
2
Features, Combined: Normalization,

Discretization and Outliers

This chapter discusses feature engineering (FE) techniques that look
holistically at the feature set, that is, replacing or enhancing the features
based on their relation to the whole set of instances and features. An ongoing
issue in FE is how to provide more value to features by leveraging contextual
information. In this chapter, we use the whole dataset to provide the context.
The central question is how to consider all the features together. Note that
humans, when faced with unfamiliar data, will usually look at the behaviour of
a given feature value through all instances to gauge its impact. How does this
value compare to others? Is it representative? Is it rather small? Rather large?
The techniques described here seek to incorporate this type of intuition to the
machine learning (ML) process.

The most common approach is to scale and normalize the feature values
(Section 2.1), finding the maximum and minimum and changing the values to
ensure they will lie in a given interval (e.g., [0,1] or [−1,1]). The expectation
is to let observed meaningful variabilities emerge without being drowned by
the difference of behaviour for each different feature. Note that names such as
“normalization” and “standardization” are very ambiguous, as they may mean
different things for different communities and people. For example, calculating
BMI (body mass index) is considered “standardization” by their community of
users, when it is not a normalization technique in the sense used here (it is
a great computable feature, though).171 When in doubt, ask for the precise
formula being used.

Another type of FE technique called discretization is discussed in Section
2.2 and involves dynamically finding thresholds to segment continuous fea-
tures into intervals or categories: for example, to decide that all temperatures
between −10 F and 50 F fall into a bin (which could be called “cold”), and
between 80 F and 110 F fall into another bin (which could be called “hot”)

34
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2.1 Normalizing Features 35

and so on. This way, you signal to the ML that differences between 15 and 45
degrees are not important for your task and domain.

Section 2.3 discusses descriptive features, that is, the use of compact
summary statistics. This information has the advantage of always being
defined (no missing values) and of producing dense feature vectors. We will
look into using tables of counts (histograms) in Section 2.3.1 and general
descriptive features such as maximum, minimum and averages in Section
2.3.2. Histograms are a tool of choice in computer vision and text length tends
to be a very informative feature in natural language processing.

When looking at the feature values across many instances, some values
might present themselves far from the rest, which is what constitutes outliers
(Section 2.4). The chapter closes with advanced topics, including using feature
differentials as features and inducing features from Random Forests.

Note that many of the techniques presented in this chapter (if not all) fall
into the category of what has been called “model-based FE”352 that is, after the
FE process, the featurizer will contain trained models and parameters. To use
the trained ML model over new data, you will need to preserve the featurizer
model and make it available with the trained ML model.

2.1 Normalizing Features

Features in isolation can be difficult to compare with each other. Certain ML
algorithms perform simple mathematical operations with them that assume
their values are comparable. Other algorithms try to find ways to make them
comparable using simple approaches. That means that if two features (say,
flight length in kilometres and passenger weight in kilograms) are of widely
different dimensions, the ML algorithm will require training data just to learn
to scale them accordingly. That unnecessary burden can be alleviated by
normalizing the features in various forms. Just remember that by changing the
features you might lose information. Whether that information is important
for the task depends on your understanding of the problem and domain.
Thus, these decisions are also places to add domain knowledge. Nevertheless,
there are times where the unnormalized value is relevant; in those cases, it
is beneficial to maintain the original feature as a separate feature. Ultimately,
these techniques drop information; if this information were important for the
algorithm, it will make worse predictions.

The simplest approach is to scale the features so all the feature values
have the same magnitude and are centred on zero. But there is also plenty of
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value in normalizing them according to their mean and standard deviation, so
that they have a unit variance (standardization). Other approaches involve
normalization according to a norm,351 for example, L2. We will also look
into standardization and decorrelation techniques (Section 2.1.1), smoothing
(Section 2.1.2) and feature weighting (Section 2.1.3).

Feature normalization is a great way of reducing the variations on feature
values, that is, to have less nuisance variations and concentrate on variations
that contain a signal to the target class. It also ensures that the feature values
fall within a specific range during training. For example, to transform the
features into floating-point numbers between 0 and 1 (or −1 and 1). This
is crucial for support vector machines (SVMs) and neural networks (ANNs)
that need input data scaled to certain specific intervals.180 On the other hand,
many ML algorithms are scale invariant (like decision trees) while others, like
logistic regression, might have requirements of zero mean and unit variance
if used with regularization. Care must be taken when working with sparse
datasets. In the presence of a large number of zero entries, some of the
techniques presented here, like centring, will change the zero entries to non-
zero entries producing dense vectors that might be inefficient to use with many
ML algorithms.352†

In general, when I talk about normalization, I am talking about normalizing
against all instances in the training dataset. Normalizing against subsets is
described as an instance engineering problem in Section 5.2 in Chapter 5.
After the normalization parameters are computed over the training set, they
are applied at runtime (and to the test set). 351 The parameters computed over
the training set ought to be fixed, and may generate outputs on the test outside
the desired range (for example, values over 1.0). It might be tempting to
recompute the parameters on the test set, but doing so will give an incorrect
portrayal of the behaviour of the algorithm in production. Normalizing the test
set independently has been described as the most common amateur mistake in
SVMs.209 The normalized features could, however, be clipped to conform to
the chosen interval (by taking the maximum or the minimum).

Scaling. The simplest normalization that can be done is to take the maximum
and minimum values in the population, subtract the minimum to each value,
then divide by range (maximum minus minimum):

x′
f = xf − minx̂f ∈trainset(x̂f )

maxx̂f ∈trainset(x̂f ) − minx̂f ∈trainset(x̂f )

† Chapter 2.
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This will result in a value scaled to (0,1). For example, for the feature values
{5,10,2,17,6}, their maximum is 17 and their minimum is 2, with a range of
17 − 2 = 15. The scaled values will be {(5−2)/15, (10−2)/15, (2−2)/15, (17−2)/15,
(6−2)/15}= {0.2,0.53,0,1,0.27}.

This scaling is used with support vector regression in Chapter 6, Section
6.3. This approach has the problem that outliers might concentrate the values
on a narrow segment, so when doing scaling it is recommended to perform
outlier filtering first (Section 2.4). Alternatively, you can use standardization
instead, as discussed later in this section.

Squashing functions, such as log(1+x) or the Box–Cox transformation, are
sometimes called nonlinear scaling.341 We will see these functions with other
computable features in the next chapter (Section 3.1). While these functions
squash the distribution of values, they do not take into account the whole
distribution to perform the squashing, which is the focus of this chapter.

Centring. After scaling, it is also common to add or subtract a number to
ensure a fixed value (e.g., 0) is the “centre” of the values. The centre might
be the arithmetic mean, the median, the centre of mass, etc., depending on the
nature of the data and problem. A reasonable new centre might be zero, one or
e, depending on the nature of the ML algorithm. In general, you centre your
data to align it with attractor points in the ML parameter space: if the origin
is the default starting point for your ML parameters, it makes sense that your
data has zero as the most representative value. Values scaled and centred to the
(scaled) mean are called mean normalized values. 342

For the previous example, as the scaled mean is 0.4, the mean normalized
values will be { −0.2, 0.13, −0.4, 0.6, −0.13 }. For a more comprehensive
example, see Chapter 6, end of Section 6.2.

Scaling to Unit Length. This is a normalization method applied to multiple
features at once. Given a norm definition, divide features by the result of
calculating the said norm

�x′ = �x
‖�x‖ =

〈
x1

‖�x‖, . . . ,
xn

‖�x‖,

〉

For example, given a feature vector 〈2,1,3〉, its Euclidean mean is
√

14,
therefore, the unit-length scaled feature vector becomes 〈2/

√
14,1/

√
14,3/

√
14〉.

The type of norm to be used is dependent on the type of features. Usually the
Euclidean or L2 norms are employed but histograms sometimes use the L1

norm (also known as Manhattan distance). We will see norms in detail as a
regularization technique in Chapter 4, Section 4.2.
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2.1.1 Standardization and Decorrelation

We will now look into operations over the whole dataset when seen as a matrix.
For some of these transformations, you will need to estimate the covariance
matrix of the training data. If you take the training data as a matrix M of size
n × m, for n instances and m features and centre it so that the mean of its
columns is zero, you can then compute the covariance matrix as C = MT M/n.
This matrix can undergo a spectral decomposition into eigenvectors E and
eigenvalues in diagonal D such that C = EDET . This is known as the
principal components analysis (PCA) decomposition of the matrix M .

Standardization. This process transforms the features to have zero mean and
unit variance. It is very useful for SVMs, logistic regression, and NNs, to
the point that forgetting to normalize the data is considered one of the most
common mistakes.155

Given the feature mean x̄f and standard deviation σf , the standardized
feature is defined as

x′
f = xf − x̄f

σf

If you replace the denominator by the variance rather than the standard
deviation, the normalization is called variance scaling351 (not to be confused
with the ANN initialization technique). Note that certain data will not play
well with standardization, for example, latitude and longitude data.171

Decorrelation. For signals acquired from sensor data, it is common to
have artifacts, like repetitions of the past data (or an echo in the case of
acoustic data). Decorrelation is a technique to reduce such artifacts. If your
understanding of the domain indicates that the relations of interest should
not be of a linear nature, then linear influences between instances or features
can be considered an artifact of the acquisition methodology (e.g., a voice
from one speaker being captured from the microphone of another speaker, as
discussed in the context of ICA in Section 4.3.6 in Chapter 4). Decorrelation
is usually performed by discounting past versions of the data over the current
data, which is a type of linear filter. We will see examples of such processes
in the timestamped data case study, Section 7.6 in Chapter 7. Note that certain
ML algorithms and techniques (like the dropout for ANN, discussed in Section
5.3, Chapter 5) need some redundancy to perform properly.

Mahalanobis Distance. A concept related to decorrelation is to scale the data
using the inverse of the correlation matrix C: 217

https://doi.org/10.1017/9781108671682.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.004


2.1 Normalizing Features 39

DistanceMahalanobis(�x, �y) =
√

(�x − �y)T C−1 (�x − �y)

If the instances are decorrelated, then C is the identity matrix and this
distance is equivalent to the Euclidean distance. You can either decorrelate
your instances or use the Mahalanobis distance in places you would normally
use the Euclidean distance. A graphical interpretation of this distance has the
intuition that the covariance is stretching the data in the direction of areas of
higher covariance. By applying the inverse of the covariance matrix, the stretch
is rectified.45

Whitening and ZCA. Standardization changes the data to have a unit vari-
ance; decorrelation removes correlation between the variables. Would it be
possible to obtain both? That process is called whitening, as it transforms the
data into white noise. Sphering transformation is another name for whitening,
even though it is a linear transformation. Again, whitening destroys the
linearities present in the data. You will only apply this process if you believe
the signal in your domain is expressed through nonlinearities; otherwise,
training on perfectly random data simply does not make sense.

Given the PCA decomposition discussed at the beginning of this section,
the PCA whitening is WPCA = D−1/2ET . The math is a little tedious
but multiplying M by WPCA obtains a matrix whose correlation matrix is
a diagonal matrix (the cross-correlations are zero). Because the properties
of a whitening transformation are invariant over rotation, there are infinite
such transformations,291 many of which are singled out for their special
properties. This means that W = RWPCA with R orthonormal will equally be
a whitening operation. Among them, ZCA30 (also known as the Mahalanobis
transformation) uses E, the eigenvector matrix, to be the R, then

WZCA = EWPCA = ED−1/2ET = C−1/2

ZCA has the property of obtaining a transformed data as close as possible to
the original data. This is advantageous for computer vision as the transformed
images will still resemble the sources images. For example, Figure 9.3,
reproduced in Figure 2.1, shows a whitened version of satellite images.
See Chapter 9 for details. Many ML problems, however, will benefit from
whitening with any transformation. For those, the whitening based on PCA
is a popular choice, as PCA is easily available in most statistical packages.

2.1.2 Smoothing

If your feature appears perturbed by errors unrelated to each other, then
particular errors might push the observed value of the feature too far from
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40 2 Features, Combined

Figure 2.1 ZCA whitening results for eight settlements. The figure to the right is
the whitened version of the figure to the left.

its true value and to the point of no longer being useful to the ML. To bring the
value closer to its true value, you can compare it to other feature values in the
vicinity of the instance and move it closer to other feature values in that vicinity.
The intuition is that the aggregated independent errors will cancel each other
out and the true signal will emerge. This process is called smoothing. Jeff
Leek, in his data organization book, describes it as “one of the oldest ideas in
statistics.”204

What constitutes a “vicinity of the instance”? In the simplest case, if the
instances contain a time or location, then the features could be smoothed
taking a vicinity of instances, which are physically or temporally closer. This is
succinctly put by Jeff Leek as “smooth when you have data measured over
space or time.”204

Otherwise, you can consider the feature as a missing value, compute an
imputed value per the techniques in Section 3.2 in Chapter 3 and average the
imputed value with its existing value.

2.1.2.1 Probability Smoothing
A special type of normalization is used when dealing with sparse events where
there are reasons to believe your training data constitute an imperfect sample,
missing many naturally occurring combination of feature values. In those
circumstances you want to discount your observed values and leave counts
(probability mass) for unobserved events (feature value combinations). This
smoothing is used with ML algorithms based on probabilistic methods, as the
probability mass held aside needs to be included as input to the algorithm.
It deals with unseen values at the sampling level, while in the next chapter
(Section 3.2) we will see imputation, which is the problem of dealing with
missing values explicitly marked in the training data.
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The most common situation to smooth is dealing with one feature value
that never appears together with a particular value of the target class. Without
smoothing, certain algorithms like naive Bayes end up unable to produce any
results as their core multiplication always results in a joint probability of zero.

However, how many unseen events are out there? How will you distribute
the probability mass among them? If possible, you can use your understanding
of the nature of the events (domain knowledge). For example, if the events
are word pairs, you can estimate how likely an unseen pair will be, given how
frequent the words are that make up the pair.220

Simple Smoothing. Different smoothing techniques are widely in use, includ-
ing Lagrangian smoothing (every new unseen event is considered to have
occurred at least once), ELE smoothing (add 0.5 to all counts) or Add-Tiny
smoothing (add a very small number to all counts). These simple smoothing
techniques are quite straightforward, although I have seen Lagrangian smooth-
ing consistently outperform Add-Tiny over natural language processing (NLP)
data and there are theoretical reasons to believe it should.220

Simple Good–Turing. The problem with simple smoothing techniques is that
they overestimate the amount of probability mass to keep aside. The final
systems are then timid, not trusting their observed data enough, due to the
uncertainty of the unseen data. A more complex technique involves fitting a
curve of frequency of frequencies to the observed data, and then using the
curve to estimate unseen events. A probability distribution is said to be of
Zipfian nature if it can be expressed as the following:236

p(f ) = αf −1− 1
s

where α and s are parameters that define the distribution. Such distributions
explain many events of interest, such as distribution of words. If you believe
that your probability distribution is Zipfian, then you can decide what amount
of probability mass to set aside in a more informed manner.117

2.1.3 Feature Weighting

For the last technique of feature normalization, let us discuss using weights
computed or adjudicated for features in all instances, basically, adding a
statistical prior to the different features.180 This is particularly advantageous
if this prior is rich in domain knowledge and you do not expect the ML
algorithm to be able to reconstruct it from the available data. Therefore, if you
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expect certain features to be more informative, you can weight them higher
by multiplying them by a number. Alternatively, you can provide a feature-
weighting vector directly to some ML algorithms.

While feature weighting can be used to add some meta-learning capabilities
to a simpler ML (for example, by weighting up features highly correlated
with the target class55), I find such techniques more related to ML algorithms
than FE. An ideal feature weighting ought to bring information that exceeds
the information available in the training data. You ought to be weighting a
feature because of things you know about the domain, beyond the particular
training data.

2.1.3.1 Inverse Document Frequency Weighting
One of the most popular feature-weighting schemes in the NLP world is known
as TF-IDF, where in a Bag-of-Words representation of text (a word histogram,
discussed in Section 2.3.1) the features (word counts) are scaled down by how
popular the words are in a large collection of documents. A collection used to
compute the IDF scores can exceed in many orders of magnitude the available
training data, thus providing general knowledge about which words are too
popular to be informative.

The weighting scheme has many flavours (aptly summarized on
Wikipedia329); a popular one is

idf(t) = log

(
N

nt + 1

)
where N is the total number of documents in the corpus and nt is the number

of documents where the term t appears (irrespective of how many times the
term t appears in each document). When featurizing, if the term t appears
freq(t) times on the raw data (text) for a given instance, then setting the feature
xf (where f is the feature index associated with t in the feature vector) as xf =
freq(t)× idf(t) accomplishes this weighting scheme. For example, a word like
“the” is very common; therefore, nthe will be very high and idf(the) will be very
small. Compare that with a word like “scheme” that ought to appear rarely and
will have a much higher IDF weight. Note that to use TF-IDF directly as a
text-similarity metric you will need to penalize longer documents.285 In the
case study on textual data in Chapter 8, we use the IDF scores to combine the
embedding representation for all the words in a Wikipedia page for a given city
as extra features to calculate its population.

2.1.3.2 Camera Calibration
In computer vision, a common weighting scheme is camera calibration:297

often optical elements and sensors exhibit variabilities in a predictable manner,
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measured by capturing data for a calibration image. The calibration data
obtained can then be turned into a feature-weighting scheme. For example,
a camera might produce lighter pixels on its upper-left corner. That might
confuse the ML algorithm if lighter pixels are a good signal for a particular
class elsewhere in the image. By reducing the luminescence of the pixels in
the upper-left corner, the effect will be reduced.

2.2 Discretization and Binning

Instances in the training data and their features are models of events and
entities from reality. The features are always a simplification of reality. That
simplification often poses challenges to ML. However, there are times where
there is value behind simplifying a representation even further. That is the
type of processing performed in feature discretization: reducing the number
of possible values a feature can take, usually from a real-value number to a
discrete quantity such as an integer. It is a synonym of quantizing, different
from the term in physics. In its most common form, it refers to changing a
continuous feature into an (ordered) categorical feature. Other possibilities
include transforming a real-valued feature into an integer-valued feature,
or reducing the number of categories in a categorical feature (coalescing
categories).

Every discretization incurs a discretization error, but you can expect
that discretization will result in fewer parameters for some ML models, thus
boosting the signal in the training data and improving generalization. Your
number of parameters might increase, however, if your ML model of choice
cannot accommodate categorical features directly and you resort to using one-
hot encoding. Discretization is also useful for error analysis and understanding
the behaviour of the system, enabling you, for example, to build summary
tables.239† It also enables you to squash differences on the actual numbers; a
lower quantile in one feature is comparable to a lower quantile in another.352‡

This operation can be done over the feature values alone, in isolation from
the target class values, in what is known as unsupervised discretization or it
can be done relative to the target class (supervised discretization). It usually
involves finding thresholds on which to partition the data (univariate), but you
can discretize on more than one feature at a time (multivariate).

In discretization, the intuition is to find quality boundaries on the data
such that the number of feature values that fall between two boundaries is

† Chapter 4.
‡ Chapter 2.
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reasonably well distributed. You use this approach if you suspect that small
differences between values in dense parts of the space should be taken more
seriously than differences in sparse areas. Age is a great example: a difference
of one year in age at age 5 is much more important than a difference at age 85.
In discretization we want similar instances to discretize to the same value,41

including, for example, to deduplicate multiple aliases for the same person.49

The positive impact of discretization has long been established in the field:191

Many machine learning (ML) algorithms are known to produce better models by
discretizing continuous attributes.

2.2.1 Unsupervised Discretization

Reducing the resolution of a set of numbers without referencing other data
involves finding an underlying structure in them. This means realizing that,
for example, the values are grouped around certain centres of mass or appear
spaced regularly at a certain distance. Finding such a structure is the goal
of unsupervised learning. We will see some simple yet popular techniques
known as binning before discussing general clustering (Section 2.2.1.2). Note
that unsupervised discretization is usually vulnerable to outliers213 (Section
2.4). Also, these unsupervised discretization techniques lose classification
information as they might merge many points with different values of the target
class into the same discretized feature value.

2.2.1.1 Binning
Simple discretization techniques seeking to split the segment of observed
feature values into equal segments either in size or length are called binning
and have a long history in statistics. This is also known as discrete binning
or bucketing. The original objective of binning was to reduce the error of
observations by replacing them with a representative value (usually the centre)
for the small interval (bin) on which the value is located. Intervals can be
chosen so they have all the same size or they have the same number of observed
values on each interval (quantiles). Alternatively, a bin size can be chosen and
the full set of real numbers can be split into an integer number of intervals of
the same size (rounding).

In the case study in Chapter 6, the target variable is binned using an
equal frequency interval approach (Section 6.3.1.2). For 50,000 cities, their
population range from 1,000 to 24,300,000. Splitting into 32 bins using a
logarithmic scale, the first bin has boundaries (1,000; 1,126), and the last bin
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is (264,716; 24,300,000). The total discretization error incurred is 300 million
(an average of 6.5% per city).

Equal Interval Width. This binning approach involves taking the range and
dividing it into k equal regions. It is very sensitive to outliers, so either remove
them first or do not use them if you have many outliers. It is one of the easier
approaches but if you know anything about your data, you can do better.

Equal Frequency Intervals. In this approach, you take m instances and
divide them into m/k values (possibly duplicated). It helps when you have
different levels of data density in different regions of the possible values. This
approach is useful when equal intervals will result in many empty bins due to
clustering of points.352† It operates by sorting the values (including duplicates)
and picking the boundary items at the m/k-th position. Alternatively, the values
can be recursively divided using the median element, which will be discussed
in Chapter 6.

Rounding. A straightforward way to fully transform a real number into an
integer is to multiply the real number by a fixed number, and then round it to
a whole number on a given base (or just truncate it). For example, given the
feature values {0.7,0.9,1.05,0.25} with multiplier 3 and flooring on base 10,
we will obtain discretized features {2,2,3,0}. The multiplier and base ought to
be chosen based on domain knowledge. Otherwise, unsupervised learning can
help, but in that case you will be better served using clustering, discussed in
the next section.

Winsorising (Thresholding). A simple way to binarize or coalesce ordered
feature values is to apply a threshold over them. Values below the threshold
become an indicator feature with a value of false. Otherwise the feature value
is true.196 The threshold can be chosen in the middle of the range (maximum
value minus minimum value), which is the mean, the median or such that the
target class is evenly distributed (in a supervised variant of this approach).
Winsorising is important for some ML algorithms that can only operate over
binary features such as certain implementations of maximum entropy or certain
types of SVMs. With an appropriate threshold, it is possible to boost the signal
present in the data.

† Chapter 2.
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Other Techniques. Maximal marginal entropy adjusts the boundaries so they
decrease the entropy on each interval (this is a variation of equal frequency
binning discussed earlier). 86 If the total number of different values in your
data is small, you can bin by the exact number (e.g., observed value “27”
becomes “observed-category-27”) and use the resulting bins as categories.55

Binning can also be applied to existing categorical values, basically coalescing
categories,171 a topic discussed in the next chapter (Section 3.1) in the context
of computable features.

2.2.1.2 Clustering
The simple techniques already discussed reduce the feature space considerably
and might enable the use of categorical-based ML algorithms over continuous
data. Still, there are better ways to capture the underlying distribution of the
input features: to apply unsupervised learning over the features. A common
technique is to use k-means clustering (discussed next) and then use the
number of the cluster (“Cluster-ID”) as the feature category41 (therefore, if
you cluster using k = 20, you will end up with a feature with 20 categorical
classes). Alternatively, it is possible to have the distance to each cluster (or the
top clusters, to obtain sparse vectors) as a separate feature.352 Chapter 7 uses
this approach to build feature heatmaps, for example, Figure 7.3, reproduced
here as Figure 2.2. The feature values for each feature are split into six
clusters, visualized as different levels of gray. The feature heatmap allows for
comparison of different historical versions of the same instance, or comparison
across different instances. See Section 7.1.1 for the fully worked-out example.

The algorithm k-means142 is based on the concept of synthetic instances:
each cluster is represented by a centroid, a fictitious instance (the synthetic
instance). Instead of computing the distances among all instances in the
cluster, k-means computes just the distances to the centroids. It receives as
parameters the number k of target clusters (which can be estimated using other

Figure 2.2 Historical features visualization using a feature heatmap. Different
levels of gray indicate different feature clusters.
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methods such as canopy clustering226), the distance function and a procedure
to compute synthetic instances from a set of actual instances.

It starts by picking k instances at random as initial centroids (other initial-
ization techniques are possible, for example, kmeans++13). In each iteration, it
reclassifies each instance as belonging to the cluster that has its centroid closer
to the instance. Then, for each cluster, it computes a new centroid based on the
instances assigned to it.

This algorithm is an example of expectation-maximization (EM), a sta-
tistical estimation technique in which the algorithm switches between esti-
mation and modelling steps.80 Under certain circumstances, convergence is
guaranteed, albeit quite slowly. Basically, you continue with the two steps until
convergence, in one step you fix the model (assignment of each instance to a
cluster), and estimate its parameters (the centroids) and in the other step you
fix the parameters and estimate the model.

2.2.2 Supervised Discretization

Supervised discretization received plenty of attention in the 1990s and 2000s,
most probably as the need to reduce parameter space was driven by memory
bottlenecks. The different solutions proposed to the discretization problem
can be organized around many facets and dimensions.213 We will look into
three algorithms of practical importance that are relatively easy to under-
stand and implement and are also representative of many algorithms centred
around similar ideas. These algorithms are ChiMerge, MDLP and CAIM.
They all work on a single numeric feature, operating over its sorted distinct
values.

What is the benefit of the added complexity of using supervised discretiza-
tion? In the words of Alberto Bietti: 34

Unless you have good knowledge or intuition about the common values taken by
the feature, hand-picked or equal-width intervals probably won’t give good results.

Note that if you use the target class for discretization then you will need to
find the boundaries over a held-out dataset that you will not be able to reuse in
subsequent training. Otherwise, reusing the training data with the discretized
features will result in a weak target leak: the ML will be misguided into trusting
the discretized feature too much.

Discretization is a search problem where each algorithm is defined by (given
candidate places to split into intervals) a criterion for determining how good a
split is and a method to explore the space of partitions.86
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Adaptive Quantizers. MDLP and CAIM, discussed next, both belong to the
family of top-down adaptive quantizers, where the observed feature values
are sorted and then split recursively, starting from an interval equal to the
whole range. Each algorithm in the family has a different criteria to choose
where to split an interval and whether to continue splitting. The candidate
places (cut points) to split are the observed values or a “smart” subset of them.
These are incremental algorithms and have the advantage that they do not
require a number of internals provided beforehand. In its most computationally
expensive version (and from which the name derives), you can train a full
classifier on each partition and choose the cut point where the classifier
performs better.60

2.2.2.1 ChiMerge
The ChiMerge discretizer179 presents a bottom-up approach. Its starting point
considers each observed feature value as a separate internal. At each step of
the algorithm, it merges an interval with its neighbour depending on the χ2

statistical test (discussed in the context of feature selection in Section 4.1.1
in Chapter 4) over the values of the target class associated with each interval.
It merges an interval with its neighbour if the χ2 test cannot reject the null
hypothesis, that is, we cannot show the two sets to be statistically independent.
Besides its simplicity and statistical justification, it can be applied to multiple
features at once and can do joint discretization and feature selection.

2.2.2.2 MDLP
Fayyad and Irani103 propose using the entropy of the target class to choose the
optimal partition cut point. They define the entropy of the interval S as:

H̃ (S) = −
k∑

i=1

#(CS = i)

|S| log
#(CS = i)

|S|

where k is the number of categorical values the target class can take and
#(CS = i) is the number of instances in S that have its target class equal to i.
For a given cut point, we can define the split entropy defined as the weighted
average (weighted on sizes) of the entropy for the two intervals obtained by
splitting at the given cut point. If the splitting at a cut point is meaningful,
the remaining intervals will have a more homogeneous class (which should
facilitate learning and make the feature more informative). MDLP uses split
entropy as the metric to score different cut points.

To speed up the algorithm, the authors prove a theorem that shows the only
cut points that need to be considered are class boundaries. A class boundary
is a feature value where the value of the target class has changed from its
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adjacent neighbour. The number of class boundaries will hopefully be much
smaller than the total number of observed feature values. As a stopping criteria,
the algorithm uses a minimum description length (MDL) criteria that stops
splitting when the description (in bits) for the class labels without splitting is
shorter than encoding the labels for the two resulting intervals.

While the algorithm seems very similar to decision trees,48 it produces
a different discretization: decision trees are local methods while the dis-
cretization technique discussed here is a global method. Local methods
suffer from “data fragmentation” where intervals may be split unnecessarily,
producing suboptimal results.16 Global discretization algorithms have been
shown to help decision trees and outperform their embedded discretization
functionality.213

2.2.2.3 CAIM
The CAIM algorithm197 uses the mutual information between the feature inter-
vals and the target class. The authors claim that it generates very few intervals.
CAIM seeks to minimize the loss of feature-target class interdependency. It
uses the confusion table (“quanta matrix” in the paper, see Figure 2.3) between
the intervals found so far (starting with a single interval covering the whole
range of observed values) and the different categories of the target class. From
the confusion table they derive CAIM scores by looking at the maximum
counts for a class on a given interval (maxr ), versus the rest:

CAIM(D) =
∑n

r=1
max2

r

M◦r

n

where the discretization D splits the feature into n intervals and maxr is
the maximum value in the r-th column of the quanta matrix. The authors’

Class Intervals Class Total[d0,d1] . . . (dr−1,dr ] . . . (dn−1,dn]
C1 q11 . . . q1r . . . q1n M1◦
...

... . . .
... . . .

...
...

Ci qi1 . . . qir . . . qin Mi◦
...

... . . .
... . . .

...
...

CS qS1 . . . qSr . . . qSn MS◦
Interval Total M◦1 . . . M◦r . . . M◦n M

Figure 2.3 CAIM quanta matrix, adapted from Kurgan et al. 197 It is a confusion
matrix for a feature split into n intervals, for a target class with S categories.
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expectation is that “the larger the value of CAIM the higher the interdepen-
dence between the class labels and the discrete intervals.”

The cut point with the highest CAIM score is chosen at each iteration. If no
segment produces a CAIM score higher than the larger CAIM encountered
(after k steps, where k is the number of values the target class can take),
it stops. In their evaluation of 30 discretizers,118 García and colleagues
conclude:

CAIM is one of the simplest discretizers and its effectiveness has also been shown
in this study.

2.3 Descriptive Features

Sometimes the ML does not need the actual data but only a compact statistical
summary: the task can be solved knowing general characteristics about the
shape of the data distribution. The general term to refer to such indicators is
descriptive statistics. We will see histograms next, the most common descrip-
tive features, and then present other descriptive features in Section 2.3.2. This
approach is particularly important when an instance contains a large number
of similar and low information features, like pixels or other sensor data.

Dense vs. Sparse Feature Values. Using descriptive features has the advan-
tage of producing reliable, dense features. For example, if a user review is in a
language different from the language used in the train set, a text-length feature
might still be informative while any indicator feature for particular words will
most probably be all zeroes. Dense feature vectors, however, might slow down
considerably ML algorithms designed to operate over sparse feature vectors,
like SVMs.

In their winning submission to the KDD cup (cf., Section 1.7 in the previous
chapter), Yu and others341 combined two systems with different approaches,
one using binarization and discretization, which produced a very sparse feature
set, while the second approach used simple descriptive statistics and thus pro-
duced a dense feature set. Their results show the value of the dense approach.

2.3.1 Histograms

Another way to obtain a holistic view of the features is to summarize their
behaviour by means of a histogram. A histogram is a simple representation
of the distribution of values for a set of features. It is amply used in image
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Figure 2.4 Four random settlements and histograms. The histograms show that
Bad Aussee is in the Alps, Gmina Kościelec downtown is next to a small pond
and the other two places are relatively flat.

processing. It transforms feature values to frequency values and can handle
continuous data by using bins to define each of the frequency columns.
The original feature vector then has multiple features of the same type. The
histogram feature vector has one feature per bin with its value equal to the
number of features in the original feature vector that fell into that bin.

This is a common technique when dealing with images. Chapter 9 uses
histograms for image classification, Figure 9.5, reproduced here as Figure 2.4,
shows how different images can have similar histograms (Frias and Brande in
the figure), which can help reduce the nuisance variations in the domain. See
Section 9.5 for the fully worked-out example. If you have a large number of
related but otherwise identical features, instead of (or in addition to) using the
features themselves, you can use the number of times a particular feature value
appears in that large collection of features. In the case of a 300 × 300 black-
and-white image, you can represent the whole image as two features: number
of white pixels and number of black pixels (the simplest possible histogram).
That reduces the number of features from 90,000 to 2 and it might contain
enough information to solve a variety of classification problems (e.g., indoors
vs. outdoors). Or, if you represent each pixel with 30 discernible shades of
gray (5 bits), that accounts for 566,250 bytes of input vector. A histogram then
contains 30 entries with a maximum value of 90,000 per entry (17 bits), for a
total of 64 bytes. Now, if the problem is solvable from the histogram that is a
reduction of almost 9,000 times.
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It is interesting to note that, given enough training data, many ML algo-
rithms will learn a decision function that internally computes the histogram or a
close approximation to it. If you believe the histogram is related to the problem
you are trying to solve, you can spare the ML algorithm that unnecessary
burden.

Bag of Words. A theme of this book is to look at techniques used in different
fields and abstract them with the hope that you can apply them to new
fields of your own. In that vein, while histograms are usually associated
with computer vision, it is worth noting that a popular representation in
NLP, bag-of-words (BoW), is a histogram of words. In this representation,
a piece of text is presented to the ML as a fixed vector of size equal to
the whole vocabulary observed during training. The feature values indicate
the number of times the given word appears in the text corresponding to a
given instance. Chapter 8 uses the bag-of-words representation, which for the
sentence

Its population was 8,361,447 at the 2010 census whom 1,977,253 in the built-up
(or “metro” ) area made of Zhanggong and Nankang, and Ganxian largely being
urbanized.

would appear to the ML as the token counts:

[‘its’: 1, ‘population’: 1, ‘was’: 1, ‘toknumseg31’:1, ‘at’:1, ‘the’:2,
‘toknumseg6’:1, ‘census’:1, ‘whom’:1, ‘toknumseg31’:1, ‘in’:1, ‘built’:1,
‘up’:1, ‘or’:1, ‘metro’:1, ‘area’:1, ‘made’:1, ‘of’:1, ‘zhanggong’:1, ‘and’:2,
‘nankang’:1, ‘ganxian’:1, ‘largely’:1, ‘being’:1, ‘urbanized’:1, . . . rest 0]

See Section 8.4 the fully worked-out example.

2.3.2 Other Descriptive Features

You can consider that the histogram is a particular type of summary for a
set of data. More types of summaries are available, including the maximum,
minimum, mean, median, mode, variance, length and sum.

Other descriptive features can be obtained by assuming a distribution of
feature values. Then, for the values in the raw data for a particular instance,
you can compute how close to the assumed distribution they are. By far the
most popular distribution is the normal distribution, but other distributions
are possible (good candidates include Poisson, bimodal distributions and
distributions with “fat tails”). Assuming the data follows a normal distribution,
the standard deviation captures a known percentage of the data as it measures
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the spread of the dataset from the mean. Other metrics related to the normal
are possible, here, I discuss skewness and kurtosis.

Skewness. This statistic measures the lack of symmetry in the distribution:

s =
√

N (N − 1)

N − 2

∑N
i=1

(
Yi−Y

)3
/N

σ 3

This feature is to be applied similar to the histogram feature, given a large
number of similar values in the raw data, the skewness value for them becomes
the feature. A distribution with a high skewness will have the bulk of its
elements to only one side of the mean.

Kurtosis. This statistic measures whether the data is heavy tailed compared
to a normal distribution:

k =
∑N

i=1
(
Yi−Y

)4
/N

σ 4
− 3

Heavy-tailed distributions are common in human data and when mismod-
elled with normal distributions produce a large number of outliers, which is
discussed in the next section. This feature is applied similar to skewness.

Quantiles and Percentiles. These numbers summarize the distribution by
indicating the boundaries over which the bulk of the points fall, dividing them
into equal number of segments. Q2 is the mean, the segment (Q1, Q2) has the
same number of elements as (Q2, Q3) and (−∞,Q1), (Q3, +∞). Percentiles
are similarly defined over 10 segments.

Text Length in NLP. Descriptive features are not known by that name
for all domains and problems. A very common (and successful) feature in
natural language processing is text length. It predicts correctly many classes of
interest. For example, is the customer happy or unhappy? Unhappy customers
tend to leave much longer reviews, with plenty of details to justify their
unhappiness. Note that text length is the L1 norm of the bag-of-words (the
word histogram) if there are no out-of-vocabulary words present. Otherwise,
text length is more informative.

Other Descriptive Features. In the general case, you can compute the KL
divergence (cf., Section 4.3.7 in Chapter 4) between all similar features in
the instance (e.g., pixels) and the full probability distribution induced by all
the instances. Such feature will tell the ML how “likely” the features are, as
compared to the data seen during training.
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2.4 Dealing with Outliers

In his book The Analysis of Time Series, Chris Chatfield61† mentions that

The treatment of outliers is a complex subject in which common sense is as
important as the theory.

Dealing with outliers might be the most domain knowledge–intensive task in
FE. You can only drop outliers if you have a story behind them that can assure
you they are invalid observations due to the idiosyncrasies of the domain.
Indeed, the key issue in dealing with outliers is to differentiate errors from
extreme observations. When analyzing the values for a feature, it is not unusual
to find values (or small clumps of values) that clearly depart from the rest. The
temptation is to remove these values, either the values themselves or to throw
away the full instance, as there are few of them and the ML might work better
if it focused itself on the more frequent “normal” cases. However, Dorian Pyle
in his book Data Preparation for Data Mining exemplifies:263 in insurance,
most claims are small but a few are very large. Obviously removing the very
large claims will completely invalidate an insurance model.

That is not to say that there is no value in realizing your data presents a
large number of outliers; we will see outliers detection briefly at the end of this
section. But if outliers are present, you might be restricted to ML algorithms
that are robust in their presence. For instance, estimation for covariance
matrices are very sensitive to outliers, and so is the mean (in the mean case,
you can replace it with the median if there are many outliers).

For some examples of outliers, when working with sensor data, some
equipment will produce rather large peaks on their signal when cables are being
plugged in or the acquisition system is being switched on. Alternatively, you
might know from domain knowledge that the encountered value is impossible
(e.g., a patient of 999 years of age). Other examples include: a clerk making
an error on entry, credit card fraud, unauthorized access, fault detection on
engines, new features on satellite images and epilepsy seizures detection.151

From my perspective, outliers make it easier to identify potential data
mistakes,49 but you will have to do the legwork to find whether it is truly
a mistake or not. Even though I am repeating myself, I will insist: do not
throw out outliers unless you have definite evidence that these are erroneous
observations. In his book How to Lie with Statistics, Darrell Huff162 shows
that even in normally distributed data, it is common to encounter “suspiciously
extreme” values. Dropping them, however, will mislead you away from the true

† Chapter 1.
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mean and standard deviation of the distribution. That outlier you are about to
throw might be one of your most informative instances.

If you have determined that certain feature values are outliers, you can drop
them and consider them to be missing values. Imputation techniques to deal
with them are discussed in the next chapter, in Section 3.2. Unless you have a
fully automatic method for identifying, removing and imputing outliers, leave
them in the test set as-is, otherwise you will not have a correct appraisal of the
behaviour of your ML model on production.

2.4.1 Outlier Detection

Outlier detection – also known as novelty detection, anomaly detection, noise
detection, deviation detection or exception mining151 – pertains to identifying
outliers, either on a fully assembled dataset or on newly arriving data. Defining
what is an outlier is a challenging task. Bannet and Lewis define them as:27

An observation (or subset of observations), which appears to be inconsistent with
the remainder of that set of data.

Identifying outliers is important beyond removing them, as data with many
outliers might be indicative of a non-normal “fat tail” distribution. Also, the
outliers you have received might be clipped or distorted data (what is known
as censored data). You might want to train a separate model on the outliers,
as sometimes they exhibit what is known as the king effect, 199 where the top
representatives of the distribution behave very differently from the rest of the
instances.

In the case of FE, outlier detection interests us for learning a model over
the training data and using it to identify unusual instances and their feature
values. In the general case, outlier detection techniques can be supervised
or unsupervised. In the case of FE, spending extra effort labelling outliers is
unlikely, so we will focus on unsupervised techniques. The main techniques are
clustering, density estimation and one-class SVMs. When doing unsupervised
outlier detection, there are diagnosis and accommodation techniques, where
diagnosis just finds the outliers while accommodation seeks to make the ML
robust in their presence.

Unsupervised discriminative techniques use a similarity function and clus-
tering. These techniques define an outlier score as the distance to the closest
centroid. Unsupervised parametric techniques only model the normal class, the
new data is anomalous if its probability of being generated from the model is
low.133 Using k-means helps to distinguish sparseness from isolation (sparse
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means a cluster with a large distance overall, whereas isolated means a single
item with large distance to others). Points in sparse areas are not outliers,
while isolated points are. Large-scale clustering techniques like BIRCH346

and DB-SCAN101 handle outliers explicitly and can also be used but they do
not provide a degree of outlier-ness. An intriguing method by Japkowicz and
colleagues168 is based on autoencoders (discussed in Chapter 5, Section 5.4.2).
As autoencoders tend to behave poorly on novel data, their reconstruction error
can be employed as an outlier score. Similarly, pruned nodes in a decision
tree can be used as an outlier detector or, as kernel-based methods estimate
the density of the distribution, they can detect outliers by identifying areas
of low density.170 Extreme values theory272 models the outliers directly as
a particular distribution and uses EM to estimate its parameters, including
thresholds. If the data has spatio-temporal components, it is possible to
leverage special outlier detection techniques.133

Finally, outlier detection over human data can have ethical implications that
you need to factor into your decisions.102

2.5 Advanced Techniques

Many techniques in the following chapters also consider how the features
behave when combined, particularly dimensionality reduction (Section 4.3 in
Chapter 4) and certain computable features, particularly target rate encoding
(Section 3.1 in Chapter 3). I have chosen to discuss them closer to other related
techniques, such as feature selection.

There are two other techniques I would like to discuss here: using leaves
from a Random Forest as features (discussed in the next section) and delta
features, discussed next.

Delta Features. Also known as correlation-based features, 193 they involve
building a model for the behaviour of the whole feature to produce a new
feature that indicates how different the observed original feature in a given
instance is from the model for the feature.

The simplest case is to take the average and to encode the difference to the
average as the feature (the astute reader will realize that this achieves the same
result as to centre the feature so its mean is zero). More interestingly, you can
replace the feature with how likely are the feature values. For example, each
feature value can be replaced with the percentile in the value distribution (is
this feature value the top 10% more common values? the top 25%? etc.). You
can see an example of this in the case study in Chapter 7, Section 7.1.1.

https://doi.org/10.1017/9781108671682.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108671682.004


2.6 Learning More 57

A similar concept are z-scores, the number of standard deviations that
feature value is from the mean:239

z = f − f̄

σ

As with other complex FE techniques, delta features will result in a complex
featurizer that needs to be available together with the trained ML model for
production deployment. That is, the means, histograms, etc., obtained from
training data are then needed to compute these delta-features on test data and
ought to be kept available together with the ML model.

Random Forests Feature Induction. Vens and Costa315 present an exciting
way of benefiting from the combined set of features: train a Random Forest
and use the different paths as produced by the forest as features:

Intuitively, two instances that are sorted into two nearby leaves share more similar
features than two instances that are classified into leaves far apart.

The new feature vector is a concatenation of binary features obtained for
each tree in the trained forest. For each internal node in the decision tree, a
binary feature is generated, indicating whether the condition at the internal
node holds or not over the instance. Notice how different trees intermix
and combine different features, and how the Random Forest is normalizing,
handling outliers and producing descriptive features automatically for us. In a
way, it encapsulates all the techniques described in this chapter and more. If
you train the random forest with many trees, you will achieve an expansion of
your feature set. Or you can train a few shallow trees and obtain a reduction.
You can combine the original features plus the tree features too.

2.6 Learning More

This chapter has described techniques usually considered part of a data
preparation pipeline. General books on the topic such as Dorian Pyle’s Data
Preparation for Data Mining263 or Jeff Leek’s The Elements of Data Analytic
Style204 can be a good reference for this. In the same direction, the article
Tidy Data by Hadley Wickham324 can be of interest. For available tooling
for binning and outlier detection, you might want to look into OpenRefine
(formerly GoogleRefine).22
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Discretization is a well-studied topic. I have referenced four surveys in this
chapter,86,213,191,118 and each of them is worth studying. I found the one by
Dougherty and colleagues86 to be the most succinct and easy to read.

Finally, outlier detection is a topic with many books written about it, from
which Outlier Analysis by Charu Aggarawal2 is a great resource. For a recent
survey, see Hodge and Austin.151
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