ON A θ-WEYL SUM

YOSHINOBU NAKAI

 where α and γ are real with α positive.*) This sum was treated first by Hardy and Littlewood [4], and after them, by Behnke [1] and [2], Mordell [9], Wilton [11] and others. The reader will find its history in [7] and in the comments of the Collected Papers [4]. Here we show that the sum can be expressed explicitly, together with an error term $O\left(N^{1 / 2}\right)$, using the regular continued fraction expansion of α. As the statements have complications we will divide them into two theorems. In the followings all letters except $\vartheta, i, \sigma, \zeta, \chi$ and those in 3° are real, N is a positive real, and always k, n, a, A, B, C, D and E denote integers. The author expresses his thanks to Professor Tikao Tatuzawa and Professor Tomio Kubota for their encouragements.

1 ${ }^{\circ}$ Lemma 1. Let $\alpha, \alpha^{\prime}, \gamma$ and γ^{\prime} be reals such that

$$
\alpha^{-1} \equiv \alpha^{\prime-1} \quad \bmod .1
$$

and

$$
(2 \alpha)^{-1}(1+2 \gamma) \equiv\left(2 \alpha^{\prime}\right)^{-1}\left(1+2 \gamma^{\prime}\right) \quad \bmod .1,
$$

then we have

$$
(2 \alpha)^{-1}(n+\gamma)^{2} \equiv\left(2 \alpha^{\prime}\right)^{-1}\left(n+\gamma^{\prime}\right)^{2}+(2 \alpha)^{-1} \gamma^{2}-\left(2 \alpha^{\prime}\right)^{-1} \gamma^{\prime 2} \quad \bmod .1
$$

for any integer n.
Proof. It is easy.
Lemma 2 (Hardy-Littlewood, Mordell and Wilton). If $0<\omega \leq 2$,

[^0]$-\frac{1}{2} \leq x \leq \frac{1}{2}, N^{\prime}-\frac{1}{2} \leq \omega N+x<N^{\prime}+\frac{1}{2}$ with integral N and N^{\prime}, then we have
$$
\sum_{n=0}^{N} e\left(\frac{1}{2} \omega n^{2}+x n\right)=e\left(\frac{1}{8}\right) \cdot \omega^{-1 / 2} \sum_{n=0}^{N^{\prime}} e\left(-\frac{1}{2} \omega^{-1}(n-x)^{2}\right)+\vartheta\left(3+2 \omega^{-1 / 2}\right)
$$
where $|\vartheta| \leq 1$. Here \sum^{\prime} means that the first and last terms of the sum are to be halved.

Proof. This is the Theorem in [11].
Lemma 3. Let α_{0}, N_{0} and X_{0} be reals with $\alpha_{0} \geqq \frac{1}{2}, N_{0} \geqq 0$ and $N_{0} \geqq 2 \alpha_{0}$. Expand α_{0} as $\alpha_{0}=a_{0}+\alpha_{1}^{-1}$ with an integer a_{0}. Here we suppose α_{0} not to be an integer. Let γ_{0} and γ_{1} be reals with $\frac{1}{2} a_{0}-\gamma_{0} \equiv \alpha_{1}^{-1} \gamma_{1} \bmod$. 1. Put $X_{1}=\alpha_{0}^{-1}\left(X_{0}+\gamma_{0}\right)$ and $N_{1}=\alpha_{0}^{-1} N_{0}$. Then, for $\varepsilon= \pm 1$, we have

$$
\begin{aligned}
& \theta\left(\varepsilon \alpha_{0}^{-1}, \gamma_{0} ; N_{0}, X_{0}\right) \\
& \quad=e\left(\varepsilon\left(\frac{1}{8}+\left(2 \alpha_{1}\right)^{-1} \gamma_{1}^{2}\right)\right) \cdot \alpha_{0}^{1 / 2} \cdot \theta\left(-\varepsilon \alpha_{1}^{-1}, \gamma_{1} ; N_{1}, X_{1}\right)+O\left(1+\alpha_{0}^{1 / 2}\right) .
\end{aligned}
$$

Proof. This can be obtained from Lemmas 1 and 2.
Lemma 4 (van der Corput). Let $f(x)$ be a real valued function on the interval $[X, Y]$, whose first derivative $f^{\prime}(x)$ is monotonic, not decreasing and such that $0 \leq f^{\prime}(x) \leq \frac{1}{2}$ on the interval. Then we have

$$
\sum_{x \leq n \leq Y} e(f(n))=\int_{X}^{Y} e(f(u)) \cdot d u+\vartheta\left(\frac{1}{2}+\frac{1}{\pi}+\left(\frac{1}{4}+\frac{1}{\pi^{2}}\right)^{1 / 2}\right),
$$

where $|\vartheta| \leq 1$.
Proof. This is "Satz 1" in [5]. A little less precise statements can be found in [10], Chap. 4.

Lemma 5. Let α_{0}, N_{0} and X_{0} be reals with $\alpha_{0}>0, N_{0} \geq 0$ and $\frac{1}{2} \alpha_{0} \geqq N_{0}$. Let γ_{0} be given. Choose $\tilde{\gamma}_{0}$ so that $\tilde{\gamma}_{0} \equiv \gamma_{0} \bmod \alpha_{0}$ and that the interval $\left[\alpha_{0}^{-1}\left(X_{0}+\tilde{\gamma}_{0}\right), \alpha_{0}^{-1}\left(X_{0}+\tilde{\gamma}_{0}+N_{0}\right)\right]$ is contained in the interval $\left[-\frac{3}{4}, \frac{3}{4}\right]$. Then, for $\varepsilon= \pm 1$, we have

$$
\theta\left(\varepsilon \alpha_{0}^{-1}, \gamma_{0} ; N_{0}, X_{0}\right)=e\left(\varepsilon\left(2 \alpha_{0}\right)^{-1}\left(\gamma_{0}^{2}-\tilde{\gamma}_{0}^{2}\right)\right) \int_{X_{0}+\tilde{\gamma}_{0}}^{X_{0}+\tilde{r}_{0}+N_{0}} e\left(\varepsilon\left(2 \alpha_{0}\right)^{-1} u^{2}\right) d u+O(1)
$$

Proof. This is obtained from Lemmas 1 and 4.
We regard $\theta\left(\varepsilon \alpha_{0}^{-1}, \gamma_{0} ; N_{0}, X_{0}\right)$ to be $\sum_{X_{0} \leq n \leq X_{0}+N_{0}} 1$ for $\alpha_{0}=+\infty$. Then Lemma 5 holds also for $\alpha_{0}=+\infty$.

Lemma 6. Let $\alpha_{0}, \gamma_{0}, N_{0}$ and X_{0} be reals with $\alpha_{0}>0, N_{0}>0$ and $2 \alpha_{0} \geqq N_{0} \geqq \frac{1}{2} \alpha_{0}$. Then, for $\varepsilon= \pm 1$, we have

$$
\theta\left(\varepsilon \alpha_{0}^{-1}, \gamma_{0} ; N_{0}, X_{0}\right)=O\left(1+\alpha_{0}^{1 / 2}\right) .
$$

Proof. If $1 \gg \alpha_{0}>0$, the result is obvious. Suppose we have $\alpha_{0} \geqq 4$. We express the interval $\left[X_{0}, X_{0}+N_{0}\right.$] as a union of at most $O(1)$ subintervals, each of length $\leqq \frac{1}{2} \alpha_{0}$ and $\gg \alpha_{0}$. In each subinterval we can apply Lemma 5 . The contribution of the terms containing integrals are $O\left(\sqrt{\alpha_{0}}\right)$ by the convergence of the integral $\int_{-\infty}^{\infty} e\left(u^{2}\right) d u$, and so we have the result.
$\mathbf{2}^{\circ}$. We define several numbers concerning continued fraction expansion of α. Let α be positive. Choose α_{0} uniquely so that $\alpha_{0}^{-1} \equiv \alpha^{-1} \bmod .1$ and $+\infty \geqq \alpha_{0}>1$. Expand α_{0} as $\alpha_{k}=a_{k}+\left(\alpha_{k+1}\right)^{-1}$ with $a_{k} \in \boldsymbol{N}$ and $+\infty \geqq \alpha_{k+1}>1$, beginning with $k=0$. If $\alpha_{k+1}=+\infty$ for some k, we stop the expansion at this k. Define integers A_{k}, B_{k} and $C_{j}^{(k+1)}$ as follows: $A_{-1}=1, A_{0}=a_{0}$ and $A_{k}=a_{k} A_{k-1}+A_{k-2}$ for $k \geqq 1 ; B_{-1}=0, B_{0}=1$ and $B_{k}=a_{k} B_{k-1}+B_{k-2}$ for $k \geqq 1 ; C_{k+1}^{(k+1)}=1, C_{k}^{(k+1)}=a_{k}$ and $C_{j}^{(k+1)}=a_{j} C_{j+1}^{(k+1)}$ $+C_{j+2}^{(k+1)}$ for $k-1 \geqq j \geqq 0$. Define a matrix ζ_{k} to be

$$
\left(\begin{array}{cc}
A_{k} & -B_{k} \\
(-1)^{k} A_{k-1} & (-1)^{k+1} B_{k-1}
\end{array}\right) .
$$

This belongs to $S L(2, Z)$, as can be seen from (2) of Lemma 7. Define Ξ_{k} and H_{k} as follows: $\Xi_{k}=0$ or 1 with $\Xi_{k} \equiv A_{k} B_{k} \bmod .2$ for $k \geqq-1$ and $H_{k}=(-1)^{k} \Xi_{k-1}$ for $k \geqq 0$. We have the following lemmas.

Lemma 7. (1) A_{k} and B_{k} increase monotonically as k increases.
(2) $A_{k} B_{k-1}-A_{k-1} B_{k}=(-1)^{k+1}$ and $\left(A_{k}, B_{k}\right)=1$ for $k \geqq 0$.
(3) $C_{1}^{(k+1)}=B_{k}$ and $C_{0}^{(k+1)}=A_{k}$ for $k \geqq-1$.
(4) $A_{k}+\alpha_{k+1}^{-1} A_{k-1}=\alpha_{k} \cdots \alpha_{0}$,
$B_{k}+\alpha_{k+1}^{-1} B_{k-1}=\alpha_{k} \cdots \alpha_{1}$, for $k \geqq 0$, and $B_{k}-\alpha_{0}^{-1} A_{k}=(-1)^{k}\left(\alpha_{k+1} \cdots \alpha_{0}\right)^{-1}$, for $k \geqq-1$.
(5) $\alpha_{k} \cdot \alpha_{k+1}>2$ for $k \geqq 0$.
(6) $\alpha_{k+1} \cdots \alpha_{0} \bigcup_{n}^{U} A_{k+1}$ for $k \geqq-1$.

Lemma 8 (best approximation). Let α_{0} be >1, and make A_{k} and B_{k} from α_{0} as above. Let also a rational number $B^{-1} A$ be given, where B and A are its irreducible denominator and numerator respectively, so that, for any rationals $B^{\prime-1} A^{\prime}$ with $0<B^{\prime} \leq B$ and $B^{\prime-1} A^{\prime} \neq B^{-1} A$, we
have $\left|B \alpha_{0}-A\right| \leq\left|B^{\prime} \alpha_{0}-A^{\prime}\right|$. Then the pair (A, B) is equal to $\left(A_{k}, B_{k}\right)$ for some k.

Proof. All statements of Lemmas 7 and 8 are well-known or can be easily shown. See, for instance, [6]. Lemma 8 is included here to suggest the nature of A_{k} and B_{k}.

Lemma 9. We have

$$
\sum_{h ; k \geqq h \geqq j-1}\left(\alpha_{k+1} \cdots \alpha_{h+2}\right)^{-1}\left\{\left(-\alpha_{h}\right) \cdots\left(-\alpha_{j}\right)\right\}=(-1)^{k+1-j} C_{j}^{(k+1)}
$$

for $0 \leq j \leq k+1$, where $\alpha_{k+1} \cdots \alpha_{h+2}=1$ for $h=k$ and $\left(-\alpha_{h}\right) \cdots\left(-\alpha_{j}\right)$ $=1$ for $h=j-1$.

Proof. If we put $\delta_{j}^{(k+1)}=\sum_{h ; k \geqq h \geqq j-1}\left(\alpha_{k+1} \cdots \alpha_{h+2}\right)^{-1}\left\{\left(-\alpha_{h}\right) \cdots\left(-\alpha_{j}\right)\right\}$, we have $\delta_{j}^{(k+1)}=-a_{j} \delta_{j+1}^{(k+1)}+\delta_{j+2}^{(k+1)}$ for $k-2 \geqq j \geqq 0$. Also $\delta_{k+1}^{(k+1)}=1$ and $\delta_{k}^{(k+1)}=-a_{k}$. Thus $(-1)^{k+1-j} \delta_{j}^{(k+1)}$ has the same properties as $C_{j}^{(k+1)}$. Hence they are identical.

Let a real γ be given. Using α_{k}, α_{k} etc., we define γ_{k} as follows: γ_{0} is any real number satisfying

$$
\left(2 \alpha_{0}\right)^{-1}\left(1-2 \gamma_{0}\right) \equiv(2 \alpha)^{-1}(1-2 \gamma) \bmod .1,
$$

and

$$
\gamma_{k+1}=(-1)^{k+1} \alpha_{k+1}\left(B_{k} \gamma_{0}-\frac{1}{2} \Xi_{k}\right)+(-1)^{k+1} B_{k-1} \gamma_{0}+\frac{1}{2} H_{k}
$$

for $k \geqq 0$. Given a real X, we define X_{k} inductively by $X_{0}=X$ and $X_{k+1}=\alpha_{k}^{-1}\left(X_{k}+\gamma_{k}\right)$ for $k \geqq 0$.

Lemma 10. We have the following equalities:

$$
\begin{equation*}
\alpha_{k+1}^{-1} \gamma_{k+1}=-\gamma_{k}+\frac{1}{2} a_{k}+(-1)^{k} D_{k} \tag{1}
\end{equation*}
$$

for $k \geqq 0$, where D_{k} is an integer defined by

$$
\begin{gather*}
D_{k}=\frac{1}{2}\left(\Xi_{k}-a_{k} \Xi_{k-1}+(-1)^{k} H_{k-1}+(-1)^{k+1} a_{k}\right) . \\
X_{k+2}=\left(\alpha_{0} \cdots \alpha_{k+1}\right)^{-1} X_{0}+(-1)^{k} \alpha_{0}^{-1} \gamma_{0} A_{k} \tag{2}\\
+(-1)^{k+1} \frac{1}{2}\left(A_{k}+B_{k}\right)+(-)^{k} E_{k}
\end{gather*}
$$

for $k \geqq 0$, where E_{k} is an integer defined by

$$
E_{k}=\sum_{j=1}^{k+1} C_{j}^{(k+1)} D_{j-1}
$$

Proof. The fact that $\Xi_{k}-a_{k} \Xi_{k-1}+(-1)^{k} H_{k-1}+(-1)^{k-1} a_{k}$ is an even integer follows from the definitions and (2) of Lemma 7. Therefore D_{k} and E_{k} are integers. The number $\alpha_{k+1}^{-1} \gamma_{k+1}$ is equal to

$$
\begin{aligned}
&(-1)^{k+1}\left(B_{k} \gamma_{0}-\frac{1}{2} \Xi_{k}\right)+\alpha_{k+1}^{-1}\left((-1)^{k+1} B_{k-1} \gamma_{0}+\frac{1}{2} H_{k}\right) \\
&=(-1)^{k+1}\left(B_{k} \gamma_{0}-\frac{1}{2} \Xi_{k}\right)+\left(\alpha_{k}-a_{k}\right)\left((-1)^{k+1} B_{k-1} \gamma_{0}+\frac{1}{2} H_{k}\right) \\
&=(-1)^{k+1} \alpha_{k}\left(B_{k-1} \gamma_{0}+\frac{1}{2}(-1)^{k+1} H_{k}\right)+(-1)^{k+1} B_{k-2} \gamma_{0} \\
&-\frac{1}{2}(-1)^{k+1} \Xi_{k}-\frac{1}{2} a_{k} H_{k} .
\end{aligned}
$$

The last sum is equal to $-\gamma_{k}+\frac{1}{2} H_{k-1}-\frac{1}{2}(-1)^{k+1} \Xi_{k}-\frac{1}{2} a_{k} H_{k}$, by $H_{k}=$ $(-1)^{k} \Xi_{k-1}$. Thus the right hand side of (1) is easily obtained. As for (2), we see, by direct calculations, that X_{k+2} is equal to $\left(\alpha_{0} \cdots \alpha_{k+2}\right)^{-1} X_{0}$ $+\beta_{k+2}$, where β_{k+2} is $\alpha_{k+1}^{-1} \gamma_{k+1}+\left(\alpha_{k+1} \alpha_{k}\right)^{-1} \gamma_{k}+\cdots+\left(\alpha_{k+1} \cdots \alpha_{0}\right)^{-1} \gamma_{0}$. Then β_{k+2} is equal to

$$
\begin{aligned}
\sum_{n ; k \geqq h \geqq 0} & \left(\alpha_{k+1} \cdots \alpha_{h+2}\right)^{-1}\left\{\left(-\alpha_{h}\right) \cdots\left(-\alpha_{1}\right)\right\}\left(-\gamma_{0}+\frac{1}{2} \alpha_{0}-\frac{1}{2}\right) \\
& +\left(\alpha_{k+1} \cdots \alpha_{0}\right)^{-1}\left(\gamma_{0}-\frac{1}{2} \alpha_{0}\right) \\
+ & \left(\begin{array}{l}
(-1)^{k} D_{k}+\cdots+(-1)^{j-1} D_{j-1} \sum_{n ; k \geqq h \geqq j-1}\left(\alpha_{k+1} \cdots \alpha_{h+2}\right)^{-1} \\
\times\left\{\left(-\alpha_{h}\right) \cdots\left(-\alpha_{j}\right)\right\}+\cdots+D_{0} \sum_{n ; k \geqq n \geqq 0}\left(\alpha_{k+1} \cdots \alpha_{h+2}\right)^{-1} \\
\\
\end{array}\right) .
\end{aligned}
$$

By Lemma 9, this sum is equal to

$$
\begin{aligned}
& (-1)^{k} B_{k}\left(-\gamma_{0}+\frac{1}{2} \alpha_{0}-\frac{1}{2}\right)+\left(\alpha_{k+1} \cdots \alpha_{0}\right)^{-1}\left(\gamma_{0}-\frac{1}{2} \alpha_{0}\right) \\
& \quad+\left[(-1)^{k} D_{k}+\cdots+(-1)^{j-1} D_{j-1}(-1)^{k+1-j} C_{j}^{(k+1)}+\cdots\right. \\
& \left.\quad+D_{0}(-1)^{(k+1)-1} C_{1}^{(k+1)}\right]
\end{aligned}
$$

for $k \geqq 0$. Substituting the third formula of (4) of Lemma 7 with $\left(\alpha_{k+1} \cdots \alpha_{0}\right)^{-1}$ in the second term of the above sum, we have the result (2).

The formula (2) of Lemma 7 and the fact that E_{k} is an integer are fundamental.
3°. Let τ be a complex variable whose imaginary part is positive. Let x and y be any complex numbers, and $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be any matrix in $S L(2, Z)$. Define $\sigma\langle\tau\rangle$ to be $(a \tau+b)(c \tau+d)^{-1}$. Then we see that

$$
\theta(\tau ; x, y) \underset{\operatorname{def}}{ } \sum_{m \in Z} e^{\pi i \tau(m-y)^{2}+2 \pi i m x-\pi i x y}
$$

is equal to

$$
\chi(\sigma) \cdot e^{(\pi i / 2)(\eta(a x+b y)-\xi(c x+d y)\}} \cdot(c \tau+d)^{-1 / 2} \theta\left(\sigma\langle\tau\rangle ; a x+b y-\frac{1}{2} \xi, c x+d y-\frac{1}{2} \eta\right)
$$

where $\xi \equiv a b \bmod .2$ and $\eta \equiv c d \bmod .2$. Also $\chi(\sigma)$ is a certain eighth root of the unity which does not depend on x, y and τ. This formula is wellknown. See, for instance, [3], pp. 47-66.

We restrict ξ, η and the branch of $(c \tau+d)^{1 / 2}$ as follows: $\xi=0$ or 1 , $\eta=0$ or ± 1 where the signature in ± 1 is given in advance for each σ, and, as for $(c \tau+d)^{1 / 2}$,

$$
\begin{array}{ll}
(c \tau+d)^{1 / 2}=1 & \text { if } c=0 \text { and } d=1 \\
(c \tau+d)^{1 / 2}=e^{(1 / 2) \pi i} & \text { if } c=0 \text { and } d=-1 \\
0<\arg (c \tau+d)^{1 / 2}<\pi / 2 & \text { if } c>0
\end{array}
$$

and

$$
0>\arg (c \tau+d)^{1 / 2}>-\pi / 2 \quad \text { if } c<0
$$

Then we can write $\chi(\sigma)$ explicitly in terms of a, b, c and d, if we use the Jacobi symbol. The reader will find some of them, that is, those for $\sigma \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \bmod .2$, in [8], for instance.

Rewriting the θ-formula, we have

$$
\sum_{m \in \mathbb{Z}} e^{\pi i \tau(m+\gamma)^{2}}=\chi(\sigma)(c \tau+d)^{-1 / 2} \cdot e^{\pi i(b r+(1 / 2)) \varepsilon) \tau \tau} e^{(\pi i / 2)(d s-b \eta) \tau} \sum_{m \in \mathbb{Z}} e^{\pi i \sigma \sigma(\tau)(m+\gamma \sigma)^{2}},
$$

where γ_{σ} is $\left(d \gamma+\frac{1}{2} \eta\right)-(\sigma\langle\tau\rangle)^{-1}\left(b \gamma+\frac{1}{2} \xi\right)$.
Lemma 11. Let σ be ζ_{k}, that is, $\left(\begin{array}{cc}A_{k} & -B_{k} \\ (-1)^{k} A_{k-1} & (-1)^{k+1} B_{k-1}\end{array}\right)$. Choose α, γ, ξ and η to be $\alpha_{0}^{-1}+i \cdot 0+, \gamma_{0}, \Xi_{k}$ and H_{k} respectively, with the notations defined in 2°. Then we have

$$
\sigma\left\langle\alpha_{0}^{-1}+i \cdot 0+\right\rangle=(-1)^{k+1} \alpha_{k+1}^{-1}+i \cdot 0+
$$

and

$$
\gamma_{\sigma}=\gamma_{k+1}+i \cdot 0 \pm
$$

Here $0+$ or $0 \pm$ stands for a sufficiently small positive or a real number respectively.

Proof. It is easy to check the assertion about $\sigma\left\langle\alpha_{0}^{-1}+i \cdot 0+\right\rangle$ by the third formula of (4) of Lemma 7. Then the other part clearly holds.
4. Now we proceed to the sum $\theta\left(\alpha^{-1}, \gamma ; N, X\right)$. We suppose that
N is not smaller than 1. We use those notations in 2° relating to α, γ and X. Also we put $N_{k+1}=\left(\alpha_{k} \cdots \alpha_{0}\right)^{-1} N$ with $N_{0}=N$. If $N_{1}<\frac{1}{2}$, we define k_{0} to be -1 . But, if $N_{1} \geqq \frac{1}{2}$, there is, by (5) of Lemma 7, some k_{0} with $0 \leqq k_{0} \ll \log N$ so that $N_{k_{0}+1} \geqq \frac{1}{2}$ but $0 \leq N_{k_{0}+2}<\frac{1}{2}$. We divide the statements into two theorems. We suppose $\alpha>0$ and that $\alpha_{0} \neq+\infty$.

Theorem 1. (Case 1) If $k_{0}=-1$, we have

$$
\theta\left(\alpha^{-1}, \gamma ; N, X\right)=e\left((2 \alpha)^{-1} \gamma^{2}-\left(2 \alpha_{0}\right)^{-1} \hat{\gamma}_{0}^{2}\right) \int_{X+\tilde{\gamma}_{0}}^{X+\tilde{\gamma}_{0}+N} e\left(\left(2 \alpha_{0}\right)^{-1} u^{2}\right) d u+O(1),
$$

where $\tilde{\gamma}_{0}$ is so chosen that $\tilde{\gamma}_{0} \equiv \gamma_{0} \bmod \alpha_{0}$ and that the interval

$$
\left[\alpha_{0}^{-1}\left(X+\tilde{\gamma}_{0}\right), \alpha_{0}^{-1}\left(X+\tilde{\gamma}_{0}+N\right)\right]
$$

is contained in the interval $\left[-\frac{3}{4}, \frac{3}{4}\right]$.
(Case 2) If $k_{0} \geqq-1$ and if $N_{k_{0}+1} \ll 1$ or $N_{k_{0}+2} \gg 1$, then we have

$$
\theta\left(\alpha^{-1}, \gamma ; N, X\right)=O\left(N^{1 / 2}\right) .
$$

Proof. If $k_{0}=-1$ the result is obtained from Lemma 5 and Lemma 1. If $k_{0} \geqq 0$ but if $N_{k_{0}+1} \ll 1$, we can apply Lemma 3 repeatedly $\left(k_{0}+1\right)$ times, as is ensured by (1) of Lemma 10 , and can use the fact that

$$
\theta\left((-1)^{k_{0}+1} \alpha_{k_{0}+1}^{-1}, \gamma_{k_{0}+1} ; N_{k_{0}+1}, X_{k_{0}+1}\right)=O(1) .
$$

We have an estimate $O\left(1+\sum_{n=0}^{k_{0}}\left(\alpha_{0} \cdots \alpha_{h}\right)^{1 / 2}\right)$, which is $O\left(1+\left(\alpha_{0} \cdots \alpha_{k_{0}}\right)^{1 / 2}\right)$ by (5) of Lemma 7. But $\alpha_{0} \cdots \alpha_{k_{0}} \cup_{N}^{U}$, so we have done in this case. If $k_{0} \geqq 0$ and if $N_{k_{0}+2} \gg 1$, we again apply Lemma 3 repeatedly ($k_{0}+1$) times and Lemma 6 after that. We have $O\left(1+\left(\alpha_{0} \cdots \alpha_{k_{0}+1}\right)^{1 / 2}\right)$ as an estimate in this case, which is $O\left(N^{1 / 2}\right)$ again.

THEOREM 2. (Case 3) If $k_{0} \geqq 0, N_{k_{0}+1}>2$ and $0<N_{k_{0}+2}<\frac{1}{4}$, we have

$$
\begin{aligned}
\theta\left(\alpha^{-1}, \gamma ; N, X\right)= & \chi\left(\zeta_{k_{0}}\right) \cdot e^{\pi i d d_{0}} \cdot e\left((2 \alpha)^{-1} \gamma^{2}-\left(2 \alpha_{0}\right)^{-1} \gamma_{0}^{2}\right) \\
& \times\left(\alpha_{0} \cdots \alpha_{k_{0}}\right)^{1 / 2} \int_{X_{k_{0}+1}+\tilde{\tau}_{k_{0}+1}}^{x_{k_{0}+1}+\tilde{\tau}_{x_{0}}++N_{k_{0}}+1} e\left((-1)^{k_{0}+1}\left(2 \alpha_{k_{0}+1}\right)^{-1} u^{2}\right) \cdot d u \\
& +O\left(1+A_{k_{0}}^{1 / 2}\right),
\end{aligned}
$$

where $\Delta_{k_{0}}$ is

$$
\begin{aligned}
\gamma_{k_{0}+1} & \left(-B_{k_{0}} \gamma_{0}+\frac{1}{2} \Xi_{k_{0}}\right)+(-1)^{k_{0}+\frac{1}{2}} \cdot\left(B_{k_{0}-1} \Xi_{k_{0}}+A_{k_{0}-1} H_{k_{0}}\right) \gamma_{0} \\
& +(-1)^{k_{0}+1}\left(2 \alpha_{k_{0}+1}\right)^{-1}\left(\gamma_{k_{0}+1}^{2}-\tilde{\gamma}_{k_{0}+1}^{2}\right) .
\end{aligned}
$$

Also $\zeta_{k_{0}}$ is $\left(\begin{array}{cc}A_{k_{0}} & -B_{k_{0_{0}}} \\ (-1)^{k_{0}} A_{k_{0}-1} & (-1)^{k_{0}+1} B_{k_{0}-1}\end{array}\right)$, and the value of $\chi\left(\zeta_{k_{0}}\right)$ is that in 3° corresponding to $\xi=\Xi_{k_{0}}, \eta=H_{k_{0}}$ and the branch of $(c \tau+d)^{1 / 2}$ is restricted as is stated there. The value $\tilde{\gamma}_{k_{0}+1}$ is so chosen that $\tilde{\gamma}_{k_{0}+1} \equiv$ $\gamma_{k_{0}+1} \bmod . \alpha_{k_{0}+1}$ and that the interval $\left[\alpha_{k_{0}+1}^{-1}\left(X_{k_{0}+1}+\tilde{\gamma}_{k_{0}+1}\right), \alpha_{k_{0}+1}^{-1}\left(X_{k_{0}+1}+\tilde{\gamma}_{k_{0}+1}\right.\right.$ $\left.\left.+N_{k_{0}+1}\right)\right]$ is contained in the interval $\left[-\frac{3}{4}, \frac{3}{4}\right]$.
(Case 4) If $k_{0} \geqq 0$ but $N_{k_{0}+2}=0$, then, with the same $\chi\left(\zeta_{k_{0}}\right)$ as above, we have

$$
\begin{aligned}
\theta\left(\alpha^{-1}, \gamma ; N, X\right)= & \chi\left(\zeta_{k_{0}}\right) e^{\pi i L_{k_{0}}^{\prime}} \cdot e\left((2 \alpha)^{-1} \gamma^{2}-\left(2 \alpha_{0}\right)^{-1} \gamma_{0}^{2}\right) \cdot A_{k_{0}}^{1 / 2} \\
& \times \sum_{x_{k_{0}+1} \leq n \leq X x_{k_{0}+1}+N k_{k_{0}+1}} e\left(\left(B_{k_{0} \gamma_{0}}-\frac{1}{2} \Xi_{k_{0}} n\right)+O\left(1+A_{k_{0}}^{1 / 2}\right),\right.
\end{aligned}
$$

where $\Delta_{k_{0}}^{\prime}$ is

$$
\begin{aligned}
\left(B_{k_{0}} \gamma_{0}\right. & \left.-\frac{1}{2} E_{k_{0}}\right)\left((-1)^{k_{0}+1} B_{k_{0}-1} \gamma_{0}+\frac{1}{2} H_{k_{0}}\right) \\
& \quad+(-1)^{k_{0}+1 \frac{1}{2}} \cdot\left(B_{k_{0}-1} E_{k_{0}}+A_{k_{0}-1} H_{k_{0}}\right) \gamma_{0}
\end{aligned}
$$

In this case α_{0} is $B_{k_{0}}^{-1} A_{k_{0}}$ with $A_{k_{0}} \leq 2 N$.
Proof. (Case 3) Suppose $N_{k_{0}+2} \neq 0$. We use Lemma 3 repeatedly $\left(k_{0}+1\right)$ times and Lemma 5 after that. As $\gamma_{\sigma}, \sigma\langle\tau\rangle$ and $(c \tau+d)^{1 / 2}$ for $\sigma=\zeta_{k_{0}}$ and $\tau=\alpha_{0}^{-1}+i \cdot 0+$ are equal to $\gamma_{k_{0}+1}+i \cdot 0 \pm,(-1)^{k_{0}+1} \alpha_{k_{0}+1}^{-1}+i \cdot 0+$ and $\left(\alpha_{0} \cdots \alpha_{k_{0}}+i \cdot 0 \pm\right)^{1 / 2}$ respectively, we have, from θ-formula in 3°, the main term in the result. We have $O\left(1+\left(\alpha_{0} \cdots \alpha_{k_{0}}\right)^{1 / 2}\right)$ as its errors, which is $O\left(1+A_{k_{0}}^{1 / 2}\right)$ by (6) of Lemma 7. (Case 4) Now we suppose $N_{k_{0}+2}$ $=0$, i.e., $\alpha_{k_{0}+1}=+\infty$. We have $\zeta_{k_{0}}\left\langle\alpha_{0}^{-1}+i \cdot 0+\right\rangle=i \cdot 0+$. We rewrite the θ-formula in 3° as follows:

$$
\begin{aligned}
\sum_{m \in \boldsymbol{Z}} e^{\pi i r(m+\gamma)^{2}}= & \chi(\sigma)(c \tau+d)^{-1 / 2} e^{(\pi i / 2)(d \xi-b \eta) r-\pi i(b r+(1 / 2) \xi)\left(d_{r}+(1 / 2) \eta\right)} \\
& \times \sum_{m \in Z} e^{\left.\pi i \sigma\langle\tau\rangle\left(m+a_{r}+(1 / 2) \eta\right)\right)^{2}-2 \pi i(b r+(1 / 2) \xi) m}
\end{aligned}
$$

Then we obtain the result in this case also by the similar considerations.
In the integrals in Cases 1 and 3, $\alpha_{k_{0}+1}^{-1}\left(X_{k_{0}+1}+\tilde{\gamma}_{k_{0}+1}\right)$ is to be determined mod.1. But it is equal to $X_{k_{0}+2}+\alpha_{k_{0}+1}^{-1}\left(\tilde{\gamma}_{k_{0}+1}-\gamma_{k_{0}+1}\right)$; then $X_{k_{0}+2}$ and the integer $\alpha_{k_{0}+1}^{-1}\left(\tilde{\gamma}_{k_{0}+1}-\gamma_{k_{0}+1}\right)$ can be determined by (2) of Lemma 10.
5°. We fix an irrational number α_{0} arbitrarily which is larger than 1. Make those numbers defined in 2° from $\alpha=\alpha_{0}$. Let $\psi(k)$ be a real valued function on $k=-1,0,1,2, \cdots$, whose value is larger than 2 . If we suppose that $N_{k_{0}+2}$ is larger than or equal to $\left(2 \psi\left(k_{0}\right)\right)^{-1}$, then we-have $A_{k_{0}+1} \ll N \psi\left(k_{0}\right)$, as $N_{k_{0}+2} \cup N A_{k_{0}+1}^{-1}$. Thus, by the convergence of $\int_{-\infty}^{\infty} e\left(u^{2}\right)$ -du, we have

$$
\begin{align*}
& \left(\alpha_{0} \cdots \alpha_{k_{0}}\right)^{1 / 2} \int e\left(\left(2 \alpha_{k_{0}+1}\right)^{-1} u^{2}\right) d u \tag{1}\\
& \quad \ll\left(\alpha_{0} \cdots \alpha_{k_{0}}\right)^{1 / 2}\left(\alpha_{k_{0}+1}\right)^{1 / 2} \ll A_{k_{0}+1}^{1 / 2} \ll\left(N \psi\left(k_{0}\right)\right)^{1 / 2} .
\end{align*}
$$

Let us, on the contrary, suppose that $N_{k_{0}+2}$ is smaller than $\left(2 \psi\left(k_{0}\right)\right)^{-1}$. Suppose also that we have a real β_{0} which satisfies the following conditions, where $\{x\}$ denotes the fractional part of x :

$$
\begin{array}{ll}
\left|\left\{\beta_{0} A_{k}\right\}-\frac{1}{2}\right| \geqq \psi(k)^{-1} & \text { if } A_{k}+B_{k} \text { is odd with } k \geqq 0, \\
\min \left(\left\{\beta_{0} A_{k}\right\}, 1-\left\{\beta_{0} A_{k}\right\}\right) \geqq \psi(k)^{-1} & \text { if } k=-1 \text { or if } A_{k}+B_{k} \text { is even } \tag{2}\\
& \text { with } k \geqq 0 .
\end{array}
$$

Then, if we substitute $X_{0}=0$ and $\gamma_{0}=\alpha_{0} \beta_{0}$ in (2) of Lemma 10, the interval $\left[\left\{X_{k_{0}+2}\right\},\left\{X_{k_{0}+2}\right\}+N_{k_{0}+2}\right]$ is contained in the interval $\left[\left(2 \psi\left(k_{0}\right)\right)^{-1}\right.$, $\left.1-\left(2 \psi\left(k_{0}\right)\right)^{-1}\right]$ for $k_{0} \geqq-1$. By the mean-value theorem on integrals, we have

$$
\begin{align*}
& \left(\alpha_{0} \cdots \alpha_{k_{0}}\right)^{1 / 2} \int_{X_{k_{0}+1}+\tilde{\tau}_{k_{0}+1}}^{x_{k_{0}++}+\tilde{x}_{0}+1+N k_{0}+1} e\left(\left(2 \alpha_{k_{0}+1}\right)^{-1} u^{2}\right) \cdot d u \ll\left(\alpha_{0} \cdots \alpha_{k_{0}}\right)^{1 / 2} \\
& \quad \times\left(\alpha_{k_{0}+1}\right)^{1 / 2}\left(\alpha_{k_{0}+1} \psi\left(k_{0}\right)^{-2}\right)^{-1 / 2} \ll\left(\alpha_{0} \cdots \alpha_{k_{0}}\right)^{1 / 2} \psi\left(k_{0}\right) \ll N^{1 / 2} \psi\left(k_{0}\right) .
\end{align*}
$$

Therefore, if we suppose the existence of a β_{0} satisfying the condition (2), it follows, from (1) and (3) applied to Cases 1 or 3 and also from Case 2 of Theorems 1 and 2, that

$$
\begin{equation*}
\theta\left(\alpha_{0}^{-1}, \alpha_{0} \beta_{0} ; 0, N\right) \ll N^{1 / 2} \psi\left(k_{0}\right) \tag{4}
\end{equation*}
$$

for any $N \geqq 1$.
The measure of the set of β_{0} in the interval $[0,1)$ which do not satisfy (2) for some $k \geqq-1$ is obviously not larger than $\sum_{k=-1}^{\infty} 2 \psi(k)^{-1}$. Therefore, if we suppose that

$$
\begin{equation*}
\sum_{k=-1}^{\infty} 2 \psi(k)^{-1}<1 \tag{5}
\end{equation*}
$$

the measure of the set of β_{0} in $[0,1)$ which satisfy the condition (2) for every $k \geqq-1$ is not smaller than $1-\sum_{k=-1}^{\infty} 2 \psi(k)^{-1}>0$. If we give $\psi(k)$ the values $\mathrm{ck}(\log k)^{2}$ for $k \geqq 3$ with a large positive constant c, and some appropriate values for $2 \geqq k \geqq-1$, then the inequality (5) is satisfied. But $k_{0}=O(\log N)$. Therefore we have the following

Theorem 3. If we are given any real irrational α_{0} which is larger than 1, then there exists a set $I_{\alpha_{0}}$ of reals in the interval $[0,1)$ whose
measure is larger than $\frac{1}{2}$, so that we have

$$
\theta\left(\alpha_{0}^{-1}, \alpha_{0} \beta_{0} ; 0, N\right) \ll N^{1 / 2}(\log 10 N)(\log \log 10 N)^{2},
$$

for all β_{0} in $I_{\alpha_{0}}$, where the implied constant is absolute.
This result is an improvement on the existence of an irrational $\alpha_{0}^{-1} \gamma_{0}$ such that we have $\theta\left(\alpha_{0}^{-1}, \gamma_{0} ; 0, N\right) \ll N^{3 / 4}$, shown in [1], p. 294, Satz XV.

References

[1] H. Behnke, Zur Theorie der diophantischen Approximationen, Part I, Abh. Math. Sem. Univ. Hamburg, 3 (1924), 261-318, with Corrigendum.
[2] - P, Part II, the same Abh., 4 (1926), 33-46.
[3] M. Eichler, Einführung in die Theorie der algebraischen Zahlen und Funktionen, Birkhäuser Verlag, 1963.
[4] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation II: The trigonometrical series associated with the elliptic θ-functions, Acta Math., $37=$ Collected Papers of G. H. Hardy, Vol. 1, 67-114.
[5] V. Jarnik and E. Landau, Untersuchungen über einen van der Corputschen Satz, Math. Z., 39 (1935), 745-767.
[6] A. Ya. Khinchin, Continued fractions, The University of Chicago Press, 1964.
[7] J. F. Koksma, Diophantische Approximationen, Springer Verlag, 1936.
[8] T. Kubota, On a classical theta-function, Nagoya Math. J., 37 (1970), 183-189.
[9] L. J. Mordell, The approximate functional formula for the theta function, J. London Math. Soc., 1 (1926), 68-72.
[10] E. C. Titchmarsh, The theory of the Riemann Zeta-function, Oxford, 1951.
[11] J. R. Wilton, The approximate functional formula for the theta function, J. London Math. Soc., 2 (1927), 177-180.

Nagoya University

[^0]: Received June 26, 1973.
 *) In this note $e(\alpha)$ means $e^{2 \pi i \alpha}$ for real $\alpha . \quad N$ is the set of positive integers. Z is the set of all integers. The implied positive numerical constants in the symbol "《" in the statements and proofs of (Case 2) of Theorem 1 can be given arbitrarily. Other implied constants in the symbols "《", " $O()$ " and "Un" are absolute or can be explicitly calculated.

