in
the z-plane when w = 3.76 near w, using the points z5(v) and z.(v) overlayed with the regions where
Im(h(Z;w)) has a definite sign. This is plotted in the z-plane using the relation z = Z/ v3 and the points
22(v) and z.(v) are found using the relation v = w3,

1 Te—anei(§3+y§)
0 1

[1 Tei(§3+y5)]

1 0
—Te 2mpe—i(C+yl) 1 0 1

Figure 17. The jump contours and jump matrices near 7 = z.(v) take the form shown here when
expressed in terms of the rescaled conformal coordinate { for which { = 0 is the image of 7 = z.(v).
Compare with [25, Figure 3].

« UTT(¢;y,7) is analytic in the five sectors shown in Figure 17, which are Sy : |arg({)| < 3,
Sp:dm <arg(() < 2m, 5oy —2n < arg(d) < —4m, Sy 1 2w < arg({) < m,and S, : -7 <
arg({) < —%n’.
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» UTT(¢;y, 1) takes continuous boundary values on the excluded rays and at the origin from each of
the five sectors, which are related by the jump condition UIT(Z;y, 7) = UTT(£;y, 1) VIT (£ y, 1),
where the jump contours and the jump matrix VIT(¢;y, 1) are given in Figure 17.

* The matrix function UTT(£;y, 7)¢"“3 has a complete asymptotic expansion in descending integer
powers of { as { — oo, with coefficients that are independent of the sector in which { — oo. In
particular,

U4y, )P =1+ U () 4 02, - o0 (4.4)
holds uniformly for bounded 7 > 0. For each 7 > 0, the function
V(yi7) = Uy (3.7) 4.5)
is analytic for all y € R and has no real zeros or critical points.
The analogue of (2.28) in this case is

Tout(z; V)eiX‘/zu(v)a'g/2 (i) = X—ipa'z/GeiX‘/zu(v) o3/ 2e (z; V)év—ipo'a’

_ L \pes (4.6)
HE(2:v) = (22(v) — 2) P (%) (i),

in which ¢ = X d ¢(z;v). The function z +— H(z; v) is analytic for z near z, and we use it together with
U™ (¢;y,7) to build an inner parametrix by setting for z € D,_(6),

T(z; X,v) := X‘i””3/6eixl/2”(")”3/2Hc(z; v)UTT(X%go(z; v);X%t(v))(—io-z)e‘ixlﬂ”(v)@ﬂ. 4.7)

This is the correct analogue of (2.30) iq the situation that v ~ v..
‘We now define a global parametrix T(z; X, v) for T(z; X, v) by direct analogy with (2.32):

T(z: X, v), z € D, (9),
T(zX,v) = {T2(z: X,v),  zeD., (), (4.8)
TOU(z;v), z2€C\ ([z«(v),22(v)] U D, (6) U D, (6)) .

Defining the error as F(z; X, v) := T(z; X, v)T(z; X, v)‘1 wherever both factors make sense, we see that
7z — F(z; X, v) is analytic on the complement of a bounded jump contour that is a version of the contour
Yr defined in Section 2.3, and at each non-self-intersection point z € Xy there is a well-defined jump
matrix VF(z;X,v) such that F,(z;X,v) = F_(z;X,v)VF(z;X,v). The arguments of Section 2.3 then
imply that

sup  IVF(zX,v) 1| = 0.(X73), X — +oo (4.9)
2€2p\AD,, (5)

holds uniformly for v ~ v, and 7 = b/a < £~!. However, using V¥ (z; X, v) := T¢(z; X, v) T°(z; v)~! for
z € 0D, (6) then shows thatif v = ve +O(X~ %) so that y is bounded, the sharp estimate V¥ (z; X, v) I =
O:(X ‘%) holds uniformly for z € D, (§), which is small but which dominates all other contributions
to VF — 1. Applying the small-norm theory, it follows that the analogue of (2.41) in the present situation
isthatF_(o; X,v)-1=0.(X~ %) holds in the L?(Zf) sense. Using this and the fact that V¥ (o; X,v) -1 =
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O0.(X ‘%) also holds in the same topology, by Cauchy-Schwarz, the exact formula (2.45) implies that
the analogue of (2.51) in this situation is that

e—i arg(ab)

Y(X,X2v) = — /vg(z;x,v)dz+0(x-%), X = 400, v=v +0.(X"3). (4.10)
Zfp

1
Xz

Since the integrand is uniformly exponentially small unless z € 0D, (6) U dD,,(6) we can simplify
further:

e—iarg(ab)

Y(X,X2v) = — VE (2:X.v) dz + 04 (X77),

Xt /¢9DZC(6)U6D22(6) (4.11)

X — +co, v=v.+ O(X_%).

As in Section 2.3, we then compute the integral over dD.,(6) in (4.11), which we identify up to an

error of order O, (X _%) as the second term on the right-hand side of (2.55) in which Hle (z2(v);v) is
modified from its definition in (2.29) just replacing z; (v) with z.(v). In other words,

e—iarg(ab)
——1/ Vle(w;X,v)dw
X2 6D<.2<(;)

eTHEED) ) \2peitimpin(2)-arg(T(ip))
- 2(V);

- X2 —z. Zipﬁu : ip
e e (2() 2OV (@0))
+0.(X7H).
4.12)

By Taylor expansion, v = v, + O(X _%) implies

" eayiv) = V6 00 4.13)

2 -z0) = \/?+ o(xX~%),

so it follows that

e—iarg(ab) ]
—— / VE (Wi X, v) dw =2¥37p1X 1R 10 (X7T),
X2 aD,, () 4.14)

X > 400, v=v.+ O(X_%),

wherein the phase Q, (X, v) is defined by (1.99).
Next, we compute the integral over D, (6) in (4.11). Using the expansion (4.4) and the representa-
tion (4.6) of the outer parametrix within D, (§), we obtain that as X — +oo,
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X 3ipeiX ' Pu(v)

Vi (5 X,v) = = [H°(z;v)U1(X%t(v),r)HC(z;v)*'] +0.(X73)
Xsp(z;v) 12
_Lip ix12 1 .
X~ 3PeX w0yl (X31(v), T . _ L\
=- : 2 X0 )(zz(v)—z)z‘P(M) +0. (X)) @415
X5¢(z;v) e(z;v)
_li syl)2 1 2i
X 3PelX u(v) X3t(v): ) } _ ip
- AP ) - (2 o0,
Xep(z;v) e(z;v)
Therefore,
e—iarg(ab)

——]/ VIFZ(W;X,V)dW
X2 0D, (5)

e_i“g(“b)X’%iPeixl/z"(")V(X%t(v);T) Zoip (2(V) = w P dy (4.16)
= - (22(v) = w) ; :
X3 D, (5) p(w;v) p(w;v)

+0.(X73), X — +oo.

We evaluate the integral by residues, using the fact that w — ¢(w; v) has a simple zero at w = z,(v) €
D, (6) and the first two factors in the integrand are analytic at w = z,(v) with value

= (22(v) = (1) 7HP (=’ (2. (v); v)) 2P (4.17)

w=2.(v)

z(v) - W)2ip

=2i
- (55

Further expanding the result in v about v = v, using (4.2), ¢’ (z¢;ve) = —9‘%, 2(ve) = (%)%, and the

assumption that v — v, = O(X ‘%), we produce no error terms larger than already present in (4.16) and
hence

—iarg(ab) .
B / VE (Wi X, v) dw =2 35X 3V(2336X5 (v = ve); 1) %X 4 0, (X75),
D (5)

X3 (4.18)

X — 400, v=v.+ O(X_%),

where the phase Q. (X, v) is as defined in (1.98).
Using (4.14) and (4.18) in (4.11), we obtain (1.97).

5. The RogueWaveInfiniteNLS. j1 software package for Julia

In this section we introduce the software package RogueWaveInfiniteNLS. j1 [11] for Julia thatis
developed as part of this work to accurately compute ¥ (X, T'; G, B) at virtually any given point in the
(X, T)-plane for given G and B > (. The method for computing ¥(X, T'; G, B) is based on numerically
solving a suitably regularized Riemann—Hilbert problem that is selected depending on the location of
the point (X, T) in R2. Basically,

* if X is deemed to be sufficiently large and || < v |X| %, then we numerically solve for T described
in Section 2;

¢ if T is deemed to be sufficiently large and |X| < w¢|T| %, then we numerically solve for the different
matrix T described in Section 3;
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* if either X or T is deemed to be sufficiently large and |T'| ~ v|X |% or equivalently |X| ~ WC|T|%,
then we numerically solve for T defined as in Section 2 but with more suitable contour choices as
described in Section 4;

* otherwise, we numerically solve a version of Riemann—Hilbert Problem 1 for P.

Since the selected Riemann—Hilbert problem has then been appropriately deformed (via employing non-
commutatitve steepest descent techniques) to be suitable for asymptotic analysis in one of the asymptotic
regimes considered in this work, it is also good for computation, modulo some details due to numer-
ical considerations. This final Riemann—Hilbert problem is solved using the routines available in the
OperatorApproximation. j1 package, see [40]. OperatorApproximation. jl is a framework for
approximating functions and operators, and for solving equations involving such objects.

Numerical solution of a Riemann—Hilbert problem posed on a suitable oriented contour I" (may be
open, closed, or unbounded) for an unknown ®(z) € C>*? satisfying a jump condition

Q,(2) =®_(2)V(z), zel, (5.1)
and normalized to satisfy ®(z) — I as 7 — oo, essentially involves seeking a solution of the form

1 F(s)W(s)ds
1 /F Fls)W(s)ds

@) =I+CrwlFl@).  CrwlFl(2) = 7 P

, (5.2)

where W is a suitably chosen weight (possibly different on each arc of I') and rephrasing (5.1) as a
singular integral equation for the unknown density F(z) in the form

CrwlFl(2) = Cry[Fl(2)V(z) =V(2) =L, zeT. (5.3)

This singular integral equation is discretized via collocation separately on each arc of I using a basis
of suitable polynomials orthogonal with respect to the weight W. In practice, a basis of orthogo-
nal polynomials on the unit interval [—1, 1] with positive weight W is mapped to each arc of I
The linear system resulting from the employed collocation is solved for the coefficients of F.(z)
for z € T'. All of this machinery is readily implemented and available in a black-box manner in
OperatorApproximation. j1 [40], and [11] uses those capabilities to numerically solve various
Riemann-Hilbert problem representations of ¥ (X, T'; G, B). The theoretical framework behind the com-
putational approach described above is due to S. Olver and T. Trogdon, see [39] (and also [28, 29]) and
the references therein. An in-depth description and analysis of the accuracy of the numerical method
employed can be found in [30] and [39, Chapters 2 and 7].

5.1. Basic use of the software package RogueWaveInfiniteNLS. j1

The installation of the software package to the user’s Julia environment follows the standard package
installation:

[julia> using Pkg
> [julia> Pkg.add("RogueWaveInfiniteNLS")

Then at the Julia prompt one can activate the package via

[julia> using RogueWaveInfiniteNLS

and to compute ¥(X,T;G(a,b),B) at X = —1.8, T=0.6 with G = G(a = 2 - 3i,b = 1 + 0.51) and
B=1.2, one just calls:
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. [julia> psi(-1.8, 0.6, 2-3im, 1+0.5im, 1.2)
> -0.283757397147 - 0.8166685877725581im

The syntax for using the main routine psi is psi(X, T, a, b, B). See also the user’s guide in
Appendix C.

5.2. Details of the implementation and the regions of the (X, T)-plane

The routines we develop to compute W (X, T'; G(a, b), B) make use of the elementary symmetry proper-
ties given in Section 1. Thanks to Proposition 1.2, Proposition 1.3, and Proposition 1.4, to compute the
value of W(X, T; G(a,b), B) at a given point (X, T) € R? for given B> 0 and G = G(a, b), it suffices to
compute lI’(i, T:G,B= 1) for

(X,T) = (BIX|, B*|T)) (5.4)
and

G(a,b), if X>0and7T >0
G- G(b,a), ifX<0andT >0 5.5)
G(a, b)*, ifX>0and T <0

G(b,a)", ifX<OandT <O.

The method underlying the routine psi for computing ¥ (X, T'; G(a, b), B) consists of the following
steps.

Step 1: Choose a computationally-appropriate Riemann—Hilbert problem to solve based on the location
of the point (X, T) using Algorithm 1 (see below). Thus the (X, T')-plane is written as the disjoint
union of four regions denoted NoDeformation, LargeX, LargeT, and Painleve.

Step 2: Construct data structures representing the jump contours and jump matrices of the selected
Riemann-Hilbert problem. Because of the choice made in Step 1, the jump matrix differs little
from the identity except on certain arcs where it takes a (piecewise) constant value and near
self-intersection points of the jump contour. Depending on details of the problem, small circles
centred at the self-intersection points may be added to the jump contour at this stage in order
to remove singularities, and the radii of these circles is chosen so that for the given coordinates
(X, T) the jump matrices supported on the circles remain bounded in norm.

Step 3: Solve the relevant Riemann—Hilbert problem numerically by passing the data structures built
in Step 2 to suitable routines in the package OperatorApproximation. j1. The quantity

PLIR.T.6) = lim 2iAP(A:X. T, G) (5.6)

is then extracted from the numerically computed solution by a contour integration of the
returned weighted Cauchy density.

Step 4: Recover ¥(X, T; G(a,b),B) from Pw ()~(, i (3) using (1.6) and the symmetry relations in
Proposition 1.2, Proposition 1.3, and Proposition 1.4.

Since the computation of ¥(X, T; G, B) is based on the numerical solution of Riemann—Hilbert prob-

lems that depend on (X, T') explicitly and parametrically, the computations for different pairs (X, T)
are independent and can be immediately parallelized over a large range of the coordinates. Some of
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Algorithm 1: Asymptotic Region Algorithm
Data: X e R, TeR,B>0
Result: The computationally-appropriate region: region
initialization;
X — B|X|; T — Bz|T|; fmax — & R« 2;
Vo— T‘)—("%; Ve — 54‘%; W — ff’%; We — 54%; g, <« 0.00025; &,, « 0.02 = wg;
if X2+ T2 < R? then
region « NoDeformation;
return region,;
elseif T < fmax then
if v>ve and |v — v¢| > &, then
‘ region « NoDeformation;
elseif v < v. and |v — v.| > &, then
‘ region « LargeX;
else
‘ region « Painleve;
return region;

else

if v > v, and |w — w¢| > &, then
‘ region < LargeT;

else if v < v and |v — v¢| > &, then
| region « LargeX;

else
‘ region « Painleve;

return region,;

end

the computations for this work were performed in parallel on the 48-core Pitzer nodes of the Ohio
Supercomputer Center [1]. For instance, the solution shown in the plots in Figure 1 is computed over
the domain {(X,7): — 16 < X <16, -8 < T < 8} with grid spacings dX = dT = 0.05. Therefore, to
obtain the data for these plots, 205,761 Riemann—Hilbert problems were solved in parallel on the super-
computer as (X, T) ranges over the 205,761 points on the discretized domain (in batches, of course, due
to memory limitations and the number of nodes available).

The routine psi calls Algorithm 1, and based on the region determined to contain (X, T'), calls one of
the programs psi_undeformed, psi_largeX, psi_largeT, or psi_Painleve to perform Steps 2—4.
These programs are in turn “wrappers” for corresponding lower-level programs rwio_undeformed,
rwio_largeX,rwio_largeT and rwio_Painleve. We will describe the syntax of these programs and
give some details about the choices of contours and jump matrices needed to build the data structures
in Step 2 below. Some users of RogueWaveInfiniteNLS. j1 may like to use these routines directly to
compute ¥ (X, T; G, B) by using a specific Riemann—Hilbert representation as they bypass Algorithm 1
and just compute ¥ (X, T; G, B) from the indicated problem, whether or not that is a good idea given
the values of (X, T'). However we wish to emphasize that the casual user of the package need not be
concerned with any of these programs and can reliably compute general rogue waves of infinite order
in most of the (X, T')-plane just by using the main routine psi.

It is our intention that psi return an accurate numerical evaluation of ¥ (X, T'; G, B) for coordinates
(X, T) lying in a very large, but bounded region of the (X, T)-plane. Indeed, the main utility of the
routines is to allow the reliable computation of ¥ (X, T'; G, B) for values of (X, T') that are definitely not
in the regime of applicability of any of the theorems in Section 1.3. However, we also want the region
of accurate computability to be large enough to allow for substantial overlap with the various regions
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of validity of those theorems. This allows one to validate the analytical results as shown in Figures 2,
3,4,5,9, and 10.

In principle the analytical asymptotics make numerical calculations unnecessary for extreme values
of the variables, at least to the extent that the asymptotic formulae can be accurately computationally
evaluated. Nonetheless, it is of some interest to push the envelope of applicability of the numerical meth-
ods beyond the limits of the current version of the software, and here we point out that as the variables
become larger, even a Riemann—Hilbert problem adapted to asymptotic analysis in the relevant regime
becomes challenging to solve numerically. The reason is that the deviation of the jump matrix from a
piecewise-constant matrix becomes increasingly concentrated near the contour self-intersection points,
and the rapid variation requires an increasingly large number of collocation points as the variables
grow in size. There are strategies for dealing with this phenomenon. The first technique is to remove
the non-identity limiting jump matrices using the analytical outer parametrix. This yields a modified
Riemann-Hilbert problem with jump matrices that are different from the identity only in small neigh-
bourhoods of the self-intersection points. One may think that an optimal approach would be to then
deal with the self-intersection points using analytical local/inner parametrices constructed from special
functions (e.g., Airy, Bessel, or parabolic cylinder), and then reducing the problem to a small-norm
problem — exactly as in the proofs of the theorems — for the computer to solve. However, just cal-
culating the jump matrices for the small-norm problem accurately requires reliable evaluation of the
relevant special functions for extreme values of the arguments, which is again a computational problem
of a similar nature. An alternative is to construct a numerical parametrix for a given intersection point
by truncating jump contours away from it, imposing identity asymptotics at infinity, and rescaling to
obtain a model requiring fewer collocation points for accuracy. Then one conjugates the full problem
by the parametrix, which removes all difficulties near the selected point and conjugates the jumps near
the remaining points by near-identity factors. Iterating this procedure to take care of the intersection
points one-by-one can yield excellent results. The actual procedure has additional technical details, but
this is the main idea. We plan to continue to update the software in RogueWaveInfiniteNLS. j1 as
such improvements come to light, with the aim of making the accurate computation of ¥(X, T; G, B)
available in increasingly larger domains of the (X, T)-plane.

In the remainder of this section we redefine v (defined in_Section 1.3.1) and w (defined in
Section 1.3.2) in terms of the rescaled and reflected coordinates (X, T):

v:=TX"2, w:=XT"3, 5.7
We also recall the critical values of v and w: v, := 543 and We = 54%.

Remark 5.1 (Scaling of arguments). Like the main program psi, the programs psi_undeformed,
psi_largeX, psi_largeT, and psi_Painleve take the unscaled variables (X, 7T) € R? as arguments,
along with the value of B. However, the lower-level programs assume that B=1 and take the rescaled
coordinates (X, T) as arguments (both nonnegative). To simplify the notation in describing the lat-
ter routines below, we will drop the tildes. This also makes it easier for the reader to match with the
notation in the rest of the paper where the Riemann—Hilbert problems that are solved numerically by
these routines are formulated in terms of variables denoted (X, T) and the derived quantities v and w
given by (5.7). Of course if B=1 and X, T > 0, there is no difference between the scaled and unscaled
coordinates.

5.3. The region NoDeformation

If (X,T) lies in the region NoDeformation according to Algorithm 1, then psi calls the wrapper
psi_undeformed which in turn calls the low-level program rwio_undeformed. The latter program
solves numerically the basic Riemann—Hilbert Problem 1 which does not leverage any deformation or
opening of lenses. Although the jump contour is stated to be |A| = 1 in (1.4), one can actually take any
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Jordan curve enclosing the origin A = 0 to be the jump contour. rwio_undeformed leverages this free-
dom and uses the circle |A| = T~7 as the jump contour if 1 < T < Tyax and uses the original contour
|A| =1if0 < T < 1.In practice we take Tpax := 8 (see Algorithm 1). With this choice the jump contour
stays away from the singularity of the exponential factors in (1.4) at A = 0 (with a distance at least 1/ V8)
while, under the conditions that (X, T') is assigned to the region NoDeformation by Algorithm 1, the
matrix norm of the jump matrix is uniformly of moderate size on the jump contour. The low-level rou-
tine for computing ¥ (X, T'; G, B = 1) via solving the undeformed problem Riemann—Hilbert Problem 1
with the given parameters and for X > Oand 7 > 0 is rwio_undeformed with arguments X, T (rescaled
and nonnegative), a, b, and an integer n, the number of collocation points to use on each straight-line
arc of the polygonal jump contour. For instance, the command

[julia> rwio_undeformed (0.8, 1.5, 1, 2im, 400)

returns W(X,T; G, B) at X=0.8, T=1.5, with G = G(a = 1,b = 2i) and B=1. The original circular
jump contour is modelled as a square, each side of which is resolved using 400 collocation points.
The corresponding wrapper psi_undeformed takes the same arguments as does psi except for an
additional argument allowing the user to specify the number of collocation points on each of the four
sides of the square jump contour. These are the unscaled coordinates, which can take any signs, and the
value of B is specified in the argument list. Thus for instance

[julia> psi_undeformed(-0.8,1.5,1,2im,1.2,400)

returns ¥(X,T;G,B) at X = -0.8, T=1.5, G = G(a = 1,b = 2i) and B= 1.2 using 400 collocation
points on each edge of the square.

5.4. The region LargeX

If Algorithm 1 determines that (X, T') lies in the region LargeX, then psi calls the wrapper psi_largeX
which calls the low-level program rwio_largeX. This low-level program solves the Riemann—Hilbert
problem satisfied by T(z; X, v) defined by (2.5) with jump conditions given by (2.9). See Section 2
and in particular Figure 12 for the jump contour of this Riemann—Hilbert problem. This is exactly
what was done in our first paper [8] where W (X,T;G,B = 1) was computed for the first time for
G = Q7! for T small: |T| < 1. The numerical routine rwio_largeX implemented in the package
RogueWaveInfiniteNLS. j1 is very similar, the main difference being the use of the open-source
Julia programming language.

As described in Section 2, the jump contour for the deformed problem is independent of X but
depends on v € [0,v.). rwio_largeX adaptively chooses a polygonal model for the jump contour that
varies as v ranges over this interval. This variation becomes especially important as v approaches v, ~
0.136. See Figure 18 for the numerical jump contours used by rwio_largeX for different values of v.

The arguments taken by rwio_largeX are X and v (the natural parameters for T(z; X, v) as described
in Section 2), a, b, and n (the number of collocation points per segment of the polygonal jump contour).
For instance,

[julia> rwio_largeX(25, 0.1, 1, 2im, 140)

returns ¥Y(X,7T;G,B = 1) at X=25, v = X3 = 0.1, with G = G(a = 1,b = 2i) by
using 140 collocation points in each segment. The auxiliary routine vfromXT(X,T) included in
RogueWaveInfiniteNLS. j1 can be used to compute the value of v given (X, T) if needed.

In this case, the wrapper psi_largeX takes different arguments, as it allows the user to directly
compute ¥(X, T'; G, B) at arbitrary given (X, T) coordinates (unscaled, and in any quadrant of the plane)
using the numerical approach underpinning rwio_largeX. The arguments of psi_largeX are again
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Figure 18. The numerical contours used by rwio_largeX for increasing values of v € [0, v).

the same as those of psi with an additional integer argument for specifying the number of points used
on each contour segment. Thus,

[julia> psi_largeX(-25,-0.1,1,2im,1.2,140)

returns ¥(-25, -0.1, G(1, 2i), 1.2) computed by scaling the variables by B = 1.2, computing v from the
scaled variables using vfromXT, then calling rwio_largeX with 140 collocation points, and finally
scaling the returned value by B=1.2.

5.5. Theregion LargeT

When Algorithm 1 assigns (X, 7T) to the region LargeT, the main program psi calls the wrapper
psi_largeT which in turn calls the low-level program rwio_largeT. The latter routine computes
the solution by via the Riemann—Hilbert problem satisfied by the matrix T(Z;T,w) described in
Section 3. The numerical solution of the latter problem is substantially more complicated than is
solving for T(z;X,v) and it was not considered in our earlier work in [8]. Its implementation in
RogueWaveInfiniteNLS. jl is a significant new contribution.

To describe the method used by rwio_largeT, we first rewrite the jump conditions satisfied by
T(Z; T, w) by assigning new names to the constant matrices that appear in the jump conditions that will
be convenient in describing certain local transformations later on. Thus the jump conditions given by
(3.21) are reformulated as follows:

T (Z; T, w) = T_(Z; T, w)e T M asy fTPhZwes -y, o | g | zect, 69
T,.(Z;T,w) =T_(Z; T, W)e—iT1/3h(Z;w)03VReiT1/3h(Z;w)o'3’ Vi = 1 ab , Ze CIJ:,R’ (5.9)
T (Z;T,w) =T_(Z;T,w)a %, Zel, (5.10)
. _ . —iT1/3h(Z;w)o'3 iT1/3h(Z;w)0'3 — 1 0 -
T(Z,T,w)=T_(Z;T,w)e Yre 3, Yg = b1l Ze€Crp (5.11)
—Q ”
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[ b
T+(Z, T, W) — T_(Z, T, w)e—iT|/3h(Z;W)0'3YLeiT1/3h(Z;W) 0‘3’ YL - 1 E . Ze CI:’L, (512)
0 1
8 K
To(Z,T,w) = T_(Z, T, w)e" T "hZmasyy, o ThZmes w2 b|., ZeCt, (5.13)
10 1 '
_ e
T,.(Z;T,w) = T_(Z;T, W)e—iTI“h(Z;w)rJ'gVVReiT‘/3h(Z;w)0'37 Wy = 1 _F , Ze€ CE,R’ (5.14)
0 1
ir'3n(z; iT'3n(z; (10
T (Z;T,w) = T_(Z;T,w)e T "hZmasx oI Fh(Zw)os g .= | (3 At ZeCsy  (5.15)
b
. . —iT'\Bh(Zw) o3 iT'\Bh(Zw) o3 . 0 -
T.(Z;T,w)=T_(Z;T,w)e Xre o Xp=|a ik ZeCg;. (5.16)
b
Finally, on ¥ = £* U X~ we have
0 a
T+(Z; T, W) =T_ (Z, T, W)e—iT1/3h,(Z;w)0'3W31T1/3h+(Z;w)0'3, W = b b , Z€ Z+, (5.17)
-— 0
a
0 b
To(Z:T,w) = T_(Z; T,w)e” T h-@masxe T @wes x| © al zex. (5.18)
-— 0
b

Note that the jump matrices on X* and X~ are constants in Z since h..(Z) +h_(Z) = x(w) on those arcs.
For numerical purposes, we implement 4(z; w) as follows. We first define R (z; w) as the function (the
numerical implementation of R(z; w), hence the superscript) that has branch cuts on the line segments
from Z; to Z; and from Z; to Zo. It can be written in terms of principal branch square roots as

Z-7 (w))5 (Z—ZO(W)

Z-7Z,(w) Z—Zl(w)) (Z - Z5(w)), (5.19)

RN(Z;w) := (

however, this formulation is not stable near Z = Z;(w) or Z = Z;(w). In practice, we work with the
following functions:

RY(Z;w) = (Z = Zo(w))?(Z - Zg(w))?, (5.20)

which has horizontal branch cuts from Z = Zy(w) to Z = (—c0) +ilm(Zp) and from Z = Z;(w) to
Z = (—o0) —ilm(Zy(w)),

RY,(Z:w) = ~(Zo(w) = ) (Z3(w) = 2)*, (5:21)
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which has horizontal branch cuts from Z = Zy(w) to Z = (+0) +iIm(Zp(w)) and from Z = Zj(w) to
Z = (+o0) —iIm(Zy(w)), and

Z-Zy(w)\?

R’T"(Z; w) = (ZTO(W))Z (Z - Z5(w)), (5.22)

which has a vertical branch cut from Z = Zj to Z = Z. Recalling that X is oriented upward, RY (Z;w)
is the continuation of R (Z;w) to the strip —Im(Zy) < Im(Z) < Im(Z) lying to the left-hand side
of T and RY,(Z;w) is the continuation of RY (Z;w) to the strip — Im(Zo) < Im(Z) < Im(Zp) lying to
the right-hand side of X. The values of the functions RY (Z;w) and R",(Z;w) match with the values
of RN (Z;w) directly above and below the relevant semi-infinite strips emanating from X. Using these
numerical versions of R(Z;w), we define corresponding numerical versions hﬁ (Z;w), hA_l)(Z ;w), and
h?’(Z; w) of h(Z;w) via the formula

1 w
Z; —= 3.2 - — 2
hZ;w) = Z 3:273 -, (5.23)

as in (3.8).

Before we do anything, we locally collapse the jump conditions supported on CF r and C2 g near
Z = 7y to a single common arc Cf-y  oriented towards Z by a local transformation and we still call the
resulting unknown matrix T(Z) = T(Z;T,w) due to the simplicity of the transformation. Since Cz R
is oriented towards Zo but Cy. , is oriented away from Zj, it follows that the collapsed jump condition
satisfied by the redefined T(Z T w) is

To(Z; T, w) = T_(Z; Tyw)e T HZ Ty o PHZN Ty = Vil We,  Z € Clyg (5.24)

The analogue of this transformation is also carried out near Z = Z; by locally collapsing the jump
conditions supported on Cy. , and Cs ; near Z = Z; to a single common arc Crz  oriented away from
Z; by a similar transformation. Since Cspis orlented away from Zj but Cf-  is oriented towards Zy, it
follows that the collapsed jump condmon satisfied by the redefined T(Z T w) is

T (Z:T,w) = T_(Z: Tow)e T HEW O Qe HZW s - Cpr = Y Xp, Z € Cryye (5.25)

We place the collapsed contours CFE’R and Cry , where CE’R and Cy , were placed near Zy and
Z;, respectively. See Figure 19 for the arrangement of contours near Zo. We omit the figure for the
configuration near Z;.

We now let Dz, (6o(7T)) and Dz (60(T)) denote disks centred at Z = Zy and Z = Z; with common
radii §0(7T'), whose dependence on T will be determined later. We introduce

T(Z; T, w)e T"hZwes - 7 € Dy (56(T)) U Dz, (60(T)),
T(Z,T,w), everywhere else.

A(Z,T,w) := { (5.26)

This transformation introduces jump conditions on the boundary of the disks, which we take to be
clockwise oriented. It also modifies the jump matrices on the existing arcs of the jump contour for
T(Z;T,w). The jump matrices associated with the jump conditions satisfied by A(Z; T,w) for Z near
Z are illustrated in Figure 20 in blue colour. See for Figure 21 for the analogous jump conditions for
Z near Z;. For the purposes of numerics, the disks are modelled by two polygons related by Schwarz
reflection to preserve that of the original jump contour.

We then make the local substitutions shown in fuchsia in Figures 20-21 to transform A(Z; T, w) to
a new unknown N(Z; T, w), and we define N(Z; T,w) := A(Z; T,w) for Z outside the polygonal disks.
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—iT31(Z)o3 iT'31(Z)o3
e ! 3Vige °
iT1/3ll(Z)UﬁV ]w iTV31(Z)0

e—iT1/3h(Z)<73VReiT1/3h(Z)r73

e—iT’”h(Z)ngReiT”W:(Z)Vg

Figure 19. Collapsing the jump conditions supported on Cy. , and C5. , to a common arc near Zy.

e—iTl/Sh(Z)UgVLeiT1/3h(Z)t73

efiT1/3h(Z)z73wLeiT1/3h(Z)fr3 e~ iT"21(Z)os

e—iT”3h( o3

e—iT*h_(Z)osWelT"?hi (Z)os

e—iT”3h(Z)173CZ el T ?h(Z)os
0

Figure 20. The transformation T(Z;T,w) +— A(Z;T,w) augments the jump contour for T(Z;T,w)
(black segments) by the blue-coloured segments. The jump matrices (modified or new) associated with
A(Z; T,w) are given in blue. The substitutions shown in fuchsia define the transformation A(Z; T, w)
N(Z; T, w) inside the disk (modelled by a polygon in rwio_largeT).

The transformation A(Z; T,w) — N(Z;T,w) results in the new unknown N(Z; T,w) being analytic
inside the disks. The jump conditions satisfied by N(Z; T, w) near Z = Z; and Z = Zj are described in
Figure 22.

Although the jump contour for the problem satisfied by N(Z; T, w) (or by T(Z; T, w)) is independent
of T, it depends on w. So the numerical jump contour is chosen adaptively according to the value of w.
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efiT1/3h(Z)z73CZ*eiT1/3h(Z)o'3
0

—iT*h_(Z)os X i T 1y (Z) 03

e iT'3h(Z)as

e~ iT"Ph(Z)os

e—iT‘/3h(Z)173XLeiT”3h(Z)03 L TAT

e—iT"*h(Z)0s YLeiT1/3I1(Z)173

Figure 21. As in Figure 20 but for the neighbourhood of Z;.

T H(Z)es € TV NN

eI ND)y, T H(Z)0s

TV Z) sy, T h(Z)es
eI HD)m W, T H(Z)es

(7 V3, (Z)0s
e 1T (Z)os Xl T 0, (Z)os

T (2)os Wi T hs (Z)es

eI NZ)os X, (T H(Z)0s

e i1 D)0 C g T H(Z)0s

75

eI H(Z)ory, o TH(Z)on

Figure 22. The transformation A(Z;T,w) — N(z;T,w) removes the jump discontinuities inside the

disk (polygon). The jump matrices (modified) associated with N(z; T, w) are given in fuchsia.

The final Riemann—Hilbert problem that is satisfied by N(Z; T, w) has the numerical jump contours as

shown in Figure 23.

Except for those on the polygons modelling the disks centred at Z = Zy and Z = Z;, the jump
matrices for N(Z; T, w) on the subarcs of the numerical contour shown in Figure 23 coincide with the
jump matrices for T(Z; T, w) as described in (5.8)—(5.18). These jump matrices (except for the constant
jump matrices supported on / and X* U X7) are close to the identity away from the points Z = Z; and
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-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
Re(Z) Re(Z) Re(Z)

Figure 23. The numerical contours used in the region LargeT for increasing values of w € [0, w,).
The orange arc is X (see Figure 15) and it is included just for reference in the plots. X is also modelled
by line segments.

Z = Z when Algorithm 1 assigns (X, T) to the region LargeT. The jump matrices for N(Z; T, w) on the
polygons centred at Z = Zy and Z = Z; as shown in Figure 22 have elements that grow as T increases.
To combat this growth when T is large, rwio_largeT chooses the radii d¢(7) to be smaller when T is
larger. Indeed, noting from

W(Z;w) — h(&w) =0((Z - €)%, Z— & for & =Zy(w), Zo(w)", (5.27)
that

eiT1/3h(Z;w)0'3 =0(1), T — +oo, (5.28)

if |Z - §|T% = 0(1), for ¢ = Zy(w),Zo(w)* as T — +oo. Therefore, ruio_largeT scales the common
radius of the circles (polygons) centred at z = Zg(w), Zyp(w)* as |T|‘%. With these choices and the
numerical implementation of 4(Z;w) discussed earlier to compute the jump matrices, rwio_largeT
solves for N(Z; T, w) using the routines in OperatorApproximation. jl.

The low-level routine rwio_largeT takes as arguments 7, w, a, b, and an integer specifying the
number of collocation points per polygonal segment of the jump contour. The use of 7 and w appears
because these are natural coordinates for the description of the jump conditions, however w = XT~ Sisan
explicit function of (X, T') and the routine wfromXT (X, T) provided with RogueWaveInfiniteNLS. jl
could be used to find w from given (X, T) if needed. For instance,

[julia> rwio_largeT(40, 1.9, 1, 2im, 150)

computes V(X,T;G,B=1)at T=40,w = XT-5 = 1.9, with G = G(a = 1,b = 2i), with 150 col-
location points on each segment of the polygonal numerical jump contour. The corresponding wrapper
psi_largeT has the same arguments as psi except for an additional argument it passes directly to
rwio_largeT to determine the number of collocation points. Thus

[julia> psi_largeT(40,-1.9,1,2im,1.2,150)

computes ¥(40,-1.9,G(1,2i), 1.2) by scaling the variables by B=1.2, computing w from the scaled
variables using wfromXT, and then calling rwio_largeT with 150 collocation points, after which the
returned value is scaled by B=1.2.
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Figure 24. The numerical contours used by rwio_Painleve as v increases when |v—v.| remains small.
ve = 0.136083.

5.6. The region Painleve

Finally, if Algorithm 1 determines that (X, T') lies in the region Painleve, then psi calls the wrapper
psi_Painleve that then calls the low-level routine rwio_Painleve. The latter implements the numer-
ical solution of the modification described in Section 4 of the Riemann—Hilbert jump conditions for
T(z; X, v) given in Section 2 with the aim of improving accuracy as v = X3 Tve=54" > The method
for computing ¥(X, T; G, B) implemented in rwio_Painleve is also a new contribution of the package
RogueWaveInfiniteNLS. j1 and such a computation was not attempted in our earlier work [8].
Recall that for 0 < v < v, the controlling exponent function #(z; v) in the Riemann—Hilbert problem
analysed in Section 2 has three real simple critical points z_(v) < z1(v) < 0 < z2(v). As v < v, gets
close to v, the third critical point z_, (v) (not playing a role in the large-X analysis) gets close to z;(v),
and at v = v these two critical points collide at z = z; := -6 =z (v¢), forming a double critical point.
On the other side of the critical curve v = TX -3 = ve in the (X, T)-plane (equivalent to the curve

w=XT"3 = we), for 0 < w < wy, the controlling exponent function /4(Z; w) has two simple critical
points Z;(w) < 0 < Z>(w) and two non-real branch points Zy(w) and Zy(w)*. As w approaches w, the
branch points Zy(w) and Zy(w)* approach to the real critical point Z; (w), and at w = w, three points
collide at a point Z = Z. related to z = z. by the scaling relation Z = wiz=viz

Algorithm 1 assigns (X, T') to the region Painleve when |v — v¢| is small so that one of the two
collision scenarios described above is about to occur. The pair of nearby critical points is modelled
by the double critical point z = z, = —V6 of the exponent function J(z;v.). Consequently, the
Riemann-Hilbert problem solved numerically by rwio_Painleve coincides mostly with that solved
by rwio_largeX but with critical points z = z (fixed, double) and z = z»(v), varying slightly with
v = v.. The main new feature accounted for in rwio_Painleve is an adjustment of the angles with
which the jump contours exit the point z = z.. See Figure 24 for the numerical jump contours used
by rwio_Painleve (and compare with the right-hand panel of Figure 16) to formulate and solve a
numerically-tractable Riemann—Hilbert problem for the relevant values of (X, T').

Since rwio_Painleve is quite similar to rwio_largeX, the two routines take the same arguments.
So, for instance,

[julia> rwio_Painleve(80, 0.13, 1, 2im, 150)

returns the value of ¥ at X =80 and v = TX 3 = 0. 13, witha =1 and b = 2i using 150 collocation points
at each segment of the numerical jump contour. The corresponding wrapper has the same arguments
as psi, except for the number of collocation points to use that gets passed directly to rwio_Painleve.
Thus, for instance
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i [julia> psi_Painleve(80,-93,1,2im,1,150)

returns W (80, -93, G(1,2i), 1) using 150 collocation points per contour segment.

5.7. Consistency of the low-level programs near region boundaries

In this section we cross-validate the numerically computed solution by comparing the output of the
different low-level routines, which we remind the reader are actually designed to compute exactly the
same quantity: ¥(X, T; G(a, b), B = 1). We first compare the solution computed by each of the routines
rwio_largeX,rwio_largeT, and rwio_Painleve with the solution computed by the simplest routine
rwio_undeformed. This is done by taking (X, T) near the origin. We then take X and T large and
near the critical curve v = TX~2 = ve, and compare the solution computed by rwio_largeX and
rwio_largeT with the solution computed by rwio_Painleve. We demonstrate that the computed
solutions match to at least 13 digits of accuracy in all the cases mentioned above. This indicates that
Algorithm 1 operates in a “seamless” fashion. See the notebook Paper-Code . ipynb in the repository
[2] for the sample codes that produced the examples below along with the codes for performing the
computations presented in Section 1.

5.7.1. Comparing rwio_largeX and rwio_undeformed near the origin

We set X =1 and v = 0.1v.. Then the value of T is determined via the code:

1 [julia> Xval 1.

> [julia> wvval 0.1xVCRIT

s [julia> Tval = TfromXv(Xval,vval)
0.013608276348795434

The code below shows that the solution computed using rwio_undeformed and that computed using
rwio_largeX match with high accuracy:

i [julia> abs(rwio_undeformed(Xval,Tval,1,2im,400)-rwio_largeX(Xval,
vval,1,2im,140))
3.5749182362651225e-13

Similarly, we set X =1 and v = 0.8y, and find:

1.

i [julia> Xval
> [julia> vval 0.8%VCRIT
; [julia> Tval TfromXv (Xval,vval)
[julia> abs(rwio_undeformed(Xval,Tval,1,2im,400)-rwio_largeX(Xval,
vval,1,2im,140))
3.784797839067842e-13

5.7.2. Comparing rwio_largeT and rwio_undeformed near the origin

We set T =1 and w = 0.1w.. Then the value of X is determined via the code:

i [julia> Tval 1.

> [julia> wval 0.1*xWCRIT

s [julia> Xval = XfromTw(Tval,wval)
0.37797631496846196

Downloaded from https://www.cambridge.org/core. 20 Nov 2025 at 06:00:12, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Journal of Nonlinear Waves 79

The code below shows that the solution computed using rwio_undeformed and that computed using
rwio_largeT match with high accuracy:

[julia> abs(rwio_undeformed(Xval,Tval,1,2im,400)-rwio_largeT(Tval,
wval,1,2im,140))
» 1.5685785522111634e-13

Similarly, we set 7' =1 and w = 0.8w,, and find:

[julia> Tval = 1.

[julia> wval 0.8*xWCRIT

[julia> Xval XfromTw(Tval ,wval)

[julia> abs(rwio_undeformed(Xval,Tval,1,2im,400)-rwio_largeT(Tval,
wval,1,2im,140)

6.467885900866133e-14

5.7.3. Comparing rwio_Painleve and rwio_undeformed near the origin

We set X =1 and v = v.. Again, these choices determine the value of 7 via the code:

[julia> Xval = 1.

> [julia> wvval = VCRIT

[julia> Tval = TfromXv(Xval,vval)
0.13608276348795434

The code below shows that the solution computed using rwio_undeformed and that computed using
rwio_Painleve match with high accuracy:

[julia> abs(rwio_undeformed(Xval,Tval,1,2im,140)-rwio_Painleve (Xval,
vval,1,2im,140))
2.4340993547656853e-13

5.7.4. Comparing rwio_Painleve with rwio_largeX or rwio_largeT for (X, T) large near the
critical curve

To compare rwio_Painleve with rwio_largeX we set X =2000 and consider v < v but also v = v,
by setting v = 0.98v.. The code below shows that the solution computed using rwio_largeX and that
computed using rwio_Painleve match near the critical curve v = v, with high accuracy:

i [julia> Xval = 2000

[julia> vval = 0.98%VCRIT
» [julia> abs(rwio_largeX(Xval,vval,1,2im,140)-rwio_Painleve (Xval,
| vval,1,2im,140))

1.5436906930782975e-15

To compare rwio_Painleve with rwio_largeT we again set X =2000 and consider v > v (i.e.
w < wc) but also v = v, by setting v = 1.05v.. This choice determines the value of T which we find
numerically and then obtain the value of w from these determined values of X and 7. The code below
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Figure 25. Left: £X(X) for m = 10 (dashed-dotted), m = 20 (dashed), and m = 40 (solid) over 400 <
X < 420. Center: 5,2(T) for m = 10 (dashed-dotted), m = 20 (dashed), and m = 40 (solid) over
600 < T < 620. Right: EF (X) for m = 20 (dashed-dotted), m = 40 (dashed), and m = 80 (solid) over
400 < X < 420.

performs these initial computations and then shows that the solution computed using rwio_largeT and
that computed using rwio_Painleve match near the critical curve v = v, with high accuracy:

. [julia>
> [julia>
; [julia>

[julia>
s [julia>

6 vval s

Xval = 2000

vval = 1.05%xVCRIT

Tval = TfromXv(Xval,vval)
wval = wfromXT (Xval,Tval)

abs (rwio_largeT(Tval,wval,1,2im,140)-rwio_Painleve (Xval,
1,2im,140))

1.0412793661344947e-14

5.8. Effect of increasing the number of collocation points

We now demonstrate how the accuracy of the various routines improves as the number of collocation
points is increased. We fix parameters a = b = 1 and B=1. First, to study rwio_largeX, we fix a
relatively large reference number of collocation points Nx = 80 and fix v = 0.5v.. Then varying X and
the number m of collocation points per contour segment, we define

531((X) = |rwio_largeX(X,0.5v., 1,1,m) — ruio_largeX(X,0.5v., 1,1,Nx)|. (5.29)

Next, to study rwio_largeT, we fix a relatively large reference number of collocation points Nt = 80
and fix w = 0.5w,. Then varying T and the number m of collocation points per contour segment, we

define

S,E(T) = |rwio_largeT(T,0.5w¢, 1,1,m) — rwio_largeT(T,0.5w., 1,1, N1)| . (5.30)

Finally, to study rwio_Painleve, we fix a relatively large reference number of collocation points Np =
160 and fix v = v, to be on the critical curve. Then varying X and the number m of collocation points
per contour segment, we define

Enl;(X) := |rwio_Painleve(X, v, 1,1,m) — rwio_Painleve(X, v, 1,1,Np)|. (5.31)

In Figure 25 we plot these pointwise errors over different intervals (over the X-axis for £X(X) and
5,5 (X), and over the T-axis for 5,1,; (T)) for three values of m increasing towards Nx, Np and Nt. These
plots show that once m has increased to half of the reference value in each case, the difference has
decreased to machine precision. This demonstrates how quickly the accuracy improves as the number
of collocation points per contour segment is increased.
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Appendix A. Elementary properties of ¥ (X, T; G, B)

This appendix is devoted to the proofs of several basic symmetries of the function ¥ (X, T'; G, B). First,
we prove the scaling invariance of the solution ¥(X, T'; G, B) with respect to B > 0.

Proof of Proposition 1.2 Suppose that (X,T) € R?, B>0, and G satisfying det(G) = 1 and G =
o> G* o are given. Let P(A; X, T, G, B) be the solution of Riemann—Hilbert Problem 1 with these given
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parameters. On the other hand, let ﬁ(A; X s T G, 1) be the solution of Riemann-Hilbert Problem 1 for
given (X, T) € R? with B= 1. Since the jump matrix in Riemann—Hilbert Problem 1 is invariant under
A+ B™'A, X + BX, and T +— BT, by uniqueness we find that

P(A;X,T,G,B) = P(B~'A;BX, BT, G, 1) (A.1)

since the radius of the circular jump contour in Riemann—Hilbert Problem 1 can be taken arbitrary. We
deduce from (A.1) that

Y(X,T;G,B) =2i Alim AP (M X, T,G,B)

=2i lim AP2(B™'A; BX,B*T, G, 1)

_ (A.2)
= B|(2i lim B~'AP»,(B~'A; BX, BT, G, 1))
= BY(BX,B’T;G, 1),
which is the claimed scaling symmetry. O

As in the rest of the paper, from this point onwards in this Appendix we take B =1 and omit B from
all argument lists.

We now work towards proving the symmetries of the solution ¥ (X, T; G) with respect to X — —X
and T — —T. Given the solution P(A; X, T, G(a, b)) of Riemann—Hilbert Problem 1, define

P(A; X, T,G(a,b))e 4N T3y, Al > 1,
X(A:X.T.G(a.b)) = {7 (a,b))e™™ 73 Al (A3)
a3P(A; X, T,G(a, b))e AN O3 (i) os, A < 1.
Proposition A.1. X(-A;-X,T,G(b,a)) =P(\; X, T,G(a,b)).
Proof. Observe that for |A| = 1 we have
X, (A; X, T, G(a, b)) =3P, (A; X, T, G(a, b)e A 73y
—o3P_(A: X, T, G(a, b))e—i(AX+A2T+2A‘1)u-3 G(a, b)o_3ei(AX+A2T—2A‘1)0'3
=X_(A; X, T, G(a, b)) 03 (=ic)e WX NT20D 3G 4 b) oy
_ei(AX+A2T—2A")a'3 (A4)

=X_(A; X, T, G(a, b)) MNT20D03 [ 0 (Liry) G (a, b) 3]
. ei(AX+A2T—2A‘1)a—3

=X_(A:X,T,G(a, b))e—i(AX+A2T—2A")o-3G(b’ a)ei(AX+A2T—2A’])a'3,
since 03(—i02)G(a, b)o3 = G(b, a). Thus, X(-A; -X, T, G(b, a)) satisfies exactly the same jump con-

dition as P(A; X, T, G(a, b)). Since they satisfy the same normalization and analyticity properties, by
uniqueness of the solutions of Riemann—Hilbert Problem 1 the result follows. O

The proof of Proposition 1.3 is now a simple consequence.
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Proof of Proposition 1.3 We make use of Proposition A.1 and compute
Y(X,T;G(a,b)) =2i Alim AP (M X, T,G(a, b))

=2i Alm A 0'3P(—A; -X,T, G(b, a))e—4iA*10'3 3

12
=2i lim AP;2(A; X, T,G(a, b))
A—>0 (AS)
=2i lim A[-Pi2(-A; =X, T, G(b,a))]
=2i Alim [(=A)P12(=A; =X, T,G(b,a))]
=Y(-X,T;G(b,a)),
which is the claimed symmetry. O

An easier observation is the following.
Proposition A.2. P(A; X, -T,G(a,b)) =P(-A*; X, T,G(a,b)")*

Proof. 1t is straightforward to verify that the two matrix functions satisfy the same analyticity and
normalization properties, and satisfy the same jump condition. The result follows from uniqueness. O

We now prove Proposition 1.4 as a consequence of this result.

Proof of Proposition 1.4 We make use of Proposition A.2 and compute:

Y(X,-T;G(a,b)) =2i Alim AP (AN, -X,T,G(a,b))
= 2i/3im A[P(-A5X,T,G(a,b)")*]
=2i lim [A"Pip(-A":X.T.Gla, b)")]*

(A.6)
= Alim [2i(=A")P12(-N*; X, T,G(a,b)*)]"
= lim [2iAP12(A; X, T,G(a,b)")]"
=¥Y(X,T;G(a,b)")",
which is the claimed symmetry. O

Next, we turn to the proof of Proposition 1.5, which concerned a normalization of the parameters
a,bin G(a,b).

Proof of Proposition 1.5 1t is clear from the structure of the matrix G(a, b) in (1.5) that G(a,b) =
G (ca, cb) for any positive scalar ¢ > 0. Since the dependence on a and b of Riemann—Hilbert Problem 1
enters only via the matrix G, we have

Y(X,T,G(a, b)) =¥Y(X,T,G(ca,ch)), for any ¢ > 0. (A7)

An additional identity following from (1.5) is G(e'?a,e™1?b) = ¢!?“3G(a, b) for all € R. Since
¢i973 commutes with e "I(AX+A*T+2BA™) 03 ¢ can be absorbed into P (A; X, T,G), which has no bearing
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on ¥ (X, T; G). Taken together, we can say that for any ¢ € C\ {0}, the matrices G(ca, ¢*b) and G(a, b)
yield exactly the same solution ¥(X, T'; G), or put another way,

¥Y(X,T;G(ca,c*b)) = ¥(X,T;G(a,b)). (A.8)
Finally, one can remove phase factors on b by diagonal conjugation of P, leading to the formula

Y(X,T;G(a,be'?)) = e "YW (X,T:G(a,b)). (A.9)

Composing these identities by first taking ¢ = e 122(@) //|a|2 + |b|2 in (A.8) so that

Y(X,T;G(a,b)) =¥

X.T:G ol L s (A.10)
Vial? + 162 Vlal? + b2

and then taking 6 = arg(ab) in (A.9), we arrive at (1.10). O

Finally, recall the parameterization G = G(a, b) by complex numbers a, b not both zero as given in
(1.5). Proposition 1.8 concerned the special case that either a =0 or b =0, and we give its proof now.

Proof of Proposition 1.8 First, if b=0, but a # 0, then G = G(a, b) given in (1.5) is a diagonal matrix
and it is easy to verify that the matrix function

*

a
lal 1 A<,
P(AX.T.G)={|¢g & (A.11)
|al
I, Al > 1,

is the solution of Riemann—Hilbert Problem 1, which produces ¥ (X, T; G) = 0 by (1.6). Similarly, if
a=0, but b#0, then G is an off-diagonal matrix, and the jump matrix (1.4) may be expressed as

—2i(AX+AT
e IAXHALT 420" ) 0y Gl (AXHACT 420 Y oy 1 0 b*e2il )

4iN o
bl | —beitax+A7T) 0 T (A1)

In this case, one can verify that

1 0 _b*efzi(/\xmzr)
ol ) . A< L
P(A; X, T,G) = { |b| |pe2i(AX+A’T) 0 (A.13)
e4iA_1(T3’ |A| > 1,
is the solution of Riemann—Hilbert Problem 1, which again produces ¥(X, T; G) = 0 by (1.6). O

Appendix B. Computing V(y; 7) related to the increasing tritronquée solution of Painlevé-I1

In this appendix we provide the details concerning the computation of V(y; 1) for real bounded values
of y, which is used in the numerical validation of Theorem 1.25 as shown in Figure 10. We recall that
V(y; ) is characterized by the conditions (1.95) in terms of the (unique) increasing tritronquée solution
u(x) of (1.94) with a = % + ip, where p = ﬁ In(1 + 7%) and 7 = |b/al. As explained in Section 4,
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Figure B1. Jump contours and conditions associated with Riemann—Hilbert Problem 2 in the {-plane
satisfied by W' (Z;y, 7).

V(y; 7) is obtained via (4.5) from the unique solution UTT(£;y, 1) of the Riemann—Hilbert problem
arising from a Lax pair for the Painlevé-II equation due to Jimbo and Miwa [21].

As discussed in Section 5, the numerical framework developed in [39] and implemented in
OperatorApproximation. j1 [40] concerns Riemann—Hilbert problems posed on a suitable oriented
contour I" and normalized such that the solution is of the form C + CI'[F](¢), where C is a constant
2 x 2 matrix and C*[F](¢) is the Cauchy transform

r _ L [Fe)
CTIFI(7) = zni/rs—gds' (B.1)

Therefore, we consider the following Riemann—Hilbert problem satisfied by the renormalized function

Ut (g5, 1), 17l <1,

. (B.2)
U™y, n)dres, (> L

Wz y,7) = {

Riemann-Hilbert Problem 2 (Renormalized Jimbo-Miwa Painlevé-II problem). Lety,p,7 € Cbe
related by 72 = €27 — 1. Seek a 2 x 2 matrix-valued function WTT(£;y, 7) with the following properties.
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o Analyticity: WTT(¢;y, 7) is analytic for £ in the complement of the unit circle in the five sectors
So @ |arg(d)] < %71,51 : %7( <arg({) < %n,S_l : —%n <arg(l) < —%R,SQ : %ﬂ' < arg({) < m,
and S_; : -7 < arg({) < —%ﬂ. It takes continuous boundary values on the excluded rays and at
the origin from each sector.

o Jump conditions: WIT(Z;y,7) = WL (Z;y, 1)V (Z;y, 1), where VPI(Z;y, 1) is the matrix
defined on the jump contour shown in Figure B1.

s Normalization: WYY ({;y, 1) — T as  — oo uniformly in all directions.

The function V(y; 7) is then given by
V(i) = lim (W (¢33 7). (B.3)

For the purposes of verifying Theorem 1.25, one only needs to obtain V(y; 7) for fairly small values
of [y|. For y € R close to y =0, the jump matrix VPI(£;y, 7) is bounded and tends to the identity matrix
as { — oo on any arc of the jump contour described in Figure B1. For such y € R, we numerically solve
Riemann-Hilbert Problem 2 as is (without employing any steepest descent deformations) using [40].
The routines we developed to compute V(y; 7) can be found in the repository associated with this paper
[2]. See the Jupyter notebook Painleve2TT. ipynb in the repository [2].

In order to verify Theorem 1.25, we consider a dense grid Y on the closed interval —1 <y < 1 with
a mesh size of 0.005. We numerically solve Riemann—Hilbert Problem 2 for each y € Y and obtain the
data for V(y; 7) via (B.3) over Y. We then interpolate over Y to obtain a continuous function V(y; 7) of
y. We use this interpolant for each value of X € X, where

X := {200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000,

B.4
3200, 3400, 3600, 3800, 4000, 5000, 6000, 7000, 8000, 9000, 10000}, B4

to compute E(y) as defined in (1.100) and then take the supremum over y € R as described immediately
thereafter.

Appendix C. User’s guide for the package RogueWaveInfiniteNLS. j1

In this Appendix we list all of the commands defined in the package RogueWaveInfiniteNLS. j1
written in the Julia programming language.

C.1. Main command

Most users will only need the command psi.

[julia> psi(X,T,a,b,B)

This command returns a numerical approximation of W(X,T; G(a,b), B) computed in a black-box
fashion. It determines which of the routines psi_undeformed, psi_largeX, psi_largeT, and
psi_Painleve to call based on the coordinates (X, T').

C.2. Commands for computing ¥ based on specific deformed Riemann—Hilbert problems
C.2.1. Using the undeformed Riemann—Hilbert problem

The following commands implement a direct solution of Riemann—Hilbert Problem 1.

i [julia> rwio_undeformed(X,T,a,b,n)
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This solves a version of Riemann—Hilbert Problem 1 assuming X >0 and 7 >0, and returns
Y(X,T;G(a,b),1) with n collocation points per contour segment.

[julia> psi_undeformed(X,T,a,b,B,n)

This wrapper for rwio_nodeformation_rescaled allows for variables (X, T) of any signs, and also
takes an additional argument representing the value of B. It calls rwio_undeformed after rescaling the
variables by B and determining the appropriate parameters from the matrix G(a, b), and then rescales
the returned value again by B.

C.2.2. Using the Riemann—Hilbert problem deformed for large-X asymptotics

The following commands implement a numerical solution of the Riemann—Hilbert Problem satisfied by
T(z; X, v) described in Section 2.

[julia> rwio_largeX(X,v,a,b,n)

This uses the native variables (X, v) for T(z; X, v). The underlying assumptions are X > 0and 0 < v < v,.
There are useful routines TfromXv and vEromXT for switching back and forth between the coordinates
(X,v) and (X, T) that are described below in Section C.3.

[julia> psi_largeX(X,T,a,b,B,n)

This wrapper allows for variables (X, T') of any signs, and also takes an additional argument representing
the value of B. For X > Oand T > 0, it calls rwio_largeX with rescaled (X, T') coordinates so that B =1
and with v obtained from the rescaled (X, T) via the routine vfromXT. If X <0 or T <0, a symmetry is
used to map (X,T) to a point in the first quadrant, and then rwio_largeX is called using that point.

C.2.3. Using the Riemann—Hilbert problem deformed for large-T asymptotics

The following commands implement a numerical solution of the Riemann—Hilbert Problem satisfied by
T(Z;T,w) described in Section 3.

[julia> rwio_largeT(T,w,a,b,n)
This uses the native variables (7, w) for T(Z;T,w). The underlying assumptions are 7 >0 and 0 <
w < we. There are useful routines XfromTw and wfromXT for switching back and forth between the

coordinates (7, w) and (X, T') that are described below in Section C.3.

[julia> psi_largeT(X,T,a,b,B,n)

This wrapper allows for variables (X, T') of any signs, and also takes an additional argument representing
the value of B.For X > Oand T > 0, it calls rwio_largeT with rescaled (X, T) coordinates so that B =1
and with w obtained from the rescaled (X, T') via the routine wfromXT. If X <0 or T <0, a symmetry is
used to map (X,T) to a point in the first quadrant, and then rwio_largeT is called using that point.
C.2.4. Using the Riemann—Hilbert problem deformed for large X and T near the critical curve

The following commands implement a modification of the Riemann—Hilbert problem satisfied by
T(z; X, v) as described in Section 4, accounting for the effect of v = v,.

i [julia> rwio_Painleve(X,v,a,b,n)
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This again uses the native variables (X, v) for T(z; X, v). The underlying assumptions are X >0 and
VR V.

[julia> psi_Painleve(X,T,a,b,B,n)

This wrapper allows for variables (X, T') of any signs, and also takes an additional argument representing
the value of B. For X > O and T > 0, it calls rwio_Painleve with rescaled (X, T') coordinates so that
B =1 and with v obtained from the rescaled (X, T') via the routine vEromXT.I[f X <0 or T < 0, a symmetry
is used to map (X,T) to a point in the first quadrant, and then rwio_Painleve is called using that point.

C.3. Routines for changing coordinates

The package RogueWaveInfiniteNLS. j1 defines for the user the two important constants VCRIT rep-

resenting v, = 54=2 and WCRIT representing we = 545. The following commands allow the user to
easily move between the coordinates (X, T), (X, v), and (7, w).

[julia> TfromXv(X,v)

This returns the value 7 = X %v determined by a given (X, v), in case one would like to extract the
T-coordinate of a point on the curve in the (X, T') plane determined by fixing the value of v.

[julia> vfromXT(X,T)

In a similar fashion, this returns v = TX 2, in case one would like to determine the value of v to use in
the routine rwio_largeX from given (X, T).

[julia> XfromTw(T,w)

This returns the value X = T3w determined by a given (7, w), in case one would like to extract the
X-coordinate of a point on the curve in the (X, T) plane determined by fixing the value of w.

[julia> wfromXT(X,T)

In a similar fashion, this returns w = X7 ~3, in case one would like to determine the value of w to use
in the routine rwio_largeT from given (X, 7).
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