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Abstract

Let L = H(2r; n) be a graded Lie algebra of Hamiltonian type in the Cartan type series over an
algebraically closed field of characteristic p > 2. In the generalized restricted Lie algebra setup, any
irreducible representation of L corresponds uniquely to a (generalized) p-character χ. When the height of
χ is no more than min{pni − pni−1 | i = 1, 2, . . . , 2r} − 2, the corresponding irreducible representations are
proved to be induced from irreducible representations of the distinguished maximal subalgebra L0 with
the aid of an analogy of Skryabin’s category C for the generalized Jacobson–Witt algebras and modulo
finitely many exceptional cases. Since the exceptional simple modules have been classified, we can then
give a full description of the irreducible representations with p-characters of height below this number.
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1. Introduction

In the classification of modular simple Lie algebras there are a variety of Lie algebras
of so-called Cartan type as well as classical Lie algebras arising from simple algebraic
groups. The simple Lie algebras of Cartan type fall into four classes: types W, S , H
and K (see [22]). They are subalgebras of the derivation algebra of the divided power
algebra R = A(m; n). Here the m-tuple n of positive integers is an ordered sequence of
divided-power exponents (n1, . . . , nm).

The history of the study of representations for Cartan type Lie algebras is a long
one. We can trace its beginnings back to the early 1940s when Chang studied
representations of the Witt algebra W(1, 1) (see [1]). In the 1980s Shen systematically
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studied graded representations of the Lie algebras of Cartan type (see [13–15]). Shen
completely determined the graded simple modules of the so-called exceptional-weight
modules and proved that all graded nonexceptional-weight modules are induced
modules (see [15]). The results for restricted simple modules were obtained by
Nakano [10]. Any simple module of a restricted Cartan type Lie algebra L can be
attached to a linear function χ ∈ L∗ and thereby a height of χ in connection with the
filtered structure. Holmes and Zhang completed the work for simple modules of L
when the height of χ is not greater than 1. This work follows lines similar to Shen’s
work on graded modules (see [3, 4, 25]). Furthermore, Zhang and Steffensen studied
irreducible modules of L and the rank-two Witt algebra W(2, 1) for general χ which
are either nonsingular or ‘nice’, respectively (see [6, 26]).

The second author of this paper found the generalized restricted Lie algebra
structure for a Lie algebra of Cartan type L (see [16]). This structure enables one to
study the representations of the Lie algebra of Cartan type L by following a program
very similar to that for working with restricted Lie algebras. In particular, any simple
module of L has a unique generalized p-character χ with a height ht( χ) which is
an invariant under co-adjoint action of Aut(L) (see Section 2.3). In such a setting,
Shen’s simple graded modules are just modules of generalized p-character χ satisfying
ht( χ) ≤ 1 and χ(L[i]) = 0 for all i , 0.

In a generalization of Shen’s work, Skryabin studied representations of L more
conceptually in [18]. Shen’s mixed product combining two modules of R and L
is extended to be a so-called (R, L)-module structure in the more general setting
of commutative algebras and their differential systems. In his C-module category,
Skryabin proved results parallel to those for simple modules by Shen, Nakano, and
Holmes and Zhang with respect to characters with height much greater than 1.
A similar argument for (R, L)-modules was given in [11, Section 3.3].

Skryabin’s C-module category has been extended to the case of special Lie algebras
of Cartan type by the authors (see [24]). This paper is a continuation of our previous
work (see [17, 24]). Recall that Skryabin first introduced the category C for the
generalized Jacobson–Witt algebra W(m; n) in [18]. Recall that W(m; n)0 consists
of ‘differential operators’ of degree equal to or greater than zero, that is, of the form∑m

i=1 fiDi with fi having no constants for i = 1, . . . , m.
In the generalized restricted Lie algebra setup, the ‘modified’ induced modules

for W(m; n) (induced from ‘twist’ modules of the distinguished maximal subalgebra
W(m; n)0) turn out to be objects of the category C (see [17]). The category C is
described based on the understanding that Cartan type Lie algebras are Lie algebras of
differential operators on the divided power algebras A(m; n). The representations of
W(m; n) certainly reflect the connections between the representations of both W(m; n)
and A(m; n). Furthermore, the induced modules arising from W(m; n)0-modules
additionally reflect a close connection between the representations of W(m; n)0 and
the representations of the pair (W(m; n), A(m; n)).

Such a connection should exist for all series of simple Lie algebras of Cartan types
W, S , H and K. We have successfully worked with the special series S (m; n), by

https://doi.org/10.1017/S1446788711001327 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001327


[3] Representations of H(2r; n) 405

constructing a category with such a ‘connection’ (see [24]). An idealistic continuation
of this work is to find a unified way of defining the ‘connection’ for all four series
of Cartan type Lie algebras. Unfortunately, we have been unable to define such a
connection. Indeed, the structure given in this paper does not work for the contact Lie
algebra K(m; n) because the canonical graded structure of K(m; n) does not come from
the gradation of A(m; n). This is a distinguishing feature from the other three cases.

In this paper we construct a counterpart ‘connection’ in the case of the Hamiltonian
algebra L = H(2r; n) in order to study its representations. This algebra consists of
differential operators D on the divided power algebra A(2r; n) such that DωH = 0.
Here ωH is the Hamiltonian differential form (see [9]). Let L0 = L ∩W(2r; n)0 be
the distinguished maximal subalgebra of L and let R = A(2r; n). In the generalized
restricted Lie algebra setup we can naturally construct induced L-modules from
irreducible L0-modules. Using these constructions, we prove that the induced
modules admit an ‘admissible’ structure involving the representations of L, L0 and
R. The ‘admissible’ structure enables us to prove that all irreducible L-modules with
p-characters of height no more than

min{pni − pni−1 | i = 1, 2, . . . , 2r} − 2

are induced from irreducible L0-modules in the so-called nonexceptional cases. The
irreducible L0-modules for the exceptional cases have been described by Shen [15],
Holmes [2], and Pu and Jiang [12].

The irreducible modules for the rank-one Hamiltonian algebra H(2; 1) were
classified by Koreshkov in [8] using a technical computation. Koreshkov’s result
for the irreducible modules of H(2; 1) is more general than the one we give in this
paper. However, it seems difficult to generalize his results to general Hamiltonian
algebras. In [19] Skryabin extensively studied representations of the restricted Poisson
algebra which is a central extension of the restricted Hamiltonian algebra. His work
follows a similar approach to that taken in the work of Premet and himself for the Lie
algebras of reductive algebraic groups (see [11]). The results of [19] can be applied to
estimate dimensions of some irreducible representations of the restricted Lie algebras
of Hamiltonian type (see Proposition 4.15).

2. Preliminaries

In this paper we always assume that the ground field F is algebraically closed and
of prime characteristic p > 2. We let Z>0 (respectively, Z≥0) denote the set of all
positive (respectively, nonnegative) integers. We fix a positive integer m and an m-
tuple n = (n1, n2, . . . , nm) ∈ Zm

>0. All modules (vector spaces) are taken over F and are
assumed to be finite-dimensional.

We define

A(m; n) := {α = (α1, α2, . . . , αm) | αi ∈ Z≥0, αi < pni , ∀i = 1, 2, . . . , m}

and set
τ = (pn1 − 1, pn2 − 1, . . . , pnm − 1).
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There are natural partial orders ‘�’ and ‘≺’ on A(m; n) defined as follows.

(i) We say that α � β, α, β ∈ A(m; n) if αi ≤ βi for all i = 1, 2, . . . , m.
(ii) We say that α ≺ β if α � β and α , β.

Using this notation, we can rewrite A(m; n) as

A(m; n) = {α = (α1, α2, . . . , αm) | 0 � α � τ}.

For brevity we write εi = (δi1, δi2, . . . , δim).
We use the following componentwise operations in A(m; n). For any elements

α, β ∈ A(m; n) we define

α ± β := (α1 ± β1, α2 ± β2, . . . , αm ± βm),

α! :=
m∏

i=1

αi!,(
α

β

)
:=

m∏
i=1

(
αi

βi

)
and

|α| :=
m∑

i=1

αi.

2.1. The generalized Jacobson–Witt algebra W(m; n). Let A(m; n) denote the
divided power algebra which is an F-algebra with an F-basis {xα | α ∈ A(m; n)} and
multiplication subject to the following rule:

xαx β =

(
α + β

α

)
xα+β ∀α, β ∈ A(m; n)

with the convention that x(γ) = 0 if γ < A(m; n).
For any i ∈ Z≥0 define

A(m; n)[i] := F-span{xα | |α| = i}.

Then we have that

A(m; n) =

s⊕
i=0

A(m; n)[i]

which is a natural gradation of A(m; n). Here s =
∑m

i=1(pni − 1). We also write

A(m; n)i :=
⊕

j≥i

A(m; n)[ j].

Then
A(m; n) = A(m; n)0 ⊇ A(m; n)1 ⊇ · · ·

is the natural filtration associated to the natural gradation given above.
For 1 ≤ i ≤ m, let Di denote the special derivation of A(m; n) which satisfies

the condition that Di(xα) = xα−εi for all α ∈ A(m; n). By definition the generalized
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Jacobson–Witt algebra is defined by

W(m; n) = F-span{xαDi | α ∈ A(m; n), i = 1, 2, . . . , m}

and endowed with the Lie bracket satisfying

[xαDi, x βD j] =

(
α + β − εi

α

)
D j −

(
α + β − ε j

β

)
Di

for any α, β ∈ A(m; n) and i, j = 1, 2, . . . , m.
Note that all Di, for i = 1, . . . , m, are mutually commutative. Associated with an

element α ∈ A(m; n) we have a linear operator Dα :=
∏m

i=1 Dαi
i on A(m; n).

For any i ≥ −1 we define

W(m; n)[i] := F-span{xαD j | |α| = i + 1, j = 1, 2, . . . , m}.

Then

W(m; n) =

s−1⊕
i=−1

W(m; n)[i]

is a gradation of W(m; n). Here s =
∑m

j=1(pn j − 1). Associated with the gradation we
have a filtration

W(m; n) = W(m; n)−1 ⊇W(m; n)0 ⊇ · · ·

where W(m; n)i :=
⊕

j≥i W(m; n)[ j]. By [20, Section 4.2], W(m; n) is restricted if and
only if n = (1, 1, . . . , 1).

2.2. The Hamiltonian algebra L = H(2r; n). Recall that the Hamiltonian algebra
L = H(2r; n) is defined to be

L = {D ∈W(2r; n) | DωH = 0}

where ωH =
∑r

i=1 dxi ∧ dxi+r. For the details we refer the interested reader to [9, 20].
This algebra may be described using a linear operator DH : A(2r; n)→W(2r; n) which
is defined by xα 7→

∑2r
i=1 σ(i)Di(xα)Di′ with the Lie bracket formula satisfying

[DH(xα), DH(x β)] = DH(DH(xα)(x β)) ∀0 ≺ α, β ≺ τ.

Here we have

σ(i) :=

1 if 1 ≤ i ≤ r,

−1 if r + 1 ≤ i ≤ 2r

and

i′ :=

i + r if 1 ≤ i ≤ r,

i − r if r + 1 ≤ i ≤ 2r.

Thus
L = F-span{DH(xα) | 0 ≺ α ≺ τ}

(see [20] for the details). Moreover, L is a simple Lie algebra and, furthermore, it is
restricted if and only if n = (1, 1, . . . , 1). The following facts about L = H(2r; n) are
easy to establish.
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(1) There is a natural gradation of L which inherits the gradation of W(2r; n). That
is, L =

⊕s−2
i=−1 L[i] where L[i] = L ∩W(2r; n)[i] and s =

∑2r
i=1(pni − 1).

(2) In the above graded structure of L we have L[0] ' sp(2r) under the map ϕ : L[0]→

sp(2r) with DH(x2εi ) 7→ σ(i)Eii′ and

DH(xεi+ε j ) 7→ σ( j)Ei j′ + σ(i)E ji′

for 1 ≤ i, j ≤ 2r, i , j.
(3) Associated with this gradation, there is a filtration

H(2r; n) = H(2r; n)−1 ⊇ H(2r; n)0 ⊇ · · · .

Here
H(2r; n)i = H(2r; n) ∩W(2r; n)i.

According to results of Block and Wilson (see [21]), this filtration is invariant
under the action of the automorphism group Aut(L).

2.3. Generalized restricted Lie algebras and generalized restricted ( χ-reduced)
representations. It is well known that not all Cartan type Lie algebras are restricted
Lie algebras but that these algebras are generalized restricted Lie algebras in the
following sense (see [16]).

D 2.1. A generalized restricted Lie algebra L over F is a Lie algebra
associated with an ordered basis E = (ei)|i∈I and a mapping ϕs : E→ L sending ei 7→

eϕs
i . Here s = (si)|i∈I where si ∈ Z>0 satisfies the condition that ad eϕs

i = (ad ei)psi for all
i ∈ I.

The algebra H(2r; n)0 is restricted under the mapping D 7−→ D[p]. Here D[p] is the
usual pth power of the derivation D. So ad x[p] = (ad x)p for any x ∈ H(2r; n)0, and this
is, in particular, true for any element x taken from a fixed basis E1 of H(2r; n)0. Set E =

E1 ∪ {D1, D2, . . . , D2r}. Then E is a basis of H(2r; n). After rearrangement, we may
assume that E = (ei)|ti=1 is such that ei = Di, i = 1, 2, . . . , 2r, and e j ∈ E1 for j > 2r.
Here t = dim H(2r; n) which is equal to p

∑
ni − 2. Set s = (n1, n2, . . . , nm, 1, 1, . . . , 1)

and define a map ϕs : E→ H(2r; n) sending ei 7→ 0 for 1 ≤ i ≤ 2r and e j 7→ e[p]
j for

j > 2r. It is then obvious that the condition ad eϕs
i = (ad ei)psi is satisfied for all

i = 1, 2, . . . , t. So H(2r; n) is a generalized restricted Lie algebra in the sense of
Definition 2.1.

Schur’s lemma implies the following fact for a generalized restricted Lie algebra
over F.

P 2.2. Let (L, ϕs) be a generalized restricted Lie algebra over F associated
with a basis E = (ei)|i∈I and ϕs (called the generalized restricted mapping associated
with the basis E) where s = (si)|i∈I with si ∈ Z>0 for all i ∈ I. Suppose that (V, ρ) is an
irreducible representation of L. Then there exists a unique χ ∈ L∗ such that

ρ(ei)psi
− ρ(eϕs

i ) = χ(ei)psi idV ∀ei ∈ E. (2.1)
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D 2.3. The function χ defined above is called a (generalized) p-character
of V . A representation (module) of L satisfying (2.1) is called a generalized χ-reduced
representation (module). In particular, when χ = 0, such a representation is called a
generalized restricted representation (module) of L.

Now suppose that (L, ϕs) is a generalized restricted Lie algebra associated with a
basis E = (ei)|i∈I and ϕs where s = (si)|i∈I satisfies si ∈ Z>0 for all i ∈ I. For any χ ∈ L∗,
define

Ups (L, χ) := U(L)/(epsi

i − eϕs
i − χ(ei)psi

| ei ∈ E).

Here
(epsi

i − eϕs
i − χ(ei)psi

| ei ∈ E)

denotes the ideal in U(L) generated by the central elements epsi

i − eϕs
i − χ(ei)psi for

all ei ∈ E. The algebra Ups (L, χ) is called the generalized χ-reduced enveloping
algebra of L. When χ = 0, the algebra Ups (L, 0) is often called the generalized
restricted enveloping algebra of L and is simply denoted by Ups (L). We have
category equivalence between the generalized χ-reduced (respectively, generalized
restricted) module category of L and the Ups (L, χ) (respectively, Ups (L))-module
category (see [16]).

R 2.4.

(1) A restricted Lie algebra (g, [p]) is a generalized restricted Lie algebra associated
with an arbitrary given basis E and s = 1 := (1, 1, . . . , 1). The generalized
restricted mapping ϕs is the restriction of the usual restricted mapping [p] on E.
Furthermore, in this case, a generalized χ-reduced module (enveloping algebra)
coincides with the χ-reduced module (enveloping algebra).

(2) The invariance of the filtration for L = H(2r; n) enables us to define the height of
a nonzero χ ∈ L∗ via

ht( χ) := max{i | χ(Li−1) , 0}

and ht(0) := −1. Now the height function on L∗ is invariant under the action of
Aut(L) defined by σ · χ = χ ◦ σ−1 for σ ∈ Aut(L) and χ ∈ L∗.

2.4. Independent systems of differential operators. Suppose that R is an
associative commutative F-algebra with unit. Endow the endomorphism algebra
EndF R with an R-module structure by putting

( f · ϕ)(g) = fϕ(g), ∀ f , g ∈ R, ϕ ∈ EndFR.

D 2.5. A system of endomorphisms Φ ⊆ EndFR is called independent if
Val Φ′ = Rn for any finite subset Φ′ = {ϕ1, ϕ2, . . . , ϕn} ⊆ Φ. Here Val Φ′ denotes the
submodule of the freeR-moduleRn generated by all n-tuples (ϕ1(g), ϕ2(g), . . . , ϕn(g))
with g ∈ R.

P 2.6 (See [18, Proposition 3.5]). Suppose that

{∂
pri

i | 1 ≤ i ≤ 2r, 0 ≤ ri < ni}
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is an independent system of derivations of R. For any given subset A ⊆ A(2r; n) and
n-tuple γ ∈ A, there exist a finite number of elements f1, f2, . . . , fu, g1, g2, . . . , gu ∈ R

such that the following condition is satisfied:

u∑
ν=1

fν∂
αgν =

1 if α = γ,

0 if α ∈ A and α , γ.
(2.2)

R 2.7. For R = A(2r; n), one can easily see that

{Dpri

i | 1 ≤ i ≤ 2r, 0 ≤ ri < ni}

is independent in the sense of the Definition 2.5.

2.5. Exceptional modules. We turn to the representations of L[0] which can be
identified with sp(2r) under ϕ in Section 2.2(2). We define hi := Eii − Ei+r,i+r for
i = 1, 2, . . . , r and

h = F-span{hi | i = 1, 2, . . . , r}.

Then h is a canonical torus of sp(2r). The isoclasses of irreducible restricted
representations of sp(2r) are parameterized by the set of restricted weights

X(h) := {λ ∈ h∗ | λ(hi)p = λ(hi), i = 1, . . . , m}.

A simple module corresponding to λ is denoted by L0(λ) which is a ‘highest weight’
module with ‘highest weight’ λ (see [5]). This implies that L0(λ) is generated by
a nonzero vector v satisfying the conditions that hi.v = λ(hi)v for i = 1, 2, . . . , r and
N · v = 0. Here

N = F-span{Ei, j − E j+r,i+r, Ei, j+r + E j,i+r, Ek,k+r | 1 ≤ i < j ≤ r, 1 ≤ k ≤ r}.

Let εi ∈ h
∗ be such that εi(h j) = δi j for i, j = 1, 2, . . . , r. Define ω0 = 0 and ωi =∑i

j=1 ε j for i = 1, 2, . . . , r. Then ω0, ω1, . . . , ωr constitute a system of fundamental
weights of sp(2r). A simple sp(2r)-module L0(ωi) corresponding to the fundamental
weight ωi (0 ≤ i ≤ r) is usually called exceptional. Similarly, a simple module (ρ0, V)
of L0 is called exceptional if (ρ0, V) is isomorphic to some L0(ωi) as an L[0]-module
with a trivial action for ρ0(L1).

P 2.8. Let 1 ≤ si ≤ 2r for i = 1, 2, 3, 4. Suppose that an irreducible
representation % of the Lie algebra sp(2r) in a vector space W satisfies the following
relation:∑

1≤s<t≤2r

∑
1≤u<v≤2r

δ{s,t,u,v}{s1,s2,s3,s4}(σ(s)%(Ets′) + σ(t)%(Est′))(σ(u)%(Evu′)

+ σ(v)%(Euv′)) +

2r∑
s=1

2r∑
u=1

δ{s,s,u,u}{s1,s2,s3,s4}σ(s)%(Ess′)σ(u)%(Euu′)
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+
∑

1≤u<v≤2r

2r∑
s=1

δ{u,v,s,s}{s1,s2,s3,s4}σ(s)%(Ess′)(σ(u)%(Evu′) + σ(v)%(Euv′))

+
∑

1≤s<t≤2r

2r∑
u=1

δ{s,t,u,u}{s1,s2,s3,s4}(σ(s)%(Ets′) + σ(t)%(Est′))σ(u)%(Euu′)

= 0

(2.3)

where

δ{s,t,u,v}{s1,s2,s3,s4} =

1 if {s, t, u, v} = {s1, s2, s3, s4},

0 if {s, t, u, v} , {s1, s2, s3, s4},

with the convention that {a1, a2, a3, a4} = {b1, b2, b3, b4} if and only if there exists
σ ∈S4 such that ai = bσ(i) for all i = 1, . . . , 4. Then W is exceptional.

P. Let a ∈ {1, 2, . . . , 2r}. If we assume that s1 = s2 = s3 = s4 = a in (2.3), then we
obtain that %(Eaa′)2 = 0. Now we consider

W1 = {w ∈W | %(Ei,i+r)w = 0 for all i = 1, 2, . . . , r}.

We have W1 , 0 since all the %(Ei,i+r) are mutually commutative and act nilpotently
on W.

Fix b ∈ {1, 2, . . . , r} and a ∈ {r + 1, r + 2, . . . , 2r} such that b < a′. Set s1 = s2 = b
and s3 = s4 = a′ in (2.3). We obtain that

%(Eba + Ea′b′)2 + %(Ebb′)%(Ea′a) + %(Ea′a)%(Ebb′) = 0. (2.4)

Note that %(Eba + Ea′b′) commutes with %(Ei,,i+r) for all i = 1, 2, . . . , r and so W1 is
stable under the action of %(Eba + Ea′b′). Furthermore, by (2.4), %(Eba + Ea′b′) acts
nilpotently on W1. Now set

W2 = {w ∈W1 | %(Eba + Ea′b′)w = 0, ∀b ∈ {1, 2, . . . , r},

a ∈ {r + 1, r + 2, . . . , 2r} and b < a′}.

Then W2 , 0 by Jacobson’s theorem about weakly nil closed sets (see [20,
Theorem 3.1, Ch. I]).

Using a similar argument, one can check that W2 is stable under the action of
%(Eki − Ei+r,k+r) for all k, i ∈ {1, 2, . . . , r} and k < i. Let 1 ≤ b < a ≤ r and set s1 = s2 =

b and s3 = s4 = a′ in (2.3). Then we obtain that

%(Eba − Ea′b′)2 − 2%(Ea′a)%(Ebb′) = 0.

Therefore %(Eba − Ea′b′) acts nilpotently on W2. Hence Jacobson’s theorem about
weakly nil closed sets implies that

W3 = {w ∈W2 | %(Eba − Ea′b′)w = 0, for all 1 ≤ b < a ≤ r} , 0.
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Let

N = F-span{{Eba − Ea′b′ | 1 ≤ b < a ≤ r} ∪ {Ei,i+r | 1 ≤ i ≤ r}

∪ {Ei, j+r + E j,i+r | 1 ≤ i < j ≤ r}}.

Note that
W3 = {w ∈W | %(N)w = 0}.

It is obvious that W3 is stable under the action of

h = F-span{hi := Eii − Ei+r,i+r | 1 ≤ i ≤ r}.

So there exists a weight vector w in W3 such that %(N)w = 0 and %(hi)w = λiw which
is a maximal-weight vector.

Next we fix a maximal-weight vector w ∈W3. For i ∈ {1, 2, . . . , r}, setting s1 = s2 =

i and s3 = s4 = i + r in (2.3), we obtain that

%(Eii − Ei+r,i+r)2 − %(Ei,i+r)%(Ei+r,i) − %(Ei+r,i)%(Ei,i+r) = 0. (2.5)

Now both sides of (2.5) act on w and so we obtain that λ2
i − λi = 0. Therefore λi = 1

or 0.
Let 1 ≤ i < j ≤ r. Set s1 = i, s2 = j, s3 = i + r and s4 = j + r in (2.3). Then we obtain

%(Eii − Ei+r,i+r)%(E j j − E j+r, j+r) − %(Ei, j+r + E j,i+r)%(Ei+r, j + E j+r,i)

+ %(Ei j − E j+r,i+r)%(E ji − Ei+r, j+r)

= 0.

(2.6)

Both sides of (2.6) act on w and so we obtain

λiλ j − 2λ j = 0. (2.7)

Now if λi = 0, then by (2.7) we get λ j = 0 for all j > i. If all λi = 0, then w is an
exceptional-weight vector. Otherwise assume that i0 = max{i | λi , 0}. Then we have
λ1 = λ2 = · · · = λi0 = 1 and λi0+1 = λi0+2 = · · · = λr = 0. Thus w is also an exceptional-
weight vector. In conclusion, W is exceptional and our proof is complete. �

3. The category C for the Hamiltonian algebra H(2r; n)

From now on we shall always set L = H(2r; n), L0 = H(2r; n)0 and R = A(2r; n).

3.1. The (R, L)-mod and the category C. In [18] Skryabin introduced the category
C for the study of representations of the generalized Jacobson–Witt algebra. In this
section we shall extend this category to the Hamiltonian algebra H(2r; n).

D 3.1. Let (R, L)-mod denote the category whose objects are finite-
dimensional vector spaces M endowed with an R-module structure (M, ρR), an
L-module structure (M, ρL), an L0-module structure (M, %) and which satisfy the
following ‘connection’ property:

(R1) [ρL(D), ρR( f )] = ρR(D f ).
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Let C denote the subcategory of (R, L)-mod consisting of those objects which satisfy
the additional conditions:

(R2) [%(D′), ρR( f )] = 0;
(R3) [%(D′), ρL(Di)] = 0;
(R4) ρL(DH( f )) =

∑2r
i=1 σ(i)ρR(Di( f ))ρL(Di′) +

∑
| β|≥2 ρR(D β f ) ◦ %(DH(x β)).

Here f ∈ R, D ∈ L and D′ ∈ L0 for i = 1, 2, . . . , 2r. The morphisms in the categories
(R, L)-mod and C are the mappings which preserve the corresponding module
structures.

The objects in C (respectively, (R, L)-mod) are often called C-modules
(respectively, (R, L)-modules).

For a given R-module (M, ρR) and a given set

Φ = {ϕα ∈ EndR(M) | α ∈ A(m; n)},

we put
Supp(Φ) := {α ∈ A(m; n) | ϕα , 0}

and
deg(Φ) := max{|α| | α ∈ Supp(Φ)}.

For f ∈ R we define
Φ( f ) =

∑
α∈A(m;n)

ρR(Dα( f ))ϕα.

The following lemma, which is a special case of [18, Lemma 4.5], will be useful in
what follows.

L 3.2 [18, Lemma 4.5]. Let M and Φ be given as above. Suppose that M′ is
an F-vector subspace of M which does not contain any nonzero R-submodule of M.
Then the R-endomorphisms ϕα are nilpotent for all α with |α| = deg(Φ) which satisfy
the following conditions with respect to Φ:

(1) all endomorphisms ϕα with |α| = Supp(Φ) are mutually commuting;
(2) M′ is stable under all endomorphisms Φ( f ) where f ∈ R.

3.2. Submodules and homomorphisms in the category C. According to
Remark 2.7,

{Dpri

i | 1 ≤ i ≤ 2r, 0 ≤ ri < ni}

is independent. For objects M, N ∈ C and a mapping ϕ : M→ N, we let Γ(ϕ) denote
the graph

{(m, ϕ(m)) | m ∈ M} ⊆ M ⊕ N

of ϕ. Then ϕ respects any of our three module structures if and only if Γ(ϕ) is a
submodule of M ⊕ N with respect to the corresponding module structure. Thus ϕ is a
morphism in C if and only if Γ(ϕ) is a submodule of M ⊕ N. We have the following
proposition which describes the submodules and homomorphisms in the category C.
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We use the notation

A′(2r; n) := {α = (α1, α2, . . . α2r) ∈ A(m; n) | αi < pni − pni−1, ∀i = 1, 2, . . . , 2r}.

P 3.3.

(i) Let M ∈ C and assume that

%(DH(xα)) = 0 for α ∈ A(2r; n)\A′(2r; n). (3.1)

Then any (R, L)-submodule M′ of M is a C-submodule.
(ii) Let M, N ∈ C and assume that both M and N satisfy Equation (3.1). Then any

(R, L)-module homomorphism ϕ : M→ N is a morphism in the category C.

P. (i) We only need to prove that M′ is a %(L0)-submodule. Set

A := {α ∈ A(2r; n) | |α| ≥ 2}

and %(DH(xα)) , 0}. Let

A′ := A ∪ {εi | i = 1, 2, . . . , 2r}.

Applying Proposition 2.6 to A′ and a fixed element γ ∈ A, we can find a finite number
of elements fν, gν ∈ R such that∑

ν

fνD
αgν =

1 if α = γ,

0 if α ∈ A′\γ.
(3.2)

Using the above formula, we obtain the equation∑
ν

ρR( fν)ρL(DH(gν))

=
∑
ν

ρR( fν)
( 2r∑

i=1

σ(i)ρR(Di(gν))ρL(Di′) +
∑
| β|≥2

ρR(D β(gν))%(DH(x β))
)

=

2r∑
i=1

σ(i)ρR( fνDi(gν))ρL(Di′) +
∑
ν

∑
| β|≥2

ρR( fνD
β(gν))%(DH(x β))

= %(DH(xγ)).

It follows from the above equation and our assumption on M′ that M′ is stable under
the endomorphism

∑
ν ρR( fν)ρL(DH(gν)). Hence M′ is stable under %(DH(xγ)) for all

γ ∈ A. Therefore M′ is stable under %(L0) and M′ is a C-submodule.
(ii) The direct sum M ⊕ N is an object of the category C satisfying Equation (3.1).

The graph Γ(ϕ) is an (R, L)-submodule of M ⊕ N. So by (i), Γ(ϕ) is a %(L0)-submodule
of M ⊕ N. Thus ϕ respects the %(L0)-module structure. Therefore ϕ is a morphism in
the category C. �

Proposition 3.3 enables us to obtain the main result of this section.

https://doi.org/10.1017/S1446788711001327 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001327


[13] Representations of H(2r; n) 415

T 3.4.

(i) Let M ∈ C. Assume that

M is a completely reducible %(L0)-module with no exceptional

irreducible direct summands
(MC1)

and that
%(DH(xα)) = 0 for all α ∈ A(m; n)\A′(m; n). (MC2)

Then any L-submodule M′ of M is a C-submodule.
(ii) Let M, N be two objects of C satisfying conditions (MC1) and (MC2). Then any

L-module homomorphism ϕ : M→ N is a morphism in C.

P. As we showed in the proof of Proposition 3.3, (ii) is a direct consequence of
(i). By Proposition 3.3 we only need to prove that M′ is a R-submodule of M. We will
make use of the strategy that Skryabin proposed for W(m; n) in [18].

Let
P = {m ∈ M | ρR(R)m ⊆ M′}

be the largest R-submodule contained in M′ and let Q = ρR(R)M′ be the smallest
R-submodule containing M′. By (R1), P and Q are L-submodules. Hence by
Proposition 3.3, P and Q are C-submodules.

We can consider Q/P ∈ C and its L-submodule M′/P. To begin with, we impose
the additional assumption that M′ contains no nonzero R-submodule of M and that
ρR(R)M′ = M. Then it is sufficient to prove that M = 0.

We will seek endomorphisms ϕ of M lying in the associative algebra generated
by the endomorphisms %(D′). We assume that D′ ∈ L0 has the property that for any
f ∈ R the endomorphism ρR( f )ϕ belongs to the associative subalgebra generated by
the endomorphisms ρL(D) with D ∈ L. This implies that the L-submodule M′ is stable
under ρR( f )ϕ for any f ∈ R. Hence, it contains the R-submodule ρR(R)ϕ(M′). By
the hypothesis we have ϕ(M′) = 0. By (R2) in Definition 3.1, we know that ϕ is an
R-module endomorphism and so

ϕ(M) = ϕ(ρR(R)M′) = ρR(R)ϕ(M′) = 0,

which implies that ϕ = 0. This gives many relations between the endomorphisms %(D′)
with D′ ∈ L0. These relations will lead us to the conclusion that M = 0.

Now assume that M , 0. By assumption (MC1), we know that M is not a trivial
L0-module. Thus there is some i for which %(Li) , 0. Take

l = max{i | %(Li−1) , 0}.

First, consider the case where l ≤ 1. In this case M is a module of the quotient
algebra

L0/L1 � L[0] � sp(2r).

For any s1, s2, s3, s4 ∈ {1, 2, . . . , 2r} we may apply Proposition 2.6 to

A = {α ∈ A(m; n) | |α| ≤ 4}
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and

γ = εs1 + εs2 + εs3 + εs4

to find fν, gν ∈ R = A(m; n) such that

∑
ν

fνD
αgν =

1 if α = εs1 + εs2 + εs3 + εs4 ,

0 otherwise.
(3.3)

The above formula implies that for any f ∈ R we have∑
ν

ρL(DH( f fν))ρL(DH(gν))

=
∑
ν

( 2r∑
i=1

σ(i)ρR(Di( f fν))ρL(Di′) +
∑
| β|≥2

ρR(D β( f fν))%(DH(x β))
)

×

( 2r∑
j=1

σ( j)ρR(D j(gν))ρL(D j′) +
∑
|γ|≥2

ρR(Dγ(gν))%(DH(xγ))
)

=
∑
ν

( 2r∑
i=1

σ(i)ρR(Di( f fν))ρL(Di′)

+
∑

1≤s<t≤2r

ρR(DsDt( f fν))(σ(s)%(Ets′) + σ(t)%(Est′))

+
∑

1≤s≤2r

ρR(DsDs( f fν))σ(s)%(Ess′)
)( 2r∑

j=1

σ( j)ρR(D j(gν))ρL(D j′)

+
∑

1≤u<v≤2r

ρR(DuDv(gν))(σ(u)%(Evu′) + σ(v)%(Euv′))

+
∑

1≤u≤2r

ρR(DuDu(gν))σ(u)%(Euu′)
)

= ρR( f )
(∑

ν

2r∑
i=1

∑
1≤u<v≤2r

σ(i)ρR( fνDiDi′DuDv(gν))(σ(u)%(Evu′) + σ(v)%(Euv′))

+
∑
ν

2r∑
i=1

2r∑
u=1

σ(i)ρR( fνDiDi′DuDu(gν))σ(u)%(Euu′)

−
∑
ν

2r∑
j=1

∑
1≤s<t≤2r

σ( j)ρR( fνD jD j′DsDt(gν))(σ(s)%(Ets′) + σ(t)%(Est′))

+
∑
ν

∑
1≤s<t≤2r

∑
1≤u<v≤2r

ρR( fνDsDtDuDv(gν))(σ(s)%(Ets′)

+ σ(t)%(Est′))(σ(u)%(Evu′) + σ(v)%(Euv′))
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+
∑
ν

∑
1≤s<t≤2r

2r∑
u=1

ρR( fνDsDtDuDu(gν))(σ(s)%(Ets′)

+ σ(t)%(Est′))σ(u)%(Euu′)

−
∑
ν

2r∑
j=1

2r∑
s=1

σ( j)ρR( fνD jD j′DsDs(gν))σ(s)σ(Ess′)

+
∑
ν

∑
1≤u<v≤2r

2r∑
s=1

ρR( fνDuDvDsDs(gν))σ(s)%(Ess′)(σ(u)%(Evu′)

+ σ(v)%(Euv′))

+
∑
ν

2r∑
s=1

2r∑
u=1

ρR( fνDsDsDuDu(gν))σ(s)%(Ess′)σ(u)%(Euu′)
)

= ρR( f )φ

where

φ =
∑
ν

( ∑
1≤s<t≤2r

∑
1≤u<v≤2r

ρR( fνDsDtDuDv(gν))(σ(s)%(Ets′)

+ σ(t)%(Est′))(σ(u)%(Evu′) + σ(v)%(Euv′))

+
∑

1≤s<t≤2r

2r∑
u=1

ρR( fνDsDtDuDu(gν))(σ(s)%(Ets′) + σ(t)%(Est′))σ(u)%(Euu′)

+
∑

1≤u<v≤2r

2r∑
s=1

ρR( fνDuDvDsDs(gν))σ(s)%(Ess′)(σ(u)%(Evu′) + σ(v)%(Euv′))

+

2r∑
s=1

2r∑
u=1

ρR( fνDsDsDuDu(gν))σ(s)%(Ess′)σ(u)%(Euu′)
)
.

By the previous analysis, we know that φ = 0. Keeping the formula (3.3) in mind,
we finally arrive at the situation where (2.3) is satisfied for %. By Proposition 2.8
any simple submodule of M is exceptional. This contradicts our assumption on M.
Therefore l > 1. It follows that %(Ll) = 0 but %(Ll−1) is a nonzero abelian ideal of %(L0).
For any f , fν, gν ∈ R we have the following computation:∑
ν

ρL(DH( f fν))ρL(DH(gν))

=
∑
ν

( 2r∑
i=1

σ(i)ρR(Di( f fν))ρL(Di′) +
∑
| β|≥2

ρR(D β( f fν))%(DH(x β))
)

×

( 2r∑
j=1

σ( j)ρR(D j(gν))ρL(D j′) +
∑
|γ|≥2

ρR(Dγ(gν))%(DH(xγ))
)
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=
∑
ν

2r∑
i=1

2r∑
j=1

σ(i)σ( j)ρR(Di( f fν)D j(gν))ρL(Di′)ρL(D j′)

+
∑
ν

2r∑
i=1

2r∑
j=1

σ(i)σ( j)ρR(Di( f fν)Di′D j(gν))ρL(D j′)

+
∑
ν

2r∑
i=1

∑
|γ|≥2

σ(i)ρR(Di( f fν)Dγ(gν))ρL(Di′)%(DH(xγ))

+
∑
ν

2r∑
i=1

∑
|γ|≥2

σ(i)ρR(Di( f fν)Dγ+εi′ (gν))%(DH(xγ))

+
∑
ν

∑
| β|≥2

2r∑
j=1

σ( j)ρR(D β( f fν)D j(gν))ρL(D j′)%(DH(x β))

+
∑
ν

∑
| β|≥2

∑
|γ|≥2

ρR(D β( f fν)Dγ(gν))%(DH(x β))%(DH(xγ))

=
∑
ν

2r∑
i=1

2r∑
j=1

σ(i)σ( j)ρR(Di( f fνD j(gν)))ρL(Di′)ρL(D j′)

−
∑
ν

2r∑
i=1

2r∑
j=1

σ(i)σ( j)ρR( f fνDiD j(gν))ρL(Di′)ρL(D j′)

+
∑
ν

2r∑
i=1

2r∑
j=1

σ(i)σ( j)ρR(Di( f fνDi′D j(gν)))ρL(D j′)

−
∑
ν

2r∑
i=1

2r∑
j=1

σ(i)σ( j)ρR( f fνDiDi′D j(gν))ρL(D j′)

+
∑
ν

2r∑
i=1

∑
|γ|≥2

σ(i)ρR(Di( f fνD
γ(gν)))ρL(Di′)%(DH(xγ))

−
∑
ν

2r∑
i=1

∑
|γ|≥2

σ(i)ρR( f fνD
γ+εi (gν))ρL(Di′)%(DH(xγ))

+
∑
ν

2r∑
i=1

∑
|γ|≥2

σ(i)ρR(Di( f fνD
γ+εi′ (gν)))%(DH(xγ))

−
∑
ν

2r∑
i=1

∑
|γ|≥2

σ(i)ρR( f fνD
γ+εi+εi′ (gν))%(DH(xγ))

https://doi.org/10.1017/S1446788711001327 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001327


[17] Representations of H(2r; n) 419

+
∑
ν

2r∑
j=1

∑
| β|≥2

β=β′+β′′

σ( j)(−1)| β
′′ |

(
β

β′

)
ρR(D β′( f fνD

β′′+ε j (gν)))ρL(D j′)%(DH(x β))

+
∑
ν

∑
| β|≥2

β=β′+β′′

∑
|γ|≥2

(−1)| β
′′ |

(
β

β′

)
ρR(D β′( f fνD

β′′+γ(gν)))%(DH(x β))%(DH(xγ)).

The final equation in the above computation follows from the formulas

Di( f )g = Di( f g) − f Di(g) ∀ f , g ∈ R

and

Dα( f )g =
∑

α′+α′′=α

(−1)|α
′′ |

(
α

α′

)
Dα′( f Dα′′(g)) ∀ f , g ∈ R.

Let γ ∈ A(2r; n) be such that |γ| = l + 1. Set t = l + 1. Then for all γ ∈ A(2r; n)
which do not satisfy either of the conditions γ = (p − 2)εk or nk = 1 for some k, we can
always choose γ′ ∈ A(2r; n) such that γ + γ′ ∈ A(2r; n), t′ = |γ′| ≥ 2 and

(
γ
γ′

)
, 0. Thus,

by Proposition 2.6, there exist fν, gν ∈ R satisfying∑
ν

fνD
αgν =

0 if α ∈ A(2r; n), |α| ≤ 2t and α , γ + γ′,

1 if α = γ + γ′.
(3.4)

It follows that∑
ν

ρL(DH( f fν))ρL(DH(gν))

=
∑
|α|≥2

α=α′+α′′

∑
| β|≥2

∑
ν

(−1)|α
′′ |

(
α

α′

)
ρR(Dα′( f fνD

α′′+β(gν)))%(DH(xα))%(DH(x β)).

(3.5)
The right-hand side of the above equation can be written in the form∑

α′∈A(2r;n)
|α′ |≤t−t′

ρR(Dα′( f ))ψα′

which is denoted by Ψ( f ). This is a convention that we set previously for a family of
R-endomorphisms

Ψ = {ψα′ ∈ Endk(M) | α′ ∈ A(2r; n), |α′| ≤ t − t′}

satisfying the condition

ψα′ =
∑

α=α′+α′′

|α|=t

(−1)t′
(
α

α′

)
%(DH(xα))%(DH(xγ+γ′−α′′)) for |α′| = t − t′. (3.6)

Here the assertion that Ψ ⊂ EndR(M) follows from (R2).
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In the case where γ = (p − 2)εk and nk = 1 for some k, one can choose γ′ = εk and
γ + γ′ ∈ A(2r; n) such that (3.4) holds. In this case,∑

ν

ρL(DH( f fν))ρL(DH(gν))

=
∑
|α|≥2

α=α′+α′′

∑
| β|≥2

∑
ν

(−1)|α
′′ |

(
α

α′

)
ρR(Dα′( f fνD

α′′+β(gν)))%(DH(xα))%(DH(x β))

+ σ(k′)ρR(Dk′( f ))%(DH(xγ))

=
∑
|α′ |≤t−1

ρR(Dα′( f ))ψα′ + σ(k′)ρR(Dk′( f ))%(DH(xγ))

M
=

∑
|α′ |≤t−1

ρR(Dα′( f ))ψ̃α′

M
= Ψ̃( f )

where Ψ̃ denotes the system of R-endomorphisms

{ψ̃α′ ∈ EndR(M) | α′ ∈ A(2r; n), |α′| ≤ t − 1}

satisfying

ψ̃α′ = ψα′ =
∑

α=α′+α′′

|α|=t

−

(
α

α′

)
%(DH(xα))%(DH(xγ+γ′−α′′)) for |α′| = t − 1. (3.7)

By our assumption M′ is stable under
∑
ν ρL(DH( f fν))ρL(DH(gν)). It follows that

the above systems Ψ and Ψ̃ satisfy the two requirements for Lemma 3.2. Lemma 3.2
now implies that those ψα′s in (3.6) and (3.7) are nilpotent. We may use the same
inductive arguments found in the proof of [18, Lemma 4.5] to deduce that the
constituent %(DH(xγ))s that appear in some ψα′ for |α′| = l + 1 are also nilpotent. Hence
all %(DH(xα))s with |α| = l + 1 are nilpotent. It follows that %(Ll−1)|W = 0 for any
irreducible %(L0)-submodule W of M. The complete reducibility of M as a %(L0)-
module implies that %(Ll−1) = 0. This contradicts our choice of l.

The proof is now complete. �

4. Irreducible representations of the Hamiltonian algebra

4.1. Nonexceptional modules. We use the same notation as we used earlier. In
particular, we set

R = A(m; n), L = H(2r; n).

Recall that the height of χ ∈ L∗ is defined as

ht( χ) := max{i | χ(Li−1) , 0}.

This definition is given in Remark 2.4(2) with the convention that ht(0) = −1. Since
L0 is a restricted subalgebra, the Schur lemma implies that any irreducible L0-module
is associated to a unique ζ ∈ L∗0. Let (V, ρ0) be a χ|L0 -reduced representation of L0 for
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some χ ∈ L∗. Then we have an induced module

V := Ind
Ups (L,χ)
U(L0,χ) V = Ups (L, χ) ⊗U(L0,χ) V.

Here s = (n1, n2, . . . , nm, 1, 1, . . . , 1) and Ups (L, χ) is the generalized χ-reduced
enveloping algebra of L (see Section 2.3). In addition, U(L0, χ) is the χ|L0 -reduced
enveloping algebra of L0. By the Poincaré–Birkhoff–Witt theorem we have V =∑
β FE β ⊗ V as a vector space. Here Eα = Dα1

1 Dα2
2 · · · D

α2r
2r where 0 ≤ αi ≤ pni − 1 for

1 ≤ i ≤ 2r.
Next we show thatV becomes an object of the category C and then apply the results

on the category C toV. The argument will proceed in steps.

Step 1. The R-module structure ρR is defined via

ρR(xα)Eβ ⊗ v = (−1)|α|
(
β

α

)
Eβ−α ⊗ v. (4.1)

It is routine to verify that V is an R-module with the corresponding module structure
defined by (4.1).

Step 2. The L-module structure on ρL is defined via

ρL(DH(xα))Eβ ⊗ v

=

r∑
i=1

(−1)|α|−1

((
β + εi′

α − εi

)
−

(
β + εi

α − εi′

))
Eβ+εi+εi′−α ⊗ v

+
∑

0<γ≤α
|γ|≥2

(−1)|α|−|γ|
(
β

α − γ

)
Eβ+γ−α ⊗ ρ0(DH(xγ))v.

(4.2)

Let ind denote the induced representation of L on V = Ind
Ups (L,χ)
U(L0,χ) V . Note that for

any xα ∈ A(m; n) we have DH(xα) =
∑r

i=1 Di′i(xα). Here, and later on, the divergence
map Di j for 1 ≤ i, j ≤ 2r is defined to be a linear map from the divided power algebra
A(2r; n) to the generalized Jacobson–Witt algebra W(2r; n) via

Di j(xα) = xα−ε j Di − xα−εi D j

for α ∈ A(2r; n) (see [20, Section 4.3]).

R 4.1. Using the same arguments as in [24, Proposition 5.1], it is easy to see
that the action of L on V defined by (4.2) coincides with ind. So V becomes a
generalized χ-reduced L-module with the corresponding L-module structure defined
by (4.2).

Step 3. The L0-module structure on % is defined via

%(D′)Eβ ⊗ v = Eβ ⊗ ρ0(D′)v. (4.3)

It is obvious thatV becomes a χ|L0 -reduced L0-module with the corresponding module
structure defined via (4.3) since (V, ρ0) is a χ|L0 -reduced representation of L0.
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In the following theorem we prove thatV is an object of the category C.

T 4.2. V belongs to the category C.

P. We need to check that (R1)–(R4) of Definition 3.1 hold.
(1) For any α, β, γ ∈ A(m; n) and v ∈ V ,

[ρL(DH(xα)), ρR(x β)](Eγ ⊗ v)

= ρL(DH(xα)) ◦ ρR(x β)(Eγ ⊗ v) − ρR(x β) ◦ ρL(DH(xα))(Eγ ⊗ v)

= (−1)| β|
(
γ

β

)
DH(xα)Eγ−β ⊗ v − ρR(x β)DH(xα)Eγ ⊗ v

=

r∑
i=1

(−1)| β|
(
γ

β

)
Di′i(xα)Eγ−β ⊗ v −

r∑
i=1

ρR(x β)Di′i(xα)Eγ ⊗ v

=

r∑
i=1

(−1)| β|
(
γ

β

)
Di′i(xα)Eγ−β ⊗ v − ρR(x β)Di′i(xα)Eγ ⊗ v

=

r∑
i=1

ρR(Di′i(xα)(x β))Eγ ⊗ v

= ρR(DH(xα)(x β))Eγ ⊗ v,

where the fifth identity follows from (1) in the proof of [24, Theorem 5.3]. Therefore

[ρL(DH(xα)), ρR(x β)] = ρR(DH(xα)(x β)).

Hence (R1) holds.
(2) For any α, β, γ ∈ A(m; n) and v ∈ V ,

[%(DH(xα)), ρR(x β)](Eβ ⊗ v)

= %(DH(xα)) ◦ ρR(x β)(Eβ ⊗ v) − ρR(x β) ◦ %(DH(xα))(Eβ ⊗ v)

= (−1)| β|
(
γ

β

)
Eγ−β ⊗ ρ0(DH(xα))v − (−1)| β|

(
γ

β

)
Eγ−β ⊗ ρ0(DH(xα))v

= 0.

Therefore
[%(DH(xα)), ρR(x β)] = 0.

Hence (R2) holds.
(3) For any α, β ∈ A(m; n) and v ∈ V and Di ∈ L[−1], i = 1, 2, . . . , 2r,

[ρL(Di), %(DH(xα))](Eβ ⊗ v)

= ρL(Di) ◦ %(DH(xα))(Eβ ⊗ v) − %(DH(xα)) ◦ ρL(Di)(Eβ ⊗ v)

= Eβ+εi ⊗ ρ0(DH(xα))v − Eβ+εi ⊗ ρ0(DH(xα))v

= 0.
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Therefore
[ρL(Di), %(DH(xα))] = 0.

Hence (R3) holds.
(4) For any α, β ∈ A(m; n) and v ∈ V ,

ρL(DH(xα))(Eβ ⊗ v)

=

r∑
i=1

(−1)|α|−1

[(
β + εi′

α − εi

)
−

(
β + εi

α − εi′

)]
Eβ+εi+εi′−α ⊗ v

+
∑

0<γ≤α
|γ|≥2

(−1)|α|−|γ|
(
β

α − γ

)
Eβ+γ−α ⊗ ρ0(DH(xγ))v,

while ( 2r∑
i=1

σ(i)ρR(Di(xα))ρL(Di′) +
∑
|γ|≥2

ρR(xα−γ)%(DH(xγ))
)
(Eβ ⊗ v)

=

r∑
i=1

(−1)|α|−1

[(
β + εi′

α − εi

)
−

(
β + εi

α − εi′

)]
Eβ+εi+εi′−α ⊗ v

+
∑

0<γ≤α
|γ|≥2

(−1)|α|−|γ|
(
β

α − γ

)
Eβ+γ−α ⊗ ρ0(DH(xγ))v.

Therefore

ρL(DH(xα)) =

2r∑
i=1

σ(i)ρR(Di(xα))ρL(Di′) +
∑
|γ|≥2

ρR(xα−γ)%(DH(xγ)).

Hence (R4) holds.
SinceV satisfies (1)–(4), it belongs to the category C. �

As we pointed out previously, we have L[0] � sp(2r). For i = 1, 2, . . . , 2r set

hi := −DH(xεi+εi′ ) = σ(i′)xεi′Di′ + σ(i)xεi Di.

Then hi = hi′ for all i = 1, 2, . . . , 2r. We continue to use h to denote the canonical torus
of L[0]. We have

h = F-span{hi | i = 1, 2, . . . , r}.

Let (V, ρ0) be a representation of L0 and λ = (λ1, λ2, . . . , λ2r) ∈ F2r. If 0 , v ∈ V
satisfies ρ0(hi)v = λiv for i = 1, 2, . . . r, then v is called a weight vector of weight λ.
If, in addition, ρ0(N + L1)v = 0 where

N = F-span{DH(xεi+ε j′ ), DH(xεi+ε j ), DH(2xεk ) | 1 ≤ i < j ≤ r, 1 ≤ k ≤ r},

then v is called a maximal-weight vector of weight λ.
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We choose εi ∈ h
∗ such that εi(h j) = δi j for i, j = 1, 2, . . . , r. We let ω0 = 0 and

ωi =
∑i

j=1 ε j for i = 1, 2, . . . , r. We have the following result, which is a corollary to
Theorems 3.4 and 4.2.

T 4.3. Let χ ∈ L∗ satisfy the condition that

ht( χ) ≤min{pni − pni−1 | 1 ≤ i ≤ 2r} − 2.

If V is an irreducible L0-module with character χ and V is not exceptional, then
(V, ρL) is an irreducible L-module.

P. Set R = A(2r; n) and L = H(2r; n). By Theorem 4.2,V belongs to the category
C. Set

Vθ = F-span{Eθ ⊗ v | v ∈ V}

for some θ ∈ A(m; n). Then
V =

⊕
θ∈A(m;n)

Vθ

andVθ � V as %(L0)-modules. ThereforeV is completely reducible as a %(L0)-module
and none of its irreducible direct summands are exceptional. This implies that the first
condition of Theorem 3.4 is satisfied.

The assumption that

ht( χ) ≤min{pni − pni−1 | 1 ≤ i ≤ 2r} − 2

ensures that the second condition of Theorem 3.4 is satisfied. Therefore, by
Theorem 3.4, any L-submoduleV′ ofV is also an R-submodule ofV.

Suppose now that V′ is an arbitrary nonzero L-submodule of V. Next we shall
prove thatV′ =V. Suppose that

0 , v =

t∑
i=1

Eθi ⊗ vi ∈ V
′

where θi ∈ A(m; n) and 0 , vi ∈ V . Define a total order ‘B’ on A(m; n) by the
lexicographic order, that is,

α = (α1, α2, . . . , αm) B β = (β1, β2, . . . , βm)

if and only if |α| < |β| or |α| = |β| and there exists some i ∈ {1, 2, . . . , 2r} such that
α j = β j for j < i and αi < βi. Without loss of generality, we may assume that θ1 =

max{θi | i = 1, 2, . . . , t}. Then θ j B θ1 for all j > 1. We now have

ρR(xθ1 )v = (−1)|θ1 |1 ⊗ v1 ∈ V
′.

Therefore V′ =V by the simplicity of V as an L0-module, and our result is
established. �
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R 4.4. For n = 1, that is, the restricted case, the result of Theorem 4.3 can be
deduced by combining [26, Theorem 2.5, Proposition 2.6]. In this case, the result
also coincides with a recent theorem of Wu, Jiang and Pu (see [23, Theorem 1]). In
the case of the rank-one Hamiltonian algebra H(2; 1), the result of Theorem 4.3 can
be obtained from [8] where the author gives a complete determination of the simple
modules of H(2; 1).

D 4.5. An irreducible L-module M is called exceptional if M contains an
irreducible exceptional L0-submodule.

Finally, we may deduce the following theorem from Theorem 4.3.

T 4.6. Let χ ∈ L∗ satisfy the condition that

ht( χ) ≤min{pni − pni−1 | 1 ≤ i ≤ 2r} − 2.

Suppose that M is an irreducible generalized χ-reduced L-module which is not
exceptional. Then all irreducible L0-submodules of M are isomorphic and M is
isomorphic to the induced module from any one of its irreducible L0-submodules.
Furthermore, if N is another nonexceptional irreducible generalized χ-reduced L-
module, then M � N if and only if all irreducible L0-submodules of M and N are
isomorphic.

4.2. Exceptional modules. In the exceptional case the irreducible modules were
described by Shen in [15] and Holmes in [2] for χ = 0 (the height of 0 is defined
to be −1). For χ , 0 with height 0, they were described by Pu and Jiang in [12].

In this subsection we list some results about the descriptions of exceptional modules
for completeness. The detailed arguments are found in [2, 12, 15]. Moreover, we can
obtain some more precise descriptions of irreducible representations with character
height not larger than 1.

T 4.7 [2, 12, 15]. Let L = H(2r; n) and let χ ∈ L∗ be such that ht( χ) ∈ {−1, 0}.
Assume that p > r and let Lχ(ωi) denote an exceptional irreducible L-module with
exceptional weight ωi for i = 0, 1, . . . , r.

(1) If ht( χ) = −1, then
Lχ(ωi) � Lχ(ω j) if i , j

and

dimF Lχ(ωi) =


1 if i = 0,

p
∑

ni

[(
2r − 2
i − 1

)
−

(
2r − 2
i − 3

)]
− 2

(
2r − 1
i − 1

)
if 1 ≤ i ≤ r.

(2) If ht( χ) = 0, then

Lχ(ωi) � Lχ(ω j), if i , j and {i, j} , {0, 1},
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while Lχ(ω0) � Lχ(ω1) and

dimF Lχ(ωi) = p
∑

ni

[(
2r − 1
i − 1

)
−

(
2r − 1
i − 2

)]
, i = 1, . . . , r.

Thus we have the following theorem.

T 4.8. Let L = H(2r; n) and let χ ∈ L∗ be such that

ht( χ) ≤min{pni − pni−1 | 1 ≤ i ≤ 2r} − 2.

(I) In the case of nonexceptional irreducible L-modules:

(1) all nonexceptional irreducible Ups (L, χ)-modules are induced from any
irreducible U(L0, χ)-submodule. Moreover, all irreducible U(L0, χ)-
submodules of a nonexceptional irreducible Ups (L, χ)-module are
isomorphic.

(2) Let V, W be two nonexceptional irreducible Ups (L, χ)-modules and V0, W0

be any irreducible U(L0, χ)-submodules of V and W, respectively. Then
V � W if and only if V0 � W0.

(II) In the case of exceptional irreducible L-modules we shall assume, further, that
p > r.

(1) If ht( χ) = −1, then Lχ(ωi) � Lχ(ωi) if i , j and

dimF Lχ(ωi) =

1 if i = 0,

p
∑

ni
[(

2r−2
i−1

)
−

(
2r−2
i−3

)]
− 2

(
2r−1
i−1

)
if 1 ≤ i ≤ r.

(2) If ht( χ) = 0, then Lχ(ωi) � Lχ(ωi) if i , j and {i, j} , {0, 1}. However,
Lχ(ω0) � Lχ(ω1) and

dimF Lχ(ωi) = p
∑

ni

[(
2r − 1
i − 1

)
−

(
2r − 1
i − 2

)]
, i = 1, . . . , r.

Combining Theorems 4.3, 4.6, 4.8 and classical results on restricted irreducible
representations of the classical Lie algebra sp(2r) (see [7]) gives us the following
theorem which describes the isomorphism classes and dimensions of irreducible
generalized χ-reduced representations of L = H(2r; n) with ht( χ) = 0.

T 4.9. Let L = H(2r; n) and χ ∈ L∗ satisfy ht( χ) = 0. Assume that p > r. Then
the following statements hold.

(i) Irreducible Ups (L, χ)-modules are parameterized by ‘highest weights’. Up to
isomorphism, there are pr − 1 distinct irreducible Ups (L, χ)-modules. These
modules are represented by {Lχ(λ) | λ ∈ Fr

p \ 0}.
(ii) We have Lχ(λ) � Ind(L0(λ)) if and only if λ < {ω1, . . . , ωr} and Lχ(ω0) � Lχ(ω1).

Here L0(λ) denotes the irreducible restricted sp(2r)-module with ‘highest
weight’ λ which can be considered as a restricted irreducible L0-module with
trivial L1-actions.
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(iii) If λ is not exceptional, then

dimF Lχ(λ) = p
∑

ni dimF L0(λ).

In addition,

dimF Lχ(ωi) = p
∑

ni

[(
2r − 1
i − 1

)
−

(
2r − 1
i − 2

)]
, i = 1, . . . , r.

We can also give some descriptions of the irreducible representations with character
height equal to 1. For this we first note that if ht( χ) = 1, then χ(L1) = 0. As L1

is a p-nilpotent ideal of L0, L1 acts trivially on any irreducible U(L0, χ)-module
(see [20, Corollary 3.8, Ch. I]). Therefore the collection of irreducible U(L0, χ)-
modules coincides with the collection of irreducible U(L[0], χ|L[0] )(�U(sp(2r), χ|L[0] ))-
modules. If we combine this observation and Theorem 4.6, then it is easy to obtain
the following descriptions of the isomorphism classes and dimensions of irreducible
L-modules with character height 1.

T 4.10. Let L = H(2r; n) and let χ ∈ L∗ satisfy ht( χ) = 1. Suppose that {S | S ∈
f} is a set of representatives for the isomorphism classes of irreducible U(L[0], χ|L[0] ) �
U(sp(2r), χ|L[0] )-modules. Then the following statements hold.

(1) Up to isomorphism there are |f| distinct irreducible Ups (L, χ)-modules. They are
represented by {Lχ(S ) | S ∈f}.

(2) We have Lχ(S ) � Ind(S ) for any S ∈f.
(3) We have dimF Lχ(S ) = p

∑
ni dimF S for any S ∈f.

R 4.11. In the case where n = 1, that is, L is restricted, the results of
Theorems 4.9 and 4.10 have been obtained in [4, Theorem 4.4] and [25, Lemma 2.2.3,
Theorem 2.3.4].

In the final part of this paper we combine the observation that the Poisson algebra
is a central extension of the Hamiltonian algebra with a result (see [19, Corollary 5.4])
of Skryabin on representations of the restricted Poisson algebra to estimate the
dimensions of some simple modules of the Hamiltonian algebras. In order to do this,
we define a truncated polynomial algebra

B2r = F[x1, x2, . . . , x2r]/(xp
1 , xp

2 , . . . , xp
2r)

over F. One can define a Poisson bracket on B2r as follows:

[ f , g] =

2r∑
i=1

σ(i)Di( f )Di′(g) ∀ f , g ∈ B2r.

It is well known that B2r is a restricted Lie algebra with the p-mapping [p] satisfying
the condition that

(xα)[p] =

xα if α = εi + εi+r, i = 1, 2, . . . , r,

0 otherwise.
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Clearly B2r has a one-dimensional center generated by 1 which we denote by F.
Let B2r = B2r/F. For any x ∈ B2r we also use x to denote the coset of x in B2r for
brevity. Note that B2r = H ⊕ Fxτ as vector spaces, where τ = (p − 1, p − 1, . . . , p − 1)
and H = F-span{xα | α ≺ τ} with H � H(2r; 1). Furthermore, H is a restricted ideal of
B2r. The following lemma is due to Skryabin.

L 4.12 [19, Corollary 5.4]. There exists an open dense subset U ⊂ B∗2r such that
for any ξ ∈ U all irreducible Uξ(B2r)-modules have the same dimension p

1
2 (p2r−pr).

Moreover, for any ξ ∈ U with ξ(1) = 0, F acts trivially on any irreducible Uξ(B2r)-
module. So there is a one-to-one correspondence between the set of irreducible
Uξ(B2r)-modules and the set of irreducible Uξ(B2r)-modules.

R 4.13. The open dense subset U in Lemma 4.12 consists of the so-called
‘good’ elements of B∗2r in the sense of [19].

For any irreducible H-module V with character χ, one can consider a B2r-module
Uχ̄(B2r) ⊗Uχ(H) V which is a Uχ̄(B2r)-module. Here χ̄ is a trivial extension of χ to B

∗

2r,
that is, χ̄|H = χ and χ̄(xτ) = 0.

Consider the restricted Hamiltonian algebra H(2r; 1) canonically as a subalgebra of
B2r. Then for any χ ∈ H(2r; 1)∗, one can also consider χ as a linear function on B2r

with the trivial action on Fxτ, and furthermore as a linear function on B2r with the
trivial action on F. When we refer to χ ∈ H(2r; 1)∗ as an element of B

∗

2r or B∗2r, we
always obey this convention.

By Lemma 4.12 we immediately have the following proposition for estimating
dimensions of irreducible representations of H(2r; 1) with ‘good’ character χ in the
sense of the following definition.

D 4.14. A character χ ∈ H(2r; 1)∗ is called a ‘good’ character if we have
χ ∈ U when χ is referred to as an element of B∗2r in the way stated above.

P 4.15. Let χ ∈ H(2r; 1)∗ be a ‘good’ character. Then for any irreducible
Uχ(H(2r; 1))-module V we have dimF V ≥ p

1
2 (p2r−pr)−1.

P. Consider the B2r-module

V = IndB2r
H V := Uχ(B2r) ⊗Uχ(H) V.

By Lemma 4.12 we have dimF V ≥ p
1
2 (p2r−pr) and our result follows immediately. �

The following example shows that ‘good’ characters may have very large heights.

E 4.16. Let r = 1. Define χ ∈ H(2; 1)∗ such that χ(DH(xα)) = ϕ(x1xα). Here

ϕ : B2 −→ F∑
kαxα 7−→ kτ

(4.4)

Then χ is ‘good’ in the sense of [19]. So χ ∈ U. One can easily check that
ht( χ) = 2p − 4 which is the highest possible character height. By Proposition 4.15,
we have dimF V ≥ p

1
2 (p2−p)−1 for any irreducible H(2; 1)-module V with character χ.

This can also be deduced from [8].
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