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Abstract. A class of automorphisms of the unit square called generalized baker's
transformations (gbt) is defined in such a way that every stationary stochastic process
may be represented as the movement of a simple partition of the square under a
gbt. This extends the classical example of the representation of independent
processes by the well-known baker's transformation.

Every ergodic, positive-entropy automorphism is measurably isomorphic to some
gbt (again generalizing the classical result about Bernoulli shifts), and we show that
a large class of gbt's satisfying certain continuity restrictions are actually measurably
isomorphic to Bernoulli shifts.

1. Introduction
Recall the classical baker's transformation on the unit square as described, for
instance, by Halmos [H]. The purpose of this article is to give a generalization of
this old example which will allow us to represent any countable-state, stationary,
stochastic process as the movement of a partition on the square, whose atoms are
regions bounded by the graphs of 'cutting functions', under a Lebesgue-measure-
preserving point transformation. This latter mapping we shall call a generalized
baker's transformation (gbt).

Amongst the features of the classical example which are preserved by our
generalization we shall see that our gbt's map vertical fibres into vertical fibres on
the square and, restricted to the o--algebra of vertical fibres, a gbt is an expanding
endomorphism of the unit interval. When the process we are representing by a gbt
happens to be the action of an ergodic, positive-entropy transformation on a
generating partition, the gbt is actually measurably isomorphic to the original point
transformation (Corollary 4). Thus our representation is still very general even at
the level of measurable isomorphism.

This last feature leads us naturally to investigate specific classes of gbt's. In the
main part of this article we study gbt's with Holder-continuous 'cutting-functions',
a large class whose members we show to be measurably isomorphic to Bernoulli
shifts.

The techniques and results of this last section are reminiscent of similar facts
from the theory of expanding endomorphisms and g-measures. (See [L], [Bo], [A],
[Be] and the publications cited therein, where the central problem is the existence
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2 C. /. Bose

of a 'reasonable' invariant measure.) Since our transformations are measure-
preserving our setting is more restrictive and subsequently we obtain better results
than would follow from these known facts. Nonetheless we choose to deduce our
main theorem (Theorem 3.4) from a result of Walters [W].

In [B2] we have used the ideas and results presented here to investigate expanding
endomorphisms and to prove a C1+E version of Adler's Folklore Theorem.

2.
Let A be Lebesgue measure on the Borel subsets S8j of [0,1], Let /x = A x A be two
dimensional Lebesgue measure on the Borel subsets S82 of the unit square S =
{(x, y)\0<x, y < 1}, and l e t / > 0 i = 1,2 be measurable functions on [0,1] satisfying
/ i + / 2 = 1(A -a.e.). Define two mappings of [0,1] into [0,1] by the formulae

-JV.<
Jo

<P?(x)=) fMdt,

Observe that the <pf are increasing and map the interval continuously onto [0, <pf(l)]
and [<p*(l), 1] respectively. Define, for xe [0, <p*(l)]

andforxe|>*(l),l],

<p2(x) = mf{t\(pf(t)>x}.

P2 = S-Pl and Pf = {P,, P2}. Let

. , , „ . . , • y) ifxe[O,<
Tf{x, y) =

If 0< a < b < cp?(1), 7} moves the subset [a, b] x [0,1] to ([<Pi(a), (pv{b)] x [0,1])n
P, and if cpf (1) < a < b < 1, 7} moves the subset [a, b] x [0,1] to ([<p2(a), cp2(fc)] x
[0, l ] )n P2. Of course here, and in all that follows equalities and inequalities will
be taken modulo a set of (the relevant) measure zero. In particular if g = (g,, g2)
withg, = / (A -a.e.),then Tf=Tg (/t-a.e.). If the (pf are invertible (as would be the
case if, for example, A{x| either /,(x) = 0 or/2(x) = 0} = 0) then <pf = <pi\ i! = 1,2
and we may write a formula for TJ1:

if(x,y)eP2.
J2(

In any case, as (pf(pi = id we have T}xTf=id, and TfT}l(x,y) = {x,y) provided
<p#>*(x) = x for that i satisfying (x, y) e P,. If v,«pf (x0) < x0 t h e n / = 0 on the interval
[<Pi<p*(x0), x0] and so P, n ([<p,ipf(x0), x0] x [0,1]) = </>. We conclude 7} is invertible
of! a set of measure zero and that a formula for T}x may be taken to be the above
even when <pf fails to be invertible.
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Generalized baker's transformations 3

Suppose for the moment/ e C'[0,1]. Differentiating our formula for 7} we obtain
\DTf\ = 1. It follows then that 7} is measure-preserving. In fact, this last statement
is true for any measurable / as the following elementary calculation shows.

LEMMA 2.1. 7} is Lebesgue-measure-preserving.

Proof. It will be convenient, and sufficient to check the fact on subsets of the form
A = ,Ax[O,c) where AeS8, and 0 < c < l . Decompose A by setting Ax =
{x G A\f(x) < c}, A2 = A - A,, A, = A, x [0, c), A2 = A2x [0, c). Note that <p?' = / , ,
and hence the Fubini theorem followed by a change of variable gives

(i) ti{T}iA2) = I C dx =

By a similar computation

(ii) M(T71(A1x[c,l])) =

and as observed before

(Hi) »(T}\AlnP1))

(iv) rtTJ^At x [0,1]) n P2)) = M((A, x [0,1]) n P2).

Putting all the pieces together one concludes

M(T71i) = M(A). •
If/i =/2 = 5, 7} is the classical baker's transformation mentioned in the Introduction.
Given/= (/i ,/2) the automorphism Tf will be called the generalized baker's transfor-
mation associated with the pair f=(fl,f2) (abbreviated gbt, with tacit dependence
on/) and/, will be called the cutting function for 7}.

Moser [M] has studied a class of automorphisms on S similar to the collection
defined above but with cutting functions restricted to those satisfying a Lipschitz
condition. His transformations are not necessarily measure-preserving. Alexander
and Yorke [A, Y] have studied another generalization of the classical baker's
transformation which is neither one-to-one nor measure-preserving unless equal to
the classical baker's transformation.

We conclude this section with a brief exposition of the conventions and notations
we shall be using.

By a measure space we shall mean a triple (X, 3F, //,) where X is some set, 9 a
o--algebra of subsets of X and fi is a countably additive and normalized measure
on 9. All our measure spaces will be Lebesgue spaces, that is, measurably isomorphic
to an interval plus an (at most) countable collection of point masses. Let / be a
finite or countably infinite and linearly ordered set. A partition Pof(X, &, p) indexed
by I is a collection of disjoint members of 9, say P = {Ps}se/, each Ps e 9 so that
X = \J,PS. Each P, with fi(Ps) > 0 is called an atom of the partition P. If P = {P j s e ,
and Q = {(?,}, eJ are two partitions of (X, &, fi) then PvQ, the join of P and Q is
the partition P v Q = {Psn Q,}s£/,,ej where IxJ is given the lexicographic order.
The apparently unnecessary assumption of a linear order on our partition will
facilitate our constructions in the later sections and may always be assumed. \P\
will denote the number of atoms in P.
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Let S g f be a sub-a--algebra and denote by E<g the conditional expectation,
/u.(-|^) the conditional measure, and dist(P|^) the conditional distribution of a
partition P with respect to 'S. For two a- algebras 'S and Sif we write ^ < $f if for
each G e S there is an H e Sif so that fi{(H n G c )u ( / / C n G)) = 0. A pair (T,P) is
called a process if T is an automorphism of a measure space (X, 3F, /*) and P is a
partition. Let (S, Q) be another process and suppose P and Q have the same index
set /. Then we say that (T, P) and (S, Q) are isomorphic processes if for each n, m e N,

dist ( V T'P) = dist ( V S'
\—m / \-m

Equip / with the discrete cr-algebra. Each choice o f m < n e Z and string of symbols
se /"-m+1

) s = smsm+l • • • sn, can be identified with a cylinder subset se /*, namely
s = {x e Iz|x,i = s,, m ^ i s «}. Define a map <SP: X -* Iz by 4>p(x) = x where x, = s,
if and only if T'x e Ps.. 4>P(x) is called the P-name of the point x e X. 4>P carries the
measure /LA to a measure jx on the cr-algebra generated by cylinder subsets of Iz.
Let & be the completion of this cr-algebra with respect to /I. Define the shift S on
Iz by the rule (Sx)i =x,+1 and check that S°<bP = <t>P° T; S is evidently an invertible,
measure-preserving transformation and if we set Q = <f>PP, the time-zero partition,
(T, P) and (S, Q) are isomorphic. We say that P is a generator for T if we may find
a subset X ' g X with /u-(X') = 1 so that <frP|x in one-to-one; in this event T and S
are measurably isomorphic transformations.

We denote the information and conditional information functions of the partition
P, respectively, by IJP) = - I *P, log /*(P,) and /M(0>| ») = - I *Pl log M(P, | »). The
entropy and conditional entropy of P will then become

and

and these may be infinite. If h^iP) < oo then the entropy of T with respect to P is

whereafter the entropy of T is

M T) = sup {h.(T,P) | fc

If S€<^ is another sub-o--algebra then Itt(X\(S) will be the increasing limit of
^iCil^) where Pj<Pi+l are finite partitions and V 0*,-=the cr-algebra generated
by the U Pi — 5Sf; this limit may be seen to be independent of the choice of the
sequence P,.

3.
If B 6 38, and x e [0,1] then we call B x [0,1] the full column over B, and {x} x [0,1]
the vertical fibre over x. Let C be the cr-algebra of full columns in S. For each n e N
let Cn = V"=, Ty'J/ and let Cx be the smallest cr-algebra containing the UB C-
Clearly Cn<C for each n > 1 and hence Cm < C. We begin with a simple, nonetheless
useful observation.
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Generalized baker's transformations 5

LEMMA 3.1. If A is an atom ofC^, with A = A, x [0,1] then either fx\A% = 0 or/,|Al = 1.

Proof. We will show that \Alf\(t) dt is either zero or \(Ai). Suppose not. Then
T}lA is the disjoint union of two full columns TJl(AnP1) = (pf(Ai)x[0,1] and
T}*(AnP2) = (p*(A\)y.[Q, 1] with measures strictly between zero and /J.(A). Since
A is an atom, we conclude that A and the two full columns of T}1 A are pairwise
disjoint. Hence H(T}XAKJ A) = 2/J.(A). NOW consider the set TJ2A =
U,-=i,2 T}\Tj\AnP,)). The columns of Tj\Tj\An /»•)) must be disjoint from
A and both columns of T}lA, hence IM{TJ2AU T}1 AuA) = 3/JL(A). Continuing in
this way we obtain a contradiction. •

As our first application of this fact we show

LEMMA 3.2. For i = 1,2 and (x, y) e S we have

n(Pi\Caa)(x,y)=f(x).

Proof. Setting/(x, y) =f(x) it will be enough to show ̂ {Pt | C^) = f. Since \Afi d\ =
I A XP, dk for any A e C ,̂ we need only check that the f are Cx measurable.
Ccc = V^=i Cn and each Cn is a partition of S into full columns over intervals in
[0,1] so on the non-atomic part of ([0,1], Cx, /•<•), CM separates points. The previous
lemma implies that the f are constant on any atoms of C^ (in fact either zero or
one) and hence the result follows. •

COROLLARY 3.3. The entropy of Tf with respect to the two set partition Pf is calculated
as

K(T,,P,)= f -I f(t) log f(t) dt,
JO 1 = 1

{where 0 log0 = 0.) In particular h^(Tf, Pf) = 0 ifffl=\A for a measurable subset

Lemma 3.2 also says that the pai r /=( / , , / 2 ) is a 'graph' of the distribution of Pf

on the past C^. It should not be hard then to turn this around and find, given a
stationary distribution, appropriate/=(/,,/2) to represent the process.

THEOREM 3.4. Let (T, P) be a process with \P\ = 2. Then there exist two measurable
functions/, and f2 with fx+f2= 1, so that iff= (/i,/2) we have (7}, Pf) and (T, P)
isomorphic processes.

Before giving a proof we establish some notation. If se{0,1}" and s'e{0,1}"1,
say s = 5^2' ' ' sn, s' = s[s'2 • • • s'm, then denote by ss' the concatenation of s and s'

(si')/ = fs!
LsJ_n un<i<n + m.

Let I denote the truncation of s; s e {0,1}""1 with 5, = s, for 1 < i" < n -1 that is,
s is obtained from s by dropping the rightmost entry of s.

Proof of Theorem 3.2. It will be enough to show that for our advertised / = {f,f2)
and each n > 1 that dist (CJ = dist (V? T~'P). Also, by the remarks in the first
section we may assume that T is the shift on {0,1}Z with invariant measure fi. on
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the a- algebra generated by the cylinder subsets and that P is the time-zero partition
of {0,1}Z. On [0,1] we construct a sequence of partitions into intervals, beginning
with 7j = [0,/i(0)], /! = [0, l ] - 7 0 and I1 = {ll}sem). Given the partition /" =
{/s

nLe{o,.)", with each In
s=[as,bs] and A(Ins) = /I(s)'define I"s0

+l = [as, as + /i(s0)l
I"tl = [bs-/l(sl), bs]. Clearly the I"+1 satisfy A(/"+1) = fi(s) for each se{0,1}"+1.
Evidently the partition In+l = {/"+1}se(o,i}"+1 is a collection of closed intervals indexed
by se{0, l}"+ 1, A(/"+1) = /2(s) and moreover the 7"+1 are placed on the interval so
that the lexicographic order on SE{0, l}"+ 1 is consistent with the usual order on
[0,1]. Almost every x e [0,1] lies in a unique sequence of nested intervals of the form

and in this case we define

$(x) = {xe{0, 1}Z|JC, = S,, i = 1,2 - • •}.

<i> is, by construction, measure-preserving and we may let fi(x) =
/2(P0|Vr r-'P)(*(jc)), f2(x) = 1 -/ ,(*) and / = ( / , , f2). It remains only to show
that V" TJlPf= I" x[0,1] when viewed as two partitions of the square. This will
follow if both <p? I" = I^1 and <pfl" = I"£l for each s e {0,1}". Write /""' = /fou/J,
(with 7"o immediately to the left of/Ji) and assume <p*I"~x = 11$. Then /Sj = (pf/"ou
<P*I"\. Since the qs* are continuous and increasing, the rightmost side of this equality
is a union of two intervals y*I"o immediately to the left of tpfl"i and having
measures J,';o/i(x) dx = fi.(0s0) and J/?i/i(x) dx = /I(0sl) respectively.

But /Jj- = Ioso ^ /oil1 is also a decomposition of 7S{ into two intervals, /JJo1

immediately to the left of 72// with measures /I(0s0) and /I(Oil) respectively. We
conclude that <p*I"o = Ioto and <p*/"i = Io£\ as desired. The same argument applied
to cpf instead of <pf completes our proof. •

It will be worthwhile at this point to mention that our setting of two-state stationary
stochastic processes has been chosen for notational convenience only. For, suppose
we have a countable, linearly ordered index set 7 and a collection of measurable
functions f{: [0, l]-*[0,1] satisfying £ , / = 1,

(here, if {a,}ie/ are positive numbers then £ a, = sup I X ".•[)•

|F|<oo

Define, for each ioe 7 and xe [0,1],

i< i 0 JO Jo

The <p% are continuous, increasing functions and if i < i0 then <p,(l) < <p,0(0). Also,

[0, l ] = U i ^ f [ 0 , 1 ] . For x e <p*[0, l ] = [<p*(0), <p*(l)] let <p,0(x) = inf {t|(pio(r)>x}

and l e t / d e n o t e the (countably infinite) vector {yj},£/. If (x, y)eS and x e ^ f J O , 1]

set

https://doi.org/10.1017/S0143385700004788 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004788


Generalized baker's transformations

Let Pio = {{x,y)eS\li<iofi(x)^y^lisiJi(x)} and P, = {P,},el. Then 7} is an
invertible, Lebesgue-measure-preserving transformation on the square S. If Coo =
VT 77*P/ then for each i06 7, and (almost every) (x,y)e S we have fi(Pio\Coo)(x,y) =
fia(x). If

Mp/) = " S I ft(x)dx log I I /(x)rfx)
ie/ Jo \Jo /

<oo

then the entropy formula in Corollary 3.3 is still correct for countable I. On the
other hand, by considering a sequence of finite partitions Pf

n) = {P;}ieF,,U {U/-F,, PJ)

associated to a fixed increasing sequence of finite subsets Fnf / one easily shows
that the right hand side of the equality in Corollary 3.3 computes the entropy of
the factor of 7} on the cr-algebra generated by Pf. In case fiM(P/) = °o this could be
infinite, while in the other direction if is easy to construct a zero-entropy gbt with
h»(Pf) = °°- Given a countable state process (T, P) (here, the index set / of P = {Pj.-e/
comes equipped with a linear ordering by our convention) one may follow the
construction in Theorem 1.4 to obtain functions {/}ie/ so that (Tf, Pf) and (T, P)
are isomorphic.

4.
We would like to investigate ergodic properties of the transformation 7}, and as is
often the case it will be convenient to do so by studying a suitable process constructed
from Tf. The previous section provides evidence that the process (Tf, Pf) is a natural
choice for our attention, and so we shall investigate conditions under which Pf will
be a generator for 7}. In this section we shall frame our results in the context of a
single cutting function (i.e., a two-state process.) The reader may check that our
arguments work equally well for countable-state processes with the obvious
modifications.

Consider the factor of 7} obtained by restricting the action of 7} to the invariant
cr-algebra of vertical fibres. This is (measurably isomorphic in an obvious way to)
the mapping

5/(X) = U2M if*e[«rf(D,l],
a 2-1 Lebesgue-measure-preserving endomorphism of the unit interval. We should
mention at this point that 7} restricted to the cr-algebra generated by P{ will be the
natural extension of Sf (see [R] for a definition of this). We will make essential use
of this fact in § 5.

Using the two branches of S/1, ,S7" = (f>* and 2 S / ' = <p* we define the Frobenius-
Perron operator Ff on Z,°°[0,1] associated with Sf:

=fi(x)g(<pf(x))+f2(x)g(<p?(x)).

We will need two easily checked properties of the operator Ff:
( i ) J F d i d
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(ii) If g s 0 and Ffg = g then g is the density of an Sf-invariant measure absolutely
continuous with respect to A.

We will say that 5/ is ergodic if whenever Ae38, with S7'/4 = A, then either
A(A) = 0 or A(A) = 1. We now present two sufficient conditions for Pf to be a
generator.

LEMMA 4.1. Suppose f= (/,, f2) satisfies both
(i) A ( U I - I . 2 { * | / ( * ) = 0 } ) < 1 , and

(ii) The endomorphism Sf is ergodic.
Then Pf is a generator for 7}.

LEMMA 4.2. Suppose/=(/(,/2) satisfies
(i) There exists a 8>0 so that for i = 1, 2, f < 1 - 8.
Then Pf is a generator for Tf.

COROLLARY 4.3. Letf= (/, ,/2) with ft not the characteristic function of a set in [0,1].
Then 7} is ergodic if and only if Sf is ergodic.

Proof, f satisfies condition (i) of Lemma 4.1.

COROLLARY 4.4. Let Tbe an ergodic automorphism with 0<h(T)<log2. Then Tis
measurably isomorphic to a gbt 7} with a single cutting function.

Proof. By a theorem of W. Krieger [K] we may find a generating partition P for
the automorphism T with \P\ = 2. By Theorem 3.4 we may find functions / = (/i ,/2)
so that (T, P) and (7), Pf) are isomorphic processes. Of necessity 0<h{T) =
h(T, P) = h(Tf, Pf) and so by Corollary 3.3 AflJ.-=i,2 {*L/!(*) = 0})< 1. Furthermore
limn^oosup{/u.(A)| Ae V" T'P} = 0 (one may see this, for example, from the
Shannon-McMillan-Breiman Theorem) so we may conclude that the cr-algebra Cx

contains no atoms and hence CX=C the cr-algebra of vertical fibres. We conclude
that Sf is (isomorphic to) a factor of T and so is ergodic. Lemma 4.1 now implies
the result. •

Proof of Lemma 4.2. Without loss of generality we may assume f(x)<l-8 for
i = 1,2 and all xe[0,1]. It is clear from Lemma 1.1 that CX is the cr-algebra of
vertical fibres on S so it only remains to show that two points on the same fibre,
say (x,_y,) and (x,y2) with y\<y2 eventually lie in different atoms of V?=o T'/Pf-
Suppose not. Then for each i > 1, T}'{x, yx) and T]'(x, y2) lie on the same vertical
fibre and in the same atom of Pf. A simple induction however shows that

a contradiction for sufficiently large i. •

Example 4.5. The hypotheses of Lemma 4.2 are not necessary, for, let Tx denote
the gbt with cutting function /i(x) = x. Let (x, yx) i* (x, y2) and
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Generalized baker's transformations 9

If T~"(x, y}) and T~"(x, y2) He in the same atom of Px for each n = 0,1, 2 • • • (and
hence on a common vertical fibre for each n>0), then no two consecutive iterates
of these points may lie on a fibre over the subset [0, 50] u [1 - 50,1]. Conclude that

\T-"(x,yi)-T-"(x,y2)\z(~^j \yi-y2\

and hence that Px is a generator.

Proof of Lemma 2.1. We show first that C«, separates the vertical fibres on S. For,
if not, then we may get x, < x2, the vertical fibres over which always lie in the same
atom of TfkPf for each Jt > 1. Denote by If the partition of [0,1] induced by T}lPf.
Then [xj, x2] lies in an atom of \C=o S}"If and for each p > 0, S^[x,, x2] is a single
interval and lies in an atom of S}kIf. Conclude that for each p > 0 the column over
S/[*i, X2\ is an atom of Cx and hence, by Lemma 3.1 either/, | s?[*,,x2] = 0 or/2| sy[>,,x2] =
0. Set J = [x,, x2] and A = i u S / J u S ; J u • • • and observe that S/1 A = A. (S/A £ A
so S7'(S/A)cS7'A and obviously AsSf\SfA). Hence A s S / ' A ] Thus
U"=i S}J = [0,1] and this contradicts condition (i).

Given a subset B e S82 and x G [0,1] denote by B* the intersection of B with the
vertical fibre over x. Let v denote the product measure on Sx S relative to the factor
Sf; its values on cylinder subsets are easily described, for if A, Be %2 then p( A x B) =
H n(Ax x Bx) dx. For each n > 0 let Dn = {((x, yx), (x, y2)) \ (x, yt) and (x, y2) lie in
the same atom of Vo T'fPf} s S x 5. The Dn are measurable and Dn+1 s Dn. If

dn(x) = /t{(>-,, y2) |((x, j , ) , (x, y2)) e DJ

then v{Dn)=\dn{x) dk{x). Since Vo T"} /̂ induces an interval partition on each
vertical fibre in the square, in order to show Vo°° T'fPf separates points on these
vertical fibres it will be enough to show v(Dn)l0 or equivalently, since dn[, that
<U0(A-a.e.).

Observe that the functions dn satisfy the following recursion relation: for A -a.e.
xe[0, l ]

Setting d(x) = limn dn{x) and taking limits in the above expression we see for A -a.e.
xe[0, l ]

d(x)=f2
l(x)d(<pf(x))+f2

2(x)d(<pUx)),

from which we may conclude (since d > 0)

But J 4d d\=\ Ff\fd d\ so the previous inequality must be (A - a.e.) equality and
we conclude that \fd is the density of an absolutely continuous Sf invariant measure;
consequently \fd= const. (A -a.e.). Hence d is a constant function, but this is in
contradiction with the equality

d(x)=f2(x)d(<pf(x))+f2
2(x)d(<pUx))

at any x where 0</!(x),/2(x)< 1 unless d = 0. The lemma now follows. D
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Example 4.6. Lemma 4.2 does not follow from Lemma 4.1. We construct a non-
ergodic gbt with cutting function / bounded away from zero and one.

Let Y denote the measure space of two points a and b equipped with equidis-
tributed probability measure p2 • Let B denote the Bernoulli (5,5) shift on il = {0,1}Z

with v(0) = j , i/(l) = | and time-zero partition R. Denote the atoms of R by '0' and
'1 ' . Let X = Y x O, T = identity x B and let P be the partition of X into two atoms

Then P is clearly a generator for T as no two points (a, x), (b, y) can have the same
P-name by the ergodic theorem applied to B. Each atom Ae V" T~'P may be
written as A = Aa u Ab where Aa = {(a, y) e A}, Ab = {(b, y) eA}. If m = p2 x v then

But m(P0\ Aa) =5 and m{P0\Ab) =§ so | < m(P0| A)<\. It follows that the functions
/ = (/11/2) constructed in Theorem 3.4 satisfy ^ < / < f and so Py is a generator for
Tf. Since 7} is not ergodic, neither can Sf be ergodic.

5.
We shall now investigate connections between topological restrictions on the func-
tions ft and ergodic properties of the associated generalized baker's transformation
Tf. So far, we have made the trivial (and well known) observation that if the ft are
constant functions then Pf is an independent generator for 7} and hence 7} is
measurably isomorphic to a Bernoulli shift with entropy determined by Corollary
3.3 (which may be infinite.) In Example 4.6 we saw that even when there exists a
S < 1 with ft < S for all i e /, 7} may fail to be ergodic. In this example the cutting
function was discontinuous. In what follows we shall show, roughly speaking, that
if the f are Holder-continuous functions and are uniformly bounded below 1, 7} is
measurably isomorphic to a Bernoulli shift with the appropriate entropy. This is
achieved by verifying the weak-Bernoulli condition on the generator Pf, from which
the result follows by the Ornstein theory, [F, O], [O]. We shall give our arguments
in the context of a countable number of cutting functions {/}*<=/, a result we shall
need for later applications.

Recall the definitions of Sf and // = {/,},«=/ from §4, and extend these in the
obvious way to the setting of a countable number of cutting functions.

Definition 5.1. We will say the family {yi}1£; is piecewise Holder-continuous with
respect to If if we may find numbers 0 < a < 1 and M < 00, and a partition of [0,1]
into finitely many disjoint open intervals Jn = (an, bn), each Jn a union (within a set
of measure zero) of atoms from If and so that if x, y e Jn

My)
Here we set

by convention.

- 1
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Generalized baker's transformations 11

Definition 5.2. We say that Pf is a Markov mixing partition for 7} if there is an N
so that fi{Pk\ TfP,)>0 for all fc, /e / and n > JV.

Remark 5.3. Definition 5.2 implies that for all sufficiently large M, and all atoms
/, e 7y and atoms AeTjPf (the later a union of horizontal strips bounded by
measurable functions) there is an x e It so that the fibre over x has a non-trivial
interval of intersection with A. If the {/},-e/ also satisfy Definition 5.1 then the fibres
over every x e interior A = A will have this property.

Recall that C denotes the a- algebra of vertical fibres on the square. Write So for
the square S minus the collection of vertical fibres over endpoints of the Jn. If
(x, y) € S, (x, y) e P, then set <p(x, y), = -\ogf(x); (p:S-* Ru{+oo}. Let M(S0)
denote the probability measures on 50 and MT/(S0) the 7}-invariant members of
M(S0).

Let us now state the main result of this section.

THEOREM 5.4. Let {./]},e/ satisfy the conditions:
(i) sup,{supxe[o,,]./;(x)} = S < l .
(ii) {filial is a piecewise Holder-continuous collection with respect to lf.

(iii) Pf is a Markov mixing partition for 7}.
Then the partition Pf is a weak-Bernoulli generator for the transformation 7} and

hence 7} is measurably isomorphic to a (generalized) Bernoulli shift. Moreover,
Lebesgue measure n is the unique member of MTf(S0) which satisfies the variational
inequality:

for all m e MTf(S0), the left-hand side of this inequality being zero.

Remark 5.5. In case/ > 0 condition (iii) is trivially satisfied. In this simpler situation
a direct verification of the weak-Bernoullicity of Pf is possible and in fact a lower
bound on the rate of convergence to independence may be given. The details are
worked out in [Bl]. On the other hand, in order to include the well known case of
finite state mixing Markov shifts, whose cutting functions will be piecewise constant
and which were shown to have weak-Bernoulli generators in [F, O], the more general
hypotheses of our theorem are needed. In all that follows we shall assume that the
{f}iei satisfy the conditions of this theorem.

It will be convenient to work with the endomorphism Sf and the partition If,
drawing our conclusions from Theorem 15 of Walters [W]. We must first, however,
change slightly the space upon which Sf acts. Note first that without loss of generality
we may assume that the support of each f is exactly one interval Jm; in terms of
the endomorphism this implies Sf sends each Ik onto exactly one interval Jm. Denote
by |X,-JC2| the usual distance between two points x,,x2elR2. We now follow the
notation of [W].

Let X = LJn Jn x {5M}, a compact subset of U2. Let X = \JnJnx {5M}, SO that X c X
is an open, dense subset, and let /„ =/„ -{all endpoints of the intervals Ij). Then
^o = UnZi X{5M} is an open, dense subset of X and XocX. If (x, 5m) € Jm x{5m}
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12 C. J. Bose

and SfxeJn then set T(x,5m) = (Sfx,5n), thereby denning a continuous map
T: Xo onto X. To keep our notation reasonably compact we shall often write x for
(x, 5n)eX when xe7n , and so, for example both T(x) and Sf(x) make sense.
Continuing in this spirit we shall denote by A, the one-dimensional Lebesgue measure
on X and by If the partition of X naturally induced by the partition If on [0,1].

Restricted to the interior of any atom of If, T is a diffeomorphism onto a subset
Jm x {5m}. If x e 7, then

V() S'() \

the right-hand side being defined since <p, takes 7, onto a set where f is strictly
positive by hypothesis (ii).

T is measure-preserving on X, moreover, by the above, if A (E) = 0 then A (TE) = 0;
in the terminology of [W] A is positively nonsingular for T. If x e X, e > 0, let
Be(x) = {x'eX\\x-x'\<e}.

LEMMA 5.6. (1) There exists an eo>O such that for every xeX, T~'(B2eo(x)nX)
can be written uniquely as a disjoint union of a finite or countable number of open
subsets A,(x), A2(x) • • • of Xo with, for each i, T\A.(x) being a homeomorphism of
Aj(x) onto B2eo(x) n X and so that ify, y'e At(x), \Ty— Ty'\>\y~y'\.
(2) For all e>0 there exists an M > 0 such that for all xeX, T~Mx is an s-dense
subset of X.
(3) d\oT~1/d\=\.
(4) supn21 {sup^T-, (d\ o T"/dX)(y')/(d\ ° T"/dX)(y)} is bounded if \x-x'\<e0,
where y' is chosen to be that y' e T~"x' which lies in the same atom of Vj*=o T~'Ifas
does y. Moreover the above quantity converges to 1 as \x — x'|-»0.
(5) The partition If restricted to Xo with atoms {/,},£/ satisfies.

(a) 7*|/. is one-to-one.
(b) A(a/,) = o.
(c) For each ie I, TI, is A — a.e. a union of Ik.
(d) For all choices of the sequence {in} in IM the set (~)n T~"(Tin) contains at most

one point.
(e) Each /, is a subset of some component of T~'Beo(x,) for some x ,eX; e0

from (1).

Proof. (1) Let e 0
= 1- The /4,(x) then become the interiors of the 7j for any xe X.

(2) Consider the interval partition of [0,1], Vo S}'If. Hypothesis (i) of the theorem
implies the maximal length of an atom in this partition is Sn+1 and so the same is
true for the partition Vo T~'lf on X. Thus it is enough to show that there exists an
N so that for all xeX, {T~"x}n 7,-/ <j> for all n>N, and iel. But this follows
immediately from the Markov mixing hypothesis (iii): the N from Definition 5.2
will do the job.
(3) T is measure-preserving.
(4) It will be enough to show there is a function M(x, x') denned for (x, x')e
[JmJmy.Jm with M(x, x')<L\x-x'\a for some constants L and 0 < a < l , and so

https://doi.org/10.1017/S0143385700004788 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004788
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that for all n > l if y and y' are in the same atom of V"=d SJJIf with S}y = x and
S}y' = x' then

Let M, a, and 5 be from hypothesis (i) and (ii) of the theorem. Choose M > M so

We shall find M(x, x') by induction. First, we calculate

if y and y'e /,. But this latter quantity is bounded, in view of hypothesis (ii) by

1 + M\x - x'\a < 1 + (1 + M)\x - x'\a.

Take M, = 1 + M. For n > 1 we apply the chain rule and obtain, if Sfy € /,

7 (Snfx)\Sfy) S'/

<( l + Mn_I|x'-x|a)(l + M | S / / - S ^ | a )

this last inequality in view of the fact that \Sfy'-Sfy\^Sai"~1)\x'-x\ by
hypothesis (i).

Expanding this last expression and factoring out |x ' -x |" one obtains, assuming

Now if Mn_, = n"Jo ( 1 + M8aJ) we have, indeed, Afn_, > M and one finally obtains
a bound of

l + f [ (l + mS"J')|x'-x|a.

Set Mn = n j = o (J + WS0"') and M* = supn Mn. It follows that we may take the function
M(x,x') to be M*|x-x'|°.
(5) All properties here are immediate consequences of the definitions except perhaps
(d) which follows from the observation already made in (2) about the maximal
length of an atom from V"=o SJJIf. •

Proof of Theorem 5.4. We have, in properties (l)-(5) of the previous lemma, verified
the hypothesis of Theorem 15 in [W] for the mapping T defined on the open, dense
subset Xo of the compact, metric space X, and with respect to the (non-singular
and positively non-singular) measure A on X and the partition If. Since A is also
in MT(X) we conclude that the natural extension of T with respect to A (and hence
the natural extension of Sf with respect to A) is a Bernoulli shift (a generalized
Bernoulli shift in case h(Tf) is infinite.) By Lemma 4.2, or more precisely by the
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14 C. /. Bose

countably infinite cutting function version of Lemma 4.2, Pf is a generator for 7}
and so, as observed before 7} is the natural extension of Sf.

Also, by Theorem 15 A is the unique element of MT{X) satisfying

\{h{®\T~x®)-\og r)>m(/m(S8|T-198)-log T)

for all m e MT(X). Here 3 denotes the cr-algebra of Borel subsets of X and is
generated by the { r - ' / ^ o .

Setting /o = [0,1] —{endpoints of the intervals /„} and writing this last inequality
in terms of Sf we see

for all me MSf(I0). Furthermore, since/A(S8,|S/1581)(x) = -log/(<p,(x)) whenxe /,,
and

S'f(x)= \

the left-hand side of the above inequality is zero.
Finally, since Pf is a generator for 7} we may lift the above inequality to the square

or equivalently

,*(/„( 7}C|C)-,p)>m(/m(7}C|C)-<p)

for all m e MTf(S0), the left-hand side of this inequality being zero. •

We conclude by mentioning that one may construct various generalized baker's
transformations with single cutting functions bounded away from zero and one,
and with 7} being ergodic but not weak mixing or weak mixing but not a K-
automorphism. The constructions are similar to that of Example 4.6. We intend to
publish the details in a future article.

6.
We say that g:[0, l]-»[0,1] is a piecewise increasing and C1 mapping with finite
image if
(1) There is a countable partition of [0,1] into subintervals; J> ={In}neN, /„ =

[an, bn], L U N h = [0,1] and A(/t n /,) = 0 if k # /, so that
(2) for every ne N, g\(an,b,,) is strictly increasing, continuously differentiable and

extends to a continuously differentiable function on an open interval /„ 3 /„.
(3) 0. = L U N {limx^a: g(x), limx^fc- g(x)} is a finite set contained in \Jne N {an, bn).

In particular, each interval gl^ is A -a.e. a union of atoms from $>.
If xeg(an, bn) set An(x) = (g|(afii()fi))"

1(x) and extend this definition of hn to all
of [0,1] so as to make hn continuous on [0,1] with h'n = 0 on the interiors of the
(at most) two intervals making up the complement of g(an, bn).

g will be Lebesgue-measure-preserving (i.e. \(g~iB) = A(B) for all Be 38,) if the
following is verified for A-a.e. xe [0,1]

F,1(JC)= X h'n(x) = l.
neN
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Give N the linear order it inherits from the position of the intervals /„ on the
interval [0,1], that is n, < n2 iff (an>, £>„,) lies to the left of {an2, bn2). Theorem 5.4
then implies the following result.

COROLLARY 6.1. Let g: [0,1] -»[0,1] be a piecewise increasing and C1 mapping which
is Lebesgue-measure-preserving. Assume g also satisfies
(i) There exists a D > 0 so that ifd>D and k,leN,\(IkngdI,)>0.
(ii) infn {infx£(a,,,Mg'(x)} = C > 1.

(iii) There exists M <oo and 0 < a < 1 50 that ifx and y lie in the interior of the same
interval In one has

g'(x)

g'(y)
- 1 sM\g(x)-g(y)\a.

Then, the partition 3> is a weak-Bernoulli generator for the endomorphism g and the
natural extension of g is the gbt associated with the cutting functions {h'n}neN. This
extension is measurably isomorphic to a Bernoulli shift with entropy

rb

log g\x) dx

when this sum converges {a generalized Bernoulli shift when the sum diverges).
Moreover, if we set Io = (0,l)-Cl,\ is the unique member of Mg(Io) satisfying

for all me Afg(/0).

Proof. With /„ = h'n (denned A-a.e.) we have the collection / = {fn}neN a piecewise
Holder-continuous family with respect to the finite interval partition formed by the
points ft u {0,1}, for, if (x, y) n ft = <f>

My)
- 1 Kix)

h'n(y)
- 1

g'(hn(y))

g'(K(x))
- 1 <M\x-y\a

by hypothesis (iii). Also, supn {supxe[0,i]/n(x)} = C ' < 1 . One easily sees that the
partition T~f

xPf is «?x[0, l] = {/n x[0, l ]} n e N and that hypothesis (i) gives the
Markov mixing condition on TJlPf, and hence on Pf. If xe (an, bn) one computes,
using the formula of § 3

S/(x) = infj | h'n(x)d\(s)>x-an\
' a 0 Uo J

= inf {hn(t)-an>x~an}

rao

= *(*),

this last inequality since hn is increasing and continuous. By the countable cutting
function version of Lemma 4.2, Pf is a generator for Tf and so Tf is the natural
extension of Sf and hence of g. The conclusions now follow from Theorem 5.4 and
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16 C. J. Bose

the entropy formula in § 3:

h'n(x)\ogh'n(x)dX(x))j

h'n(x)\ogh'n(x)dX(x))
g(a,,,b,,) I

h'n(x)\ogg'(hn(x))dX(x))
g(a,,,b,,) I

"log *'(«
a,,

Finally, the variational inequality stated is precisely the one which appears for St

in the proof of Theorem 5.4. •

Remark 6.2. Corollary 6.1 is an addition to a family of results, the prototype for
which is the 'Alder's Folklore Theorem' [A]. The main point of interest here is the
relative weakness of the differentiability condition (iii); the corresponding condition
in Adler's result being

f |g"(*)|l
sup j sup , ,2\

<+oo

which has come to be known as Renyi's condition. On the other hand, the mappings
treated by the Folklore Theorem need not be Lebesgue-measure-preserving. Indeed
part of the point in that result is to give an invariant measure equivalent to Lebesgue
measure which subsequently proves to have the strong ergodic properties we have
shown in our Corollary.

In [B2] we have shown the existence of invariant measures equivalent to Lebesgue
measure for mappings satisfying conditions (i)-(iii) of the Corollary but which are
not a-priori measure-preserving and so present a true generalization of Adler's
Theorem.
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