JOURNAL OF PLASMA PHYSICS exists for the publication of experimental and theoretical research papers on plasma physics and its applications.

EDITOR

Dr J. P. DOUGHERTY

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Silver Street, Cambridge, CB3 9EW England

ASSOCIATE EDITORS

Prof. D. BERSHADER

Department of Aeronautics and Astronautics,
Stanford University, Stanford, California 94305, U.S.A.

Prof. F. D. KAHN

Department of Astronomy,
University of Manchester, Manchester M13 9PL, England

Prof. W. B. THOMPSON

Department of Physics,
University of California, La Jolla, California 92037, U.S.A.

Authors wishing to have papers published in the JOURNAL should communicate them to any one of the persons named above, choosing one in their own country where possible.

Authors are urged to ensure that their papers are written clearly and attractively, in order that their work will be readily accessible to readers.

Manuscripts should be typed in double spacing on one side of the paper only, with references listed at the end in alphabetical order of authors. Drawings should be done in Indian ink on plain white or transparent paper, and should not be larger than 15 in. by 24 in. Lettering should be shown clearly in pencil for reproduction by the printer, and as far as possible information relating to a figure should be placed in the caption rather than on the figure. A typed list of captions should be provided at the end of the manuscript. Proofs of papers from overseas will usually be despatched to authors by airmail. There is no charge for publication. Authors are entitled to receive 50 offprints of a paper in the JOURNAL free of charge, and additional offprints can be purchased if ordered in advance.

© Cambridge University Press, 1974

For permission to reproduce material from Journal of Plasma Physics, please apply to the London or New York office of the Cambridge University Press.

ISI Tear Service, 325 Chestnut Street, Philadelphia, Pennsylvania 19106, U.S.A. is authorized to supply single copies of separate articles for private use only.

JOURNAL OF PLASMA PHYSICS is published once every two months in February, April, June, August, October and December, by Cambridge University Press, P.O. Box 92, London NW12DB and 32 East 57th Street, New York, N.Y. 10022.

Three parts form a volume. The subscription price of a volume (which includes postage) is £16.00 net (US $52.00 in the U.S.A. and Canada). Single parts cost £7.00 net (US $21.00 in the U.S.A. and Canada) plus postage.

Copies of the journal for subscribers in the United States of America and Canada are sent by air to New York to arrive with minimum delay.

Second class postage paid at New York, N.Y.
CONTENTS TO VOLUME 12

PART 1 AUGUST 1974

An electron thermal instability in a resistive non-equilibrium fully ionised plasma. M. G. Haines |

Generation and radiation of second harmonic by s-polarised electromagnetic waves incident on a narrow inhomogeneous plasma layer. V. V. Dolgopolov, N. M. El-Siragy and Y. A. Sayed |

Effect of Hall current on the instability of an anisotropic plasma jet. K. M. Srivastava |

General relations for resonant particle diffusion in pitch angle and energy. L. R. Lyons |

The magnetoplasma dispersion function: some mathematical properties. J. P. M. Schmitt |

Magnetohydrodynamic waves in a non-uniform current-carrying plasma column. J. Vaclavik and E. Wise |

Collision integrals of electronically excited states and transport coefficients of thermal plasmas. M. Capitelli and U. Lamanña |

Nonlinear interactions of waves in an active molecular plasma. M. Bonnedal and H. Wilhelmsson |

Surface waves at a vacuum-plasma interface. P. C. Clemmow and J. Elgin |

The ray tracing treatment of the oblique echo model for the topside upper hybrid resonance. E. J. Parkes |

An experimental investigation of parallel and oblique shock waves in a magnetized plasma. A. D. Craig |

An experimental investigation of slow-mode shock waves. A. D. Craig |

The effect of wave reflection on induced Raman scattering in an inhomogeneous plasma. R. A. Cairns |

Reviews

Fundamentals of Plasma Physics, by S. R. Seshadri |

Methods in Nonlinear Plasma Theory, by R. C. Davidson
PART 2 OCTOBER 1974

On the Dupree–Weinstock turbulence theory. NELLY PEYRAUD and JEAN COSTE page 177

An analytical study of the oblique echo model for the topside plasma resonance. E. J. PARKES 199

An analytical study of the oblique echo model for the topside upper hybrid resonance. E. J. PARKES 217

Wave propagation in a moving plasma. Part 2. Wave propagation along, and plasma motion normal to, the magnetic field. D. N. SRIVASTAVA 271

Diffusion of resonance particles in strong plasma turbulence. M. R. GUPTA 279

Nonlinear effects of two modified ordinary monochromatic waves. A. A. SELIM 287

Nonlinear waves in a cold plasma by Lorentz transformation. P. C. CLEMMOW 297

On the possibility of magnetic fields and fluid flows parallel to the X-line in a re-connexion geometry. S. W. H. COWLEY 319

Convection-region solutions for the re-connexion of anti-parallel magnetic fields of unequal magnitude in an incompressible plasma. S. W. H. COWLEY 341

PART 3 DECEMBER 1974

Self-consistent Vlasov equilibria for intense hollow relativistic electron beams. R. C. DAVIDSON and C. D. STRIFFLER 353

Application of the theory of mixing systems to nonlinear Landau damping. L. KRTLÍN 365

Energy transfer equation and universal spectrum of ion–acoustic wave turbulence. T. TAJIMA, S. ICHIMARU and T. NAKANO 381

Two-stream instability in plasmas for arbitrary propagation. S. S. AGGARWAL and S. P. TALWAR 395

Second harmonic generation using spatially varying static electron number density in a magnetoplasma. N. B. CHAKRABARTI and B. N. BASU 405

Pitch angle and energy diffusion coefficients from resonant interactions with ion–cyclotron and whistler waves. L. R. LYONS 417

Parametric excitation of Alfvén and acoustic waves. N. T. HUNG 445
Validity of the weak-coupling approximation in strong plasma turbulence. P. Rolland page 455

Electric fields parallel to the magnetic field in a laboratory plasma in a magnetic mirror field. R. Geller, N. Hoffgarten, B. Jacquot and C. Jacquot 467

The effects of trapped and untrapped particles on an electrostatic wave packet. M. S. Espedal 487

The use of quasi-normality assumptions in the theory of the two-dimensional guiding-centre plasma. I. Cook 501

Index to Volume 12 509
JOURNAL OF PLASMA PHYSICS

Volume 12 Part 3 December 1974

CONTENTS

Self-consistent Vlasov equilibria for intense hollow relativistic electron beams
R. C. DAVIDSON and C. D. STRIFFLER page 353

Application of the theory of mixing systems to nonlinear Landau damping
L. KRLÍN 365

Energy transfer equation and universal spectrum of ion–acoustic wave turbulence
T. TAJIMA, S. ICHIMARU and T. NAKANO 381

Two-stream instability in plasmas for arbitrary propagation
S. S. AGGARWAL and S. P. TALWAR 395

Second harmonic generation using spatially varying static electron number density in a magnetoplasmadu
N. B. CHAKRABARTI and B. N. BASU 405

Pitch angle and energy diffusion coefficients from resonant interactions with ion–cyclotron and whistler waves
L. R. LYONS 417

Ion–acoustic instability of the positive column
D. B. ILIĆ, G. M. WHEELER, F. W. CRAWFORD and S. A. SELF 433

Parametric excitation of Alfvén and acoustic waves
N. T. HUNG 445

Validity of the weak-coupling approximation in strong plasma turbulence
P. ROLLAND 455

Electric fields parallel to the magnetic field in a laboratory plasma in a magnetic mirror field
R. GELLER, N. HOPFGARTEN, B. JACQUOT and C. JACQUOT 467

The effects of trapped and untrapped particles on an electrostatic wave packet
M. S. ESPEDAL 487

The use of quasi-normality assumptions in the theory of the two-dimensional guiding-centre plasma
I. COOK 501

INDEX TO VOLUME 12 509

© Cambridge University Press, 1974

CAMBRIDGE UNIVERSITY PRESS

BENTLEY HOUSE, 200 EUSTON ROAD, LONDON NW1 2DB
AMERICAN BRANCH: 32 EAST 57TH STREET, NEW YORK, N.Y. 10022

Annual subscription £32.00 net in U.K. (US $104.00 in U.S.A. and Canada)

Printed in Great Britain at the University Printing House, Cambridge

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 03 Sep 2018 at 17:11:09, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377800025319