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SEQUENCE ENTROPY AND MILD MIXING 

QING ZHANG 

0. Introduction. Entropy characterizations of different spectral and mixing prop
erties of dynamical systems were dealt with by a number of authors (see [5], [6] and 
[8]). 

Given an infinite subset V = {tn} of N and a dynamical system (X, *B, /i, T) one 
can define sequence entropy along T: hr(T, £) = limn^//(vjL1 ?*''£) f° r a n v finite Pe
tition £, and hy(T) — sup^ hr(T, £ ). In [6] Kushnirenko used sequence entropy to give 
a characterization of systems with discrete spectrum. 

THEOREM 0.1 (A. G. KUSHNIRENKO [6]). An invertible measure preserving trans
formation T has discrete spectrum if and only ifhr(T) = 0 for all F C N. 

In [8] A. Saleski gave a characterization of weak mixing and later Hulse [4] improved 
Saleski's result. The following theorem is slightly stronger than theirs. For its proof, see 
Appendix. 

THEOREM 0.2. An invertible measure preserving transformation T is weakly mixing 
if and only if for any setF CN with positive density, there is a subset T\ ofT such that 
for any finite partition £, /zr, (T,£) = //(£ ). 

In [3] H. Furstenberg and B. Weiss introduced a new kind of mixing property of dy
namical system which they called mild mixing. A function/ G L2(X, #, /x) is rigid if 
there exists {tn} such that Vnf —>/ in L2-topology. A transformation T is rigid if there 
is {tn} such that for any/ G L2(X, *B, /i), Vnf —>/ in L2-topology. A transformation T is 
mild mixing if there is no nonconstant rigid functions in L2(X, #, //). Mild mixing is not 
"weaker" than weak mixing since any eigenfunction is also a rigid function. It follows 
from the definition that mild mixing is not " stronger" than strong mixing. In fact weak 
mixing is really "weaker" and strong mixing is really "stronger" than mild mxing. The 
reader can find details in [3]. The purpose of this note is to give the following sequence 
entropy characterizations of rigidity and mild mixing. 

THEOREM 0.3. Let T be an invertible measure preserving transformation. Then T 
is rigid if and only if there exists a subset TofN such that if { F,-} is any sequence of 
pairwise disjoint finite subsets of Y and S[ = EAGF, #, then h^Sjj (T) = 0. 
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THEOREM 0.4. T is mild mixing if and only if for any subset Y ofN, there is a se
quence {Fn} ofpairwise disjoint finite subsets ofT such that for any finite partition £ 
ofX, h{S[} ( 7 , 0 = H(£ ), where st = £fl€F. a. 

1. Preliminaries. In this paper, we will be dealing with a probability measure space 
(X, *B, /i) together with a one-to-one transformation T: X —• X which is measure pre
serving, i.e. p,{E) = p(T~xB) for B G (B. A partition £ of X is a disjoint collection of 
elements of # whose union is X. #(£ ) will be used to denote the number of elements in 
£. If #(£ ) = fc, we will call £ a &-cell partition. Suppose £ and 77 are two finite partitions 
of X. We write £ < 77 to mean that each element of £ is a union of elements of 77. 

DEFINITION 1.1. Suppose £ and 77 are two finite partitions of X. The entropy of £, 
written //(£ ), is defined by the formula 

J/(0=-X>(A)ln/x(A). 

The entropy of £ given 77, written //(£ | 77), is defined by the formula: 

DEFINITION 1.2 (KUSHNIRENKO [6]). Suppose £ is a finite partition of X and Y = 

{rn} is an infinite sequence of positive integers. Define: 

M X O = Ï ïm- / / (V ^ C ) and/zr(7) = s u p M ^ O -

hr{T) is called sequence entropy along T (or T-entropy). In particular, if Y = N, we will 
call it entropy of T and denote it by h(T). 

We will say that two ordered £-cell partitions £ = {Ai,...,A*} and 77 = 
{B\,...,Bk} of X are equivalent if /i(A/AB/) = 0 for / = 1,2,...,/:. Let Ẑ  be the 
set of equivalence classes of ordered k-œl\ partitions. Define a complete metric on Z^ 
by: 

A subset AT C Z* is totally bounded if it is totally bounded in the metric defined above. 
It is easy to see that K is totally bounded if and only if for any e > 0 there is a finite 
subset F of K such that mfvef | £ — 771 < e for all £ £ K. 

We use N,Z and J to denote respectively the set of all positive integers, the set of all 
integers and the set of all finite nonempty subsets of N. 

The following definitions mainly come from [1], [2] and [3]. 

DEFINITION 1.3 (CF. [1], [2]). A set of positive integers is called an IP-set if there ex
ists a sequence p\ ,/?2,... such that the set in question consists of the numbers /?,- together 
with all finite sums p^ +pi2 + • • • +pik with i\ < ii < • • • < /#. 

https://doi.org/10.4153/CJM-1992-014-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-014-5


SEQUENCE ENTROPY AND MILD MIXING 217 

DEFINITION 1.4 (CF. [ 1 ]). A homomorphism ip : J —> J is a map such that a n (3 = 
0 implies^ (a )H V>(/?) = 0 and VK« U /3) = ^ ( « ) U ^ (/?.)• 

An ^/-sequence is a sequence {xa\a G ^F} indexed by elements a £ f. Given a 
semigroup M and a sequence {JC/} of elements of M, one can define an ^F-sequence by 

x{i\J2,-,h} = xhxh • • mXk 

where i\ < h < • - • < ik- Such an ^/-sequence will be called an IP-system. Given 
an ^F-sequence { xa } and a homomorphism ^ \ J -^ 7, one can define ^F-subsequence 
{ya — x-tp («)}• In particular, if {xa} is an IP-system, we will call {ya} a sub-IP-system. 
If (X, *B, /i, T) is a dynamical system and T = {tn} C N, then the IP-system of measure 
preserving transformations generated by T is defined by Xp = { Ta = Yliea V

l\a G F}. 

DEFINITION 1.5 (CF. [1],[2] AND [3]). Let {xa} be an ^F-sequence in a topological 
space M and x G M. We say that x is IP-limit of { xa } if for every neighborhood V of x 
there exists an index f3 such that a Pi f3 = 0 implies xa G V. 

REMARK. If M is a Hausdorff topological space, the IP-limit is unique. All the topo
logical spaces we deal with in this paper are Haudorff. 

DEFINITION 1.6 (CF. [2] AND [3]). A function/ G L2(X, % /i) is called rigid if there 
is an infinite subset {tn} of N such that lim„ Vnf — f in L2-norm. A measure preserv
ing transformation T is called rigid if there is an infinite subset {tn} of N such that 
lim* r»f = / in L2-norm for al l / G L2(X, #, /x). 

REMARK. An equivalent definition for rigid transformation is: there is an infinite 
subset r c N such that IP — l i m ^ ^ Taf — f in L2-norm for a l l / G L?(X, % p). For 
details, see [1, p. 141]. 

DEFINITION 1.7. A dynamical system (X, % p, T) is called mildly mixing if it has no 
nonconstant rigid functions. 

For the proofs of the following two theorems see [1, p. 140,145]. 

THEOREM 1.1. Suppose (X, *B, /J,,T) is a dynamical system. Then for any subset T of 
N there is an IP-subsystem 2/ o/Ep and an orthogonal projection P such that: 

lP-\im(Taf,g) = (Pf,g) f,g£L2(X,<B,fi). 

In particular, if Vf — f, then: 

I P - lim 117^-/112 = 0. 
Ta elf 

THEOREM 1.2. T is mildly mixing if and only if for any infinite subset V ofN, there 
exists an IP-subsystem J! 6>/Zp such that: 

I P - lim(Taf,g) = (f,l){l,g) / , geL 2 (X ,« , / z ) . 
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PROPOSITION 1.3. Let P be the projection defined as above. There is a sub-a -algebra 

%) such that 

P ( L 2 ( X , « , M ) ) = L 2 ( X , % , / i ) . 

PROOF. Let H0 = P(L2(X, 2*,/X)) and let % be the smallest sub-cr-algebra with 

respect to which the functions in Ho are measurable. Then L2(X, rBo, /x) D //o. It is ob

vious that all of constants are in Ho. Since ftTa | / | — | / | I < || TçJ —/H2, we have that 

f e Ho implies \f\ G HQ (notice t ha t / G / / 0 if and only if IP - l i m ^ ^ / 7 a / = / ) . So if 

max{ / , g} = <E Ho\ m in{ / , g} = G H0. 

Iff G Ho and L is a real number, then: 

l{x-f{x)>L} = l immin{n(max{/,L} - L), l} G / /0 . 

Suppose 1A, IB £ Ho- Since: 

||7al/infl ~ l/\nfl||2 < | M « 1 A ~ I/1II2 + H^alfl — 1B\\2 

we have IADB G/ / 0 . S o / / 0 DL 2 (X ,«o , / i ) . 

2. Entropy characterization of mild mixing and rigidity. The following two lem

mas are generalizations of Proposition and Lemma 3 in [6]. 

LEMMA 2.1. For every e > 0 and positive integer p there is 6 — 6(e,p) such 

that for any ordered p-cell partition 77 and q-cell partition £ with p < q the inequality 

H(rj I O < à implies the existence of an ordered p-cell partition £ ' < £ swc/z f/u<tf 

| f / - E l < e . 

PROOF. For e > 0 we choose L > 1, 0 < 6' < 1/2 and 0 < S < 1/2 such that: 

(1) ( p + l ) ( £ ' + l / L ) < e andZ^ < 1/2. 

(2) forO < y < 1, - y l n j < L6 implies y < èf or \ - y < b'. 

Now we assume that 77 = { A i , . . . ,AP}, £ = {B\,... , ^ } are two finite partitions and 

H(r) I 0 < £. Define: 

/ i ( A n #,) 
^ • ( A ) = „ r i > / for/=l,2,...g 

jl{t5j) 

and 

^•C7/) = - H vMi)ln M/(^/) for y = \,2,...q. 
1=1 

Suppose f//(?7) < L<5 for 1 < j < q0 and Hj(j]) > LS for go + 1 < j < g. Since 

//(/? I O = £ ^ 1 Hj(ri)n(Bj) < é , w e have E/= ? 0 + 1 /*(£,) < I Let C0 = U ^ 0 + 1 *,. It 

follows from the definition that Hj(rj) < L5 implies — /x/(A,-) ln /i/(A/) < L<5. Then by (2) 
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fij(Ai) < 6f or 1 — fij(A() < 8f for 1 < j < q0 and 1 < i < p. Since /iy is a probability 
measure, there is a unique A/ such that 1 — Pj{Ai) < 6f. Hence we can assign A; to Bj. 
Now we have a map r defined by above assignment from B\,...9Bqo toA\,...,Ap. Let 
Ci = \Jr(Bj)=AiBj (if there is not Bj satisfying r(Bj) = At, take Q to be the empty set). 
Then: 

niQnAi)^ Y, ^ - n ^ x i - i ' ) £ /*(*/) = (i-«V(Q). 

This means /z(C; H A?) < 6ffi(Ci). On the other hand: 

M-ncf)< £ M - n ^ + ̂ CoX £ a ' ^ + I <a' + I. 
TiBjtfAi TiBjtfAi L L 

Now taking the partition £ ' = { Co U Ci, C2 , . . . , Cp}, we get: 

\r}-Z'\<6'+p(8'+±-) + ±<£. 

LEMMA 2.2. Suppose £ = { A\,... A^} is a partition ofX and T — { sn} C N . / / 
for any T\ C T, hyx (T,£) = 0 then { TSn^ } is a totally bounded set. 

PROOF. If { TSn £ } is not a totally bounded set, without loss of generality we suppose 
that there exists an £o > 0 such that \TSm^ — TSn£\ > £o- By Lemma 2.1 we can find a 
6 = <$(y,fc). Now we inductively construct Ti = {tn} C T such that: 

H(rni | V T'ù >s-

Suppose we already have t\ < • • • < tn-\. If for any sm > tn-\ 

H(TS^ | v T^)<6 
V 7 = 1 } 

then by Lemma 2.1 there is a /c-cells partition r\m < \ff~f Ttj £ such that | TSm £ — rjm \ < y . 
Since Vp/ Vj£ is a finite partition, there must be r]m] — T]m2 with m\ ^ m^. This implies 
| Tsmx ̂  _ Tsmi ^ | < £()> B u t \TSmi -TSni\>EQ. So there exists sm such that: 

//(r-c I V J*JZ) >s. 
V 7 = 1 J 

Put fn = 5m. Continuing in this fashion, we get a sequence T\ = {tn} such that: 

This contradicts our assumption that for any Ti contained in Y one has /zp, (7", £ ) = 0. 
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LEMMA 2.3. For any e > 0 and integer k, there is a 6 — 6 (s,k) (which depends 
only on e and k) such that ifk-cell partitions £ and r\ satisfy | £ — r\ \ < ë, then //(£ | 

r]) + H{ri | 0 | < e-

For a proof, see Lemma 4.15 in [9]. 

THEOREM 0.3. T is rigid if and only if there exists a subset Y ofN such that if{ F/} is 
any sequence ofpairwise disjoint finite subsets of T and Si = ICaef,• at thenh{s.y(T) — 0. 

PROOF. Suppose T is not rigid. Then for any F = { an}, there is an IP-subsystem E' 
of Zr such that the range of the projection P, defined by ( P/, g) = IP — lim^ en ( Taf, g), 
is not the whole space L2(X, $, /i). By Proposition 1.3, we have a sub-<7-algebra %) such 
that 

P ( L 2 ( X , £ , M ) ) = L 2 ( X , <%,//). 

Then there is a B' E # such that B' £ %. 
Take D = {x; e < E(l# \ %)< \ - e) <E %. Then /x(D) > 0 for some e > 0. 

(Otherwise E(l# | %) = 1 or 0 which means £' G 3b). Let B = Bf D D. Then 
e < E(l* | %) < 1 - £ on D and E(l* | $o) = 0 on Dc. Take £ = {B,BC}. Our 
next step is to find a sequence { an} of pairwise disjoint finite subsets of N such that for 
tn — £iean> <z*{ Ttn^ } is not totally bounded. 

Suppose ct\,..., a„_i have been chosen and: 

/ i ( V n y ) < (\--e)ii{B) 

for all 0 < i<j <n-\. 
Let/# — \B — E(lfi | % ) . By Theorem 1.1 we have: 

I P - \im[TafBlcdp = 0 

for all C € !%. Now we choose an such that: 
(1) ann a,: = 0 / = 1,2,... . 
(2) JTa,JTajlBdn < i£/i(B) for all; < « - 1. 

Then: 

H(Ta,Bn TajB) = jTan\BTa\Bd\i 

= JTa£(\B | %)TajlBdn+jTaJBTajlBdfi 

< ( l - e ) / i ( B ) + (l/2)e/i(fi) = { l - ( l / 2 ) e } f i ( f l ) 

for all 0 < _/" < « — 1. Now we already have { an}. Hence 

H(TatBATajB) = j{Ta\B - TajlB)2d^i 

= 2/x(B) -2JTanlBTajlBdfi > e/i(S) > 0. 
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This implies {Tan£} is not totally bounded. By Lemma 2.2 there exists F\ C {tn = 
Ei£an at} such that hV](7\ O > 0. 

Conversely, if T is rigid, there is a subset F — {sn} of N such that IP — lim^e%r Ta 1A 

= 1A for all A G rB. Then for a sequence { an} of pairwise disjoint finite subsets of 
N lim^oo Tan 1A = 1A. This implies lim^oo H(Tan( \ £ ) = 0 for any finite partition £. 
Taking tn — Eiea„ î» w e have: 

h{tn}(T,0= lim -HÇ\JT^) = lim - £ / / ( r ^ \ \ T^) 

J n-\ 
< lim - ] T # ( 7 ^ I O = 0. 

This proves our theorem. 

LEMMA 2.4. For any Lebesgue space (X, ®,/x), f/iere w « countable set { &} 0/ 
finite partitions such that for any finite partition £, infyt{//(£ | £*) + ̂ (£* | O } = 0. 

This lemma is an immediate corollary of 6.3, [7]. 

THEOREM 0.4. T is mild mixing if and only if for any subset F of positive integers, 
there is a sequence { Ft] of pairwise disjoint finite subsets of Y such that for any finite 
partition £ ofX, h{s.} (7, O = #(£ )> where 57 = Z êF,- #• 

PROOF. Suppose r is mild mixing. For F = {ai}, we define an IP-system Zp = 
{Ta = Uiea Tai\a G J}. Without loss of generality we suppose IP — lim^ ezr { ( Taf, g) 
- (/, 1) ( l ,g)} = 0 for all/,g G L2(X, #, /x) (cf. Theorem 1.2). 

Let { £*} have the property described in Lemma 2.4. We define inductively a sequence 
{ an} of pairwise disjoint finite subsets of N as follows. Let a\ be any finite subset of N 
and suppose a\,..., an_i have been defined. Let: 

Nn= max#f\/7U*l 
\<k<n l ^ j i 

and choose 6n such that 

Iu — vl < £„ impies \u\ogu — vlogv| < . 
nNn 

Choose an such that an n a}- = 0 for 1 < j < n — 1 and 

\p(TanEnB)-^(E)fi(B)\ <bn 

for all Ee£k,B e V?~o 7 « ^ and 1 < £ < rc. Then: 

| -^M(r a^n^)in/ i(r a^n^) + ^/i(£)/i(5)in/i(^/i(5)|<x:-{r 
£,£ £,5 £,5 ^ « 

E n 
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where the sums are taken over all sets E G £*, B G V"r/ 7 ^ . Note that: 

Therefore, 

l i m ( - X > ( 7 ^ £ n # ) l n / i ( r a „ £ n ^ = 0 
E,B 

i.e. 

Hm (//(V TaiÇk)-HÇy Ta£k)} - tf(&) 
,«-1 

, v 

/=1 7 v i = l 

for all £*. Taking sn = E/e«„ 0/» w e n a v e ^{sn}(7\&0 = #(£*) for all k. For any finite 
partition £, by Lemma 2.4, there is a £* such that //(£ | £*) + H(t,k | 0 < £ • Since: 

//(V r<(4 v 6)) = H(\J r<i) +//(v r«d v r^) 
v i= i 7 v i= i y v ; = i ' i = i y 

//( V r-(c v &)) = #( V r-a) +//(V ^ | V T*&) 
v /= 1 7 v /= 1 7 v i= 1 ' i= 1 

we have 

#(V Ts>ik)-H(\j r<z)\ <-[H(\J r>çk I v TS^)+H(\J r<z I V r«&)) 

< -£(//(r<^ | r^) + //(r<e | r<&)) < e. 
^ /=i 

Hence 

|/z{^(r,o-^{^}(^6)l <£ 

which implies | / i{ , j ( 7 , 0 - 7 / ( 0 1 < 2 £ for allé > 0, i.e. h{Sn}(T,0 = //(£)• 
Conversely if T is not mildly mixing, there is a nonconstant function/ and a subset 

r = {Jn} of N such that IP — l i m ^ ^ ^«/ = /• By Proposition 1.3 there exists a sub-
a-algebra % such that for/ G L2(X,$o,^), IP - l im^ e I r Taf = / . So (X, $b,/ i ,r) 
is rigid. By Theorem 0.3 for any %) -measurable partition £, any sequence {an} of 
pairwise disjoint finite subsets of N and sn = E/e«„ U, h{Sny (r, £ ) = 0. But % is non-
trivial. So there exists £ = {A,AC} with 0 < /x(A) < 1. Hence //(£) > 0. This is a 
contradiction which implies our theorem. 

Appendix. 

SALESKI'S THEOREM. T is weakly mixing if and only if for any finite partition £, 

sup rcNM7\0 = #(€). 
A proof of Saleski's Theorem can be found in [81, p. 63. 
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PROOF OF THEOREM 0.2. Suppose T is weakly mixing. Then there is a subset J of N 
having density zero such that for any A , ^ G S w e have: 

lim fi(T~nA HB) = /i(A)/x(fl). 

Hence r 0 = T n Jc is an infinite subset of T. Let To = {sm}, then for all A, B G *B 
we have lirrv^oo [i(T~SmA Pi B) — \x{A)\i{B). Taking a sequence { £*} of partitions as 
described in Lemma 2.5, we define a subset T\ = {rn} of r 0 as follows. Let t\ = si and 
suppose that t\, ^ , . . . , tn-\ have been defined. Let 

Nn= max#f \ / ^^ l 
1 <£<« 1 ^ j J 

and choose <$„ such that 

| u — v\ < 8n implies | u log u — v log v| < ——. 
nNn 

Now choose tn such that tn > tn-\ and 

for all Ae^B e V?^1 7 ^ 6 and 1 < k < n. Then: 

I - X X ^ ' - A n 5)iog|x(r-r-A n 5) + 5>(A)/z(5)iog,z(A)/x(£)| < £ -~r 
A,B A,B A,B nNn 

n 

where the sums are taken over all sets A G ^ , B G VĴ ,1 T~ti^k- Note that: 

X>(£)jx(£)logM(A)fz(#) = E/x(A)/i(JB)logM(A) + EMWMWlog/i(^) 
,4,5 A,# A,B 

= £ M (A) log /i (A) + £ n (B) log /i (5). 

Therefore, it follows that 

um (//( V 7^*) - #(&) - # ( V r~'"&) ) = o. 

So for all /c, we have: 

Therefore, /zr, (7\ £*) = #(£*) for all &. By the construction of { ^ } , we have /?r, (T,£) = 
//(£ ) for any finite partition £. 

The proof in the other direction is contained in Saleski's Theorem. 
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