Y. N. NakaiNagoya Math. J.Vol. 52 (1973) 163-172

ON A θ **-WEYL SUM**

YOSHINOBU NAKAI

0°. We treat the sum $\theta(\alpha^{-1}, \gamma; N, X) = \sum_{x \le n \le X+N} e((2\alpha)^{-1}(n + \gamma)^2)$, where α and γ are real with α positive.^{*)} This sum was treated first by Hardy and Littlewood [4], and after them, by Behnke [1] and [2], Mordell [9], Wilton [11] and others. The reader will find its history in [7] and in the comments of the Collected Papers [4]. Here we show that the sum can be expressed explicitly, together with an error term $O(N^{1/2})$, using the regular continued fraction expansion of α . As the statements have complications we will divide them into two theorems. In the followings all letters except $\vartheta, i, \sigma, \zeta, \chi$ and those in 3° are real, N is a positive real, and always k, n, a, A, B, C, D and E denote integers. The author expresses his thanks to Professor Tikao Tatuzawa and Professor Tomio Kubota for their encouragements.

1°. LEMMA 1. Let
$$\alpha, \alpha', \gamma$$
 and γ' be reals such that

$$\alpha^{-1} \equiv \alpha'^{-1} \mod 1$$

and

 $(2\alpha)^{-1}(1+2\gamma) \equiv (2\alpha')^{-1}(1+2\gamma') \quad \text{mod. 1}$,

then we have

$$(2\alpha)^{-1}(n+\gamma)^2 \equiv (2\alpha')^{-1}(n+\gamma')^2 + (2\alpha)^{-1}\gamma^2 - (2\alpha')^{-1}\gamma'^2 \mod 1$$

for any integer n.

Proof. It is easy.

LEMMA 2 (Hardy-Littlewood, Mordell and Wilton). If $0 < \omega \leq 2$,

Received June 26, 1973.

^{*)} In this note $e(\alpha)$ means $e^{2\pi i\alpha}$ for real α . N is the set of positive integers. Z is the set of all integers. The implied positive numerical constants in the symbol " \ll " in the statements and proofs of (Case 2) of Theorem 1 can be given arbitrarily. Other implied constants in the symbols " \ll ", "O()" and " $_{\Omega}^{\cup}$ " are absolute or can be explicitly calculated.

YOSHINOBU NAKAI

 $-\frac{1}{2} \leq x \leq \frac{1}{2}, \; N' - \frac{1}{2} \leq \omega N + x < N' + \frac{1}{2}$ with integral N and N', then we have

$$\sum_{n=0}^{N'} e(\frac{1}{2}\omega n^2 + xn) = e(\frac{1}{8}) \cdot \omega^{-1/2} \sum_{n=0}^{N'} e(-\frac{1}{2}\omega^{-1}(n-x)^2) + \vartheta(3 + 2\omega^{-1/2}),$$

where $|\vartheta| \leq 1$. Here \sum' means that the first and last terms of the sum are to be halved.

Proof. This is the Theorem in [11].

LEMMA 3. Let α_0 , N_0 and X_0 be reals with $\alpha_0 \ge \frac{1}{2}$, $N_0 \ge 0$ and $N_0 \ge 2\alpha_0$. Expand α_0 as $\alpha_0 = a_0 + \alpha_1^{-1}$ with an integer a_0 . Here we suppose α_0 not to be an integer. Let γ_0 and γ_1 be reals with $\frac{1}{2}a_0 - \gamma_0 \equiv \alpha_1^{-1}\gamma_1 \mod 1$. Put $X_1 = \alpha_0^{-1}(X_0 + \gamma_0)$ and $N_1 = \alpha_0^{-1}N_0$. Then, for $\varepsilon = \pm 1$, we have

$$\begin{split} \theta(\varepsilon \alpha_0^{-1}, \gamma_0; N_0, X_0) \\ &= e(\varepsilon(\frac{1}{8} + (2\alpha_1)^{-1} \gamma_1^2)) \cdot \alpha_0^{1/2} \cdot \theta(-\varepsilon \alpha_1^{-1}, \gamma_1; N_1, X_1) + O(1 + \alpha_0^{1/2}) \; . \end{split}$$

Proof. This can be obtained from Lemmas 1 and 2.

LEMMA 4 (van der Corput). Let f(x) be a real valued function on the interval [X, Y], whose first derivative f'(x) is monotonic, not decreasing and such that $0 \le f'(x) \le \frac{1}{2}$ on the interval. Then we have

$$\sum_{X \le n \le Y} e(f(n)) = \int_{X}^{Y} e(f(u)) \cdot du + \vartheta \left(\frac{1}{2} + \frac{1}{\pi} + \left(\frac{1}{4} + \frac{1}{\pi^2} \right)^{1/2} \right),$$

where $|\vartheta| \leq 1$.

Proof. This is "Satz 1" in [5]. A little less precise statements can be found in [10], Chap. 4.

LEMMA 5. Let α_0 , N_0 and X_0 be reals with $\alpha_0 > 0$, $N_0 \ge 0$ and $\frac{1}{2}\alpha_0 \ge N_0$. Let γ_0 be given. Choose $\tilde{\gamma}_0$ so that $\tilde{\gamma}_0 \equiv \gamma_0 \mod \alpha_0$ and that the interval $[\alpha_0^{-1}(X_0 + \tilde{\gamma}_0), \alpha_0^{-1}(X_0 + \tilde{\gamma}_0 + N_0)]$ is contained in the interval $[-\frac{3}{4}, \frac{3}{4}]$. Then, for $\varepsilon = \pm 1$, we have

$$\theta(\varepsilon\alpha_0^{-1},\gamma_0;N_0,X_0) = e(\varepsilon(2\alpha_0)^{-1}(\gamma_0^2 - \tilde{\gamma}_0^2)) \int_{X_0+\tilde{\gamma}_0}^{X_0+\tilde{\gamma}_0+N_0} e(\varepsilon(2\alpha_0)^{-1}u^2) du + O(1) .$$

Proof. This is obtained from Lemmas 1 and 4.

We regard $\theta(\epsilon \alpha_0^{-1}, \gamma_0; N_0, X_0)$ to be $\sum_{X_0 \le n \le X_0 + N_0} 1$ for $\alpha_0 = +\infty$. Then Lemma 5 holds also for $\alpha_0 = +\infty$.

θ -weyl sum

LEMMA 6. Let α_0, γ_0, N_0 and X_0 be reals with $\alpha_0 > 0$, $N_0 > 0$ and $2\alpha_0 \ge N_0 \ge \frac{1}{2}\alpha_0$. Then, for $\varepsilon = \pm 1$, we have

$$heta(arepsilon lpha_{0}^{-1}, \gamma_{0}; N_{0}, X_{0}) = O(1 + lpha_{0}^{1/2})$$

Proof. If $1 \gg \alpha_0 > 0$, the result is obvious. Suppose we have $\alpha_0 \ge 4$. We express the interval $[X_0, X_0 + N_0]$ as a union of at most O(1) subintervals, each of length $\le \frac{1}{2}\alpha_0$ and $\gg \alpha_0$. In each subinterval we can apply Lemma 5. The contribution of the terms containing integrals are $O(\sqrt{\alpha_0})$ by the convergence of the integral $\int_{-\infty}^{\infty} e(u^2) du$, and so we have the result.

2°. We define several numbers concerning continued fraction expansion of α . Let α be positive. Choose α_0 uniquely so that $\alpha_0^{-1} \equiv \alpha^{-1} \mod 1$ and $+\infty \ge \alpha_0 > 1$. Expand α_0 as $\alpha_k = a_k + (\alpha_{k+1})^{-1}$ with $a_k \in N$ and $+\infty \ge \alpha_{k+1} > 1$, beginning with k = 0. If $\alpha_{k+1} = +\infty$ for some k, we stop the expansion at this k. Define integers A_k, B_k and $C_j^{(k+1)}$ as follows: $A_{-1} = 1, A_0 = a_0$ and $A_k = a_k A_{k-1} + A_{k-2}$ for $k \ge 1$; $B_{-1} = 0, B_0 = 1$ and $B_k = a_k B_{k-1} + B_{k-2}$ for $k \ge 1$; $C_{k+1}^{(k+1)} = 1$, $C_k^{(k+1)} = a_k$ and $C_j^{(k+1)} = a_j C_{j+1}^{(k+1)} + C_{j+2}^{(k+1)}$ for $k - 1 \ge j \ge 0$. Define a matrix ζ_k to be

$$egin{pmatrix} A_k & -B_k \ (-1)^k A_{k-1} & (-1)^{k+1} B_{k-1} \end{pmatrix}.$$

This belongs to $SL(2, \mathbb{Z})$, as can be seen from (2) of Lemma 7. Define \mathbb{Z}_k and H_k as follows: $\mathbb{Z}_k = 0$ or 1 with $\mathbb{Z}_k \equiv A_k B_k \mod 2$ for $k \ge -1$ and $H_k = (-1)^k \mathbb{Z}_{k-1}$ for $k \ge 0$. We have the following lemmas.

LEMMA 7. (1) A_k and B_k increase monotonically as k increases.

- (2) $A_k B_{k-1} A_{k-1} B_k = (-1)^{k+1}$ and $(A_k, B_k) = 1$ for $k \ge 0$.
- (3) $C_1^{(k+1)} = B_k$ and $C_0^{(k+1)} = A_k$ for $k \ge -1$.
- (4) $A_k + \alpha_{k+1}^{-1} A_{k-1} = \alpha_k \cdots \alpha_0,$ $B_k + \alpha_{k+1}^{-1} B_{k-1} = \alpha_k \cdots \alpha_1, \text{ for } k \ge 0, \text{ and}$ $B_k - \alpha_0^{-1} A_k = (-1)^k (\alpha_{k+1} \cdots \alpha_0)^{-1}, \text{ for } k \ge -1.$ (5)
- (5) $\alpha_k \cdot \alpha_{k+1} > 2 \text{ for } k \geq 0.$
- (6) $\alpha_{k+1} \cdots \alpha_0 \overset{\cup}{\cap} A_{k+1}$ for $k \geq -1$.

LEMMA 8 (best approximation). Let α_0 be > 1, and make A_k and B_k from α_0 as above. Let also a rational number $B^{-1}A$ be given, where B and A are its irreducible denominator and numerator respectively, so that, for any rationals $B'^{-1}A'$ with $0 < B' \leq B$ and $B'^{-1}A' \neq B^{-1}A$, we

YOSHINOBU NAKAI

have $|B\alpha_0 - A| \leq |B'\alpha_0 - A'|$. Then the pair (A, B) is equal to (A_k, B_k) for some k.

Proof. All statements of Lemmas 7 and 8 are well-known or can be easily shown. See, for instance, [6]. Lemma 8 is included here to suggest the nature of A_k and B_k .

LEMMA 9. We have

$$\sum_{\substack{h:k \ge h \ge j-1}} (\alpha_{k+1} \cdots \alpha_{h+2})^{-1} \{(-\alpha_h) \cdots (-\alpha_j)\} = (-1)^{k+1-j} C_j^{(k+1)}$$

for $0 \le j \le k+1$, where $\alpha_{k+1} \cdots \alpha_{h+2} = 1$ for h = k and $(-\alpha_h) \cdots (-\alpha_j) = 1$ for h = j-1.

Proof. If we put $\delta_{j}^{(k+1)} = \sum_{k;k \ge h \ge j-1} (\alpha_{k+1} \cdots \alpha_{h+2})^{-1} \{(-\alpha_h) \cdots (-\alpha_j)\}$, we have $\delta_j^{(k+1)} = -\alpha_j \delta_{j+1}^{(k+1)} + \delta_{j+2}^{(k+1)}$ for $k-2 \ge j \ge 0$. Also $\delta_{k+1}^{(k+1)} = 1$ and $\delta_k^{(k+1)} = -\alpha_k$. Thus $(-1)^{k+1-j} \delta_j^{(k+1)}$ has the same properties as $C_j^{(k+1)}$. Hence they are identical.

Let a real γ be given. Using α_k, α_k etc., we define γ_k as follows: γ_0 is any real number satisfying

$$(2lpha_0)^{-1}(1-2\gamma_0)\equiv (2lpha)^{-1}(1-2\gamma) ext{ mod. } 1$$
 ,

and

$$\gamma_{k+1} = (-1)^{k+1} \alpha_{k+1} (B_k \gamma_0 - \frac{1}{2} \overline{Z}_k) + (-1)^{k+1} B_{k-1} \gamma_0 + \frac{1}{2} H_k$$

for $k \ge 0$. Given a real X, we define X_k inductively by $X_0 = X$ and $X_{k+1} = \alpha_k^{-1}(X_k + \gamma_k)$ for $k \ge 0$.

LEMMA 10. We have the following equalities:

(1)
$$\alpha_{k+1}^{-1}\gamma_{k+1} = -\gamma_k + \frac{1}{2}a_k + (-1)^k D_k$$

for $k \geq 0$, where D_k is an integer defined by

$$D_k = \frac{1}{2} (\Xi_k - a_k \Xi_{k-1} + (-1)^k H_{k-1} + (-1)^{k+1} a_k) .$$

(2)
$$X_{k+2} = (\alpha_0 \cdots \alpha_{k+1})^{-1} X_0 + (-1)^k \alpha_0^{-1} \gamma_0 A_k + (-1)^{k+1} \frac{1}{2} (A_k + B_k) + (-)^k E_k$$

for $k \geq 0$, where E_k is an integer defined by

$$E_k = \sum_{j=1}^{k+1} C_j^{(k+1)} D_{j-1}$$
.

https://doi.org/10.1017/S0027763000015956 Published online by Cambridge University Press

θ -weyl sum

Proof. The fact that $Z_k - a_k Z_{k-1} + (-1)^k H_{k-1} + (-1)^{k-1} a_k$ is an even integer follows from the definitions and (2) of Lemma 7. Therefore D_k and E_k are integers. The number $\alpha_{k+1}^{-1} \gamma_{k+1}$ is equal to

$$\begin{split} (-1)^{k+1} &(B_k \gamma_0 - \frac{1}{2} \Xi_k) + \alpha_{k+1}^{-1} ((-1)^{k+1} B_{k-1} \gamma_0 + \frac{1}{2} H_k) \\ &= (-1)^{k+1} (B_k \gamma_0 - \frac{1}{2} \Xi_k) + (\alpha_k - \alpha_k) ((-1)^{k+1} B_{k-1} \gamma_0 + \frac{1}{2} H_k) \\ &= (-1)^{k+1} \alpha_k (B_{k-1} \gamma_0 + \frac{1}{2} (-1)^{k+1} H_k) + (-1)^{k+1} B_{k-2} \gamma_0 \\ &- \frac{1}{2} (-1)^{k+1} \Xi_k - \frac{1}{2} \alpha_k H_k \;. \end{split}$$

The last sum is equal to $-\gamma_k + \frac{1}{2}H_{k-1} - \frac{1}{2}(-1)^{k+1}\Xi_k - \frac{1}{2}a_kH_k$, by $H_k = (-1)^k\Xi_{k-1}$. Thus the right hand side of (1) is easily obtained. As for (2), we see, by direct calculations, that X_{k+2} is equal to $(\alpha_0 \cdots \alpha_{k+2})^{-1}X_0 + \beta_{k+2}$, where β_{k+2} is $\alpha_{k+1}^{-1}\gamma_{k+1} + (\alpha_{k+1}\alpha_k)^{-1}\gamma_k + \cdots + (\alpha_{k+1}\cdots \alpha_0)^{-1}\gamma_0$. Then β_{k+2} is equal to

$$\sum_{\substack{h;k \ge h \ge 0}} (\alpha_{k+1} \cdots \alpha_{h+2})^{-1} \{(-\alpha_h) \cdots (-\alpha_1)\} (-\gamma_0 + \frac{1}{2}\alpha_0 - \frac{1}{2}) \\ + (\alpha_{k+1} \cdots \alpha_0)^{-1} (\gamma_0 - \frac{1}{2}\alpha_0) \\ + \begin{pmatrix} (-1)^k D_k + \cdots + (-1)^{j-1} D_{j-1} \sum_{\substack{h;k \ge h \ge j-1}} (\alpha_{k+1} \cdots \alpha_{h+2})^{-1} \\ \times \{(-\alpha_h) \cdots (-\alpha_j)\} + \cdots + D_0 \sum_{\substack{h;k \ge h \ge 0}} (\alpha_{k+1} \cdots \alpha_{h+2})^{-1} \end{pmatrix} . \\ \times \{(-\alpha_h) \cdots (-\alpha_1)\}$$

By Lemma 9, this sum is equal to

$$\begin{aligned} &(-1)^k B_k (-\gamma_0 + \frac{1}{2}\alpha_0 - \frac{1}{2}) + (\alpha_{k+1} \cdots \alpha_0)^{-1} (\gamma_0 - \frac{1}{2}\alpha_0) \\ &+ [(-1)^k D_k + \cdots + (-1)^{j-1} D_{j-1} (-1)^{k+1-j} C_j^{(k+1)} + \cdots \\ &+ D_0 (-1)^{(k+1)-1} C_1^{(k+1)}] \end{aligned}$$

for $k \ge 0$. Substituting the third formula of (4) of Lemma 7 with $(\alpha_{k+1} \cdots \alpha_0)^{-1}$ in the second term of the above sum, we have the result (2).

The formula (2) of Lemma 7 and the fact that E_k is an integer are fundamental.

3°. Let τ be a complex variable whose imaginary part is positive. Let x and y be any complex numbers, and $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be any matrix in $SL(2, \mathbb{Z})$. Define $\sigma \langle \tau \rangle$ to be $(a\tau + b)(c\tau + d)^{-1}$. Then we see that

$$\theta(\tau ; x, y) \underset{ ext{def.}}{=} \sum_{m \in \mathbf{Z}} e^{\pi i \tau (m-y)^2 + 2\pi i m x - \pi i x y}$$

is equal to

$$\chi(\sigma) \cdot e^{(\pi i/2) \{ \eta(ax+by) - \xi(cx+dy) \}} \cdot (c\tau + d)^{-1/2} \theta(\sigma \langle \tau \rangle; ax + by - \frac{1}{2}\xi, cx + dy - \frac{1}{2}\eta)$$

where $\xi \equiv ab \mod 2$ and $\eta \equiv cd \mod 2$. Also $\chi(\sigma)$ is a certain eighth root of the unity which does not depend on x, y and τ . This formula is well-known. See, for instance, [3], pp. 47-66.

We restrict ξ , η and the branch of $(c\tau + d)^{1/2}$ as follows: $\xi = 0$ or 1, $\eta = 0$ or ± 1 where the signature in ± 1 is given in advance for each σ , and, as for $(c\tau + d)^{1/2}$,

$$(c au+d)^{1/2} = 1$$
 if $c = 0$ and $d = 1$,
 $(c au+d)^{1/2} = e^{(1/2)\pi i}$ if $c = 0$ and $d = -1$,
 $0 < rg (c au+d)^{1/2} < \pi/2$ if $c > 0$,

and

168

$$0> rg \, (c au+d)^{1/2}> -\pi/2 \qquad {
m if} \ \ c<0 \ .$$

Then we can write $\chi(\sigma)$ explicitly in terms of a, b, c and d, if we use the Jacobi symbol. The reader will find some of them, that is, those for $\sigma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ mod. 2, in [8], for instance.

Rewriting the θ -formula, we have

$$\sum_{m\in\mathbb{Z}}e^{\pi i \varepsilon (m+\gamma)^2} = \chi(\sigma)(c\tau+d)^{-1/2} \cdot e^{\pi i(b\gamma+(1/2)\xi)\gamma\sigma}e^{(\pi i/2)(d\xi-b\gamma)\gamma}\sum_{m\in\mathbb{Z}}e^{\pi i\sigma\langle\tau\rangle(m+\gamma\sigma)^2},$$

where γ_{σ} is $(d\gamma + \frac{1}{2}\eta) - (\sigma \langle \tau \rangle)^{-1}(b\gamma + \frac{1}{2}\xi)$.

LEMMA 11. Let σ be ζ_k , that is, $\begin{pmatrix} A_k & -B_k \\ (-1)^k A_{k-1} & (-1)^{k+1} B_{k-1} \end{pmatrix}$. Choose α, γ, ξ and η to be $\alpha_0^{-1} + i \cdot 0 +, \gamma_0$, Ξ_k and H_k respectively, with the notations defined in 2° . Then we have

$$\sigma \langle lpha_0^{-1} + i \cdot 0 +
angle = (-1)^{k+1} lpha_{k+1}^{-1} + i \cdot 0 +$$

and

$$\gamma_{\sigma} = \gamma_{k+1} + i \cdot 0 \pm 1$$

Here 0+ or $0\pm$ stands for a sufficiently small positive or a real number respectively.

Proof. It is easy to check the assertion about $\sigma \langle \alpha_0^{-1} + i \cdot 0 + \rangle$ by the third formula of (4) of Lemma 7. Then the other part clearly holds.

4°. Now we proceed to the sum $\theta(\alpha^{-1}, \gamma; N, X)$. We suppose that

N is not smaller than 1. We use those notations in 2° relating to α, γ and X. Also we put $N_{k+1} = (\alpha_k \cdots \alpha_0)^{-1}N$ with $N_0 = N$. If $N_1 < \frac{1}{2}$, we define k_0 to be -1. But, if $N_1 \ge \frac{1}{2}$, there is, by (5) of Lemma 7, some k_0 with $0 \le k_0 \ll \log N$ so that $N_{k_0+1} \ge \frac{1}{2}$ but $0 \le N_{k_0+2} < \frac{1}{2}$. We divide the statements into two theorems. We suppose $\alpha > 0$ and that $\alpha_0 \neq +\infty$.

THEOREM 1. (Case 1) If $k_0 = -1$, we have

$$\theta(\alpha^{-1},\gamma;N,X) = e((2\alpha)^{-1}\gamma^2 - (2\alpha_0)^{-1}\tilde{\gamma}_0^2) \int_{X+\tilde{\tau}_0}^{X+\tilde{\tau}_0+N} e((2\alpha_0)^{-1}u^2) du + O(1) ,$$

where $\tilde{\gamma}_0$ is so chosen that $\tilde{\gamma}_0 \equiv \gamma_0 \mod \alpha_0$ and that the interval

$$[\alpha_0^{-1}(X + \tilde{\gamma}_0), \alpha_0^{-1}(X + \tilde{\gamma}_0 + N)]$$

is contained in the interval $\left[-\frac{3}{4},\frac{3}{4}\right]$.

(Case 2) If
$$k_0 \ge -1$$
 and if $N_{k_0+1} \ll 1$ or $N_{k_0+2} \gg 1$, then we have

$$heta(lpha^{-1},\gamma\,;N,X)=O(N^{1/2})$$
 .

Proof. If $k_0 = -1$ the result is obtained from Lemma 5 and Lemma 1. If $k_0 \ge 0$ but if $N_{k_0+1} \ll 1$, we can apply Lemma 3 repeatedly $(k_0 + 1)$ times, as is ensured by (1) of Lemma 10, and can use the fact that

$$heta((-1)^{k_0+1}lpha_{k_0+1}^{-1},\gamma_{k_0+1};N_{k_0+1},X_{k_0+1})=O(1)$$
 .

We have an estimate $O(1 + \sum_{h=0}^{k_0} (\alpha_0 \cdots \alpha_h)^{1/2})$, which is $O(1 + (\alpha_0 \cdots \alpha_{k_0})^{1/2})$ by (5) of Lemma 7. But $\alpha_0 \cdots \alpha_{k_0} \cap N$, so we have done in this case. If $k_0 \geq 0$ and if $N_{k_0+2} \gg 1$, we again apply Lemma 3 repeatedly $(k_0 + 1)$ times and Lemma 6 after that. We have $O(1 + (\alpha_0 \cdots \alpha_{k_0+1})^{1/2})$ as an estimate in this case, which is $O(N^{1/2})$ again.

THEOREM 2. (Case 3) If $k_0 \ge 0$, $N_{k_0+1} > 2$ and $0 < N_{k_0+2} < \frac{1}{4}$, we have

$$\begin{aligned} \theta(\alpha^{-1},\gamma;N,X) &= \chi(\zeta_{k_0}) \cdot e^{\pi i d_{k_0}} \cdot e((2\alpha)^{-1}\gamma^2 - (2\alpha_0)^{-1}\gamma_0^2) \\ &\times (\alpha_0 \cdots \alpha_{k_0})^{1/2} \int_{X_{k_0+1}+\tilde{\tau}_{k_0+1}}^{X_{k_0+1}+\tilde{\eta}_{k_0+1}} e((-1)^{k_0+1}(2\alpha_{k_0+1})^{-1}u^2) \cdot du \\ &+ O(1 + A_{k_0}^{1/2}) ,\end{aligned}$$

where \varDelta_{k_0} is

$$\gamma_{k_0+1}(-B_{k_0}\gamma_0 + \frac{1}{2}\overline{Z}_{k_0}) + (-1)^{k_0+1}\frac{1}{2} \cdot (B_{k_0-1}\overline{Z}_{k_0} + A_{k_0-1}H_{k_0})\gamma_0$$

 $+ (-1)^{k_0+1}(2lpha_{k_0+1})^{-1}(\gamma_{k_0+1}^2 - \tilde{\gamma}_{k_0+1}^2) .$

Also ζ_{k_0} is $\begin{pmatrix} A_{k_0} & -B_{k_0} \\ (-1)^{k_0}A_{k_{0}-1} & (-1)^{k_0+1}B_{k_0-1} \end{pmatrix}$, and the value of $\chi(\zeta_{k_0})$ is that in 3° corresponding to $\xi = \Xi_{k_0}$, $\eta = H_{k_0}$ and the branch of $(c\tau + d)^{1/2}$ is restricted as is stated there. The value $\tilde{\gamma}_{k_0+1}$ is so chosen that $\tilde{\gamma}_{k_0+1} \equiv \gamma_{k_0+1} \mod that$ the interval $[\alpha_{k_0+1}^{-1}(X_{k_0+1} + \tilde{\gamma}_{k_0+1}), \alpha_{k_0+1}^{-1}(X_{k_0+1} + \tilde{\gamma}_{k_0+1})]$ is contained in the interval $[-\frac{3}{4}, \frac{3}{4}]$.

(Case 4) If $k_0 \ge 0$ but $N_{k_0+2} = 0$, then, with the same $\chi(\zeta_{k_0})$ as above, we have

$$\begin{split} \theta(\alpha^{-1},\gamma\,;\,N,X) &= \chi(\zeta_{k_0})e^{\pi i d'_{k_0}} \cdot e((2\alpha)^{-1}\gamma^2 - (2\alpha_0)^{-1}\gamma_0^2) \cdot A_{k_0}^{1/2} \\ &\times \sum_{X_{k_0+1} \leq n \leq X_{k_0+1}+N_{k_0+1}} e((B_{k_0}\gamma_0 - \frac{1}{2}\Xi_{k_0})n) + O(1 + A_{k_0}^{1/2}) \ , \end{split}$$

where \varDelta'_{k_0} is

$$\begin{aligned} (B_{k_0}\gamma_0 - \frac{1}{2}\boldsymbol{\mathcal{Z}}_{k_0})((-1)^{k_0+1}\boldsymbol{B}_{k_0-1}\gamma_0 + \frac{1}{2}\boldsymbol{H}_{k_0}) \\ &+ (-1)^{k_0+1}\frac{1}{2} \cdot (B_{k_0-1}\boldsymbol{\mathcal{Z}}_{k_0} + \boldsymbol{A}_{k_0-1}\boldsymbol{H}_{k_0})\gamma_0 \end{aligned}$$

In this case α_0 is $B_{k_0}^{-1}A_{k_0}$ with $A_{k_0} \leq 2N$.

Proof. (Case 3) Suppose $N_{k_0+2} \neq 0$. We use Lemma 3 repeatedly $(k_0 + 1)$ times and Lemma 5 after that. As $\gamma_{\sigma}, \sigma \langle \tau \rangle$ and $(c\tau + d)^{1/2}$ for $\sigma = \zeta_{k_0}$ and $\tau = \alpha_0^{-1} + i \cdot 0 +$ are equal to $\gamma_{k_0+1} + i \cdot 0 \pm$, $(-1)^{k_0+1}\alpha_{k_0+1}^{-1} + i \cdot 0 +$ and $(\alpha_0 \cdots \alpha_{k_0} + i \cdot 0 \pm)^{1/2}$ respectively, we have, from θ -formula in 3°, the main term in the result. We have $O(1 + (\alpha_0 \cdots \alpha_{k_0})^{1/2})$ as its errors, which is $O(1 + A_{k_0}^{1/2})$ by (6) of Lemma 7. (Case 4) Now we suppose $N_{k_0+2} = 0$, i.e., $\alpha_{k_0+1} = +\infty$. We have $\zeta_{k_0} \langle \alpha_0^{-1} + i \cdot 0 + \rangle = i \cdot 0 +$. We rewrite the θ -formula in 3° as follows:

$$\sum_{m \in \mathbb{Z}} e^{\pi i \tau (m+\gamma)^2} = \chi(\sigma) (c\tau + d)^{-1/2} e^{(\pi i/2)(d\xi - b\gamma)\gamma - \pi i(b\gamma + (1/2)\xi)(d\gamma + (1/2)\gamma)} \\ \times \sum_{m \in \mathbb{Z}} e^{\pi i \sigma \langle \tau \rangle (m + d\gamma + (1/2)\gamma)^2 - 2\pi i(b\gamma + (1/2)\xi)m}$$

Then we obtain the result in this case also by the similar considerations.

In the integrals in Cases 1 and 3, $\alpha_{k_0+1}^{-1}(X_{k_0+1} + \tilde{\gamma}_{k_0+1})$ is to be determined mod. 1. But it is equal to $X_{k_0+2} + \alpha_{k_0+1}^{-1}(\tilde{\gamma}_{k_0+1} - \gamma_{k_0+1})$; then X_{k_0+2} and the integer $\alpha_{k_0+1}^{-1}(\tilde{\gamma}_{k_0+1} - \gamma_{k_0+1})$ can be determined by (2) of Lemma 10.

5°. We fix an irrational number α_0 arbitrarily which is larger than 1. Make those numbers defined in 2° from $\alpha = \alpha_0$. Let $\psi(k)$ be a real valued function on $k = -1, 0, 1, 2, \cdots$, whose value is larger than 2. If we suppose that N_{k_0+2} is larger than or equal to $(2\psi(k_0))^{-1}$, then we have $A_{k_0+1} \ll N\psi(k_0)$, as $N_{k_0+2} \stackrel{\cup}{\cap} NA_{k_0+1}^{-1}$. Thus, by the convergence of $\int_{-\infty}^{\infty} e(u^2) \cdot du$, we have

 θ -weyl sum

(1)
$$(\alpha_0 \cdots \alpha_{k_0})^{1/2} \int e((2\alpha_{k_0+1})^{-1}u^2) du \\ \ll (\alpha_0 \cdots \alpha_{k_0})^{1/2} (\alpha_{k_0+1})^{1/2} \ll A_{k_0+1}^{1/2} \ll (N\psi(k_0))^{1/2}$$

Let us, on the contrary, suppose that N_{k_0+2} is smaller than $(2\psi(k_0))^{-1}$. Suppose also that we have a real β_0 which satisfies the following conditions, where $\{x\}$ denotes the fractional part of x:

$$\begin{aligned} |\{\beta_0 A_k\} - \frac{1}{2}| &\ge \psi(k)^{-1} & \text{if } A_k + B_k \text{ is odd with } k \ge 0, \\ (2) & \min(\{\beta_0 A_k\}, 1 - \{\beta_0 A_k\}) \ge \psi(k)^{-1} & \text{if } k = -1 \text{ or if } A_k + B_k \text{ is even} \\ & \text{with } k \ge 0. \end{aligned}$$

Then, if we substitute $X_0 = 0$ and $\gamma_0 = \alpha_0\beta_0$ in (2) of Lemma 10, the interval $[\{X_{k_0+2}\}, \{X_{k_0+2}\} + N_{k_0+2}]$ is contained in the interval $[(2\psi(k_0))^{-1}, 1 - (2\psi(k_0))^{-1}]$ for $k_0 \ge -1$. By the mean-value theorem on integrals, we have

$$(3) \qquad (\alpha_0 \cdots \alpha_{k_0})^{1/2} \int_{x_{k_0+1}+\tilde{\tau}_{k_0+1}}^{x_{k_0+1}+\tilde{\tau}_{k_0+1}} e((2\alpha_{k_0+1})^{-1}u^2) \cdot du \ll (\alpha_0 \cdots \alpha_{k_0})^{1/2} \\ \times (\alpha_{k_0+1})^{1/2} (\alpha_{k_0+1}\psi(k_0)^{-2})^{-1/2} \ll (\alpha_0 \cdots \alpha_{k_0})^{1/2} \psi(k_0) \ll N^{1/2} \psi(k_0) \ .$$

Therefore, if we suppose the existence of a β_0 satisfying the condition (2), it follows, from (1) and (3) applied to Cases 1 or 3 and also from Case 2 of Theorems 1 and 2, that

(4)
$$\theta(\alpha_0^{-1}, \alpha_0\beta_0; 0, N) \ll N^{1/2}\psi(k_0)$$

for any $N \geq 1$.

The measure of the set of β_0 in the interval [0, 1) which do not satisfy (2) for some $k \ge -1$ is obviously not larger than $\sum_{k=-1}^{\infty} 2\psi(k)^{-1}$. Therefore, if we suppose that

$$(5)$$
 $\sum_{k=-1}^{\infty} 2\psi(k)^{-1} < 1$,

the measure of the set of β_0 in [0,1) which satisfy the condition (2) for every $k \ge -1$ is not smaller than $1 - \sum_{k=-1}^{\infty} 2\psi(k)^{-1} > 0$. If we give $\psi(k)$ the values ck $(\log k)^2$ for $k \ge 3$ with a large positive constant c, and some appropriate values for $2 \ge k \ge -1$, then the inequality (5) is satisfied. But $k_0 = O(\log N)$. Therefore we have the following

THEOREM 3. If we are given any real irrational α_0 which is larger than 1, then there exists a set I_{α_0} of reals in the interval [0, 1) whose

measure is larger than $\frac{1}{2}$, so that we have

 $heta(lpha_0^{-1}, lpha_0eta_0; 0, N) \ll N^{1/2} \, (\log 10N) \, (\log \log 10N)^2$,

for all β_0 in I_{α_0} , where the implied constant is absolute.

This result is an improvement on the existence of an irrational $\alpha_0^{-1}\gamma_0$ such that we have $\theta(\alpha_0^{-1}, \gamma_0; 0, N) \ll N^{3/4}$, shown in [1], p. 294, Satz XV.

REFERENCES

- [1] H. Behnke, Zur Theorie der diophantischen Approximationen, Part I, Abh. Math. Sem. Univ. Hamburg, 3 (1924), 261-318, with Corrigendum.
- [2] —, Part II, the same Abh., 4 (1926), 33-46.
- [3] M. Eichler, Einführung in die Theorie der algebraischen Zahlen und Funktionen, Birkhäuser Verlag, 1963.
- [4] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation II: The trigonometrical series associated with the elliptic θ-functions, Acta Math., 37=Collected Papers of G. H. Hardy, Vol. 1, 67-114.
- [5] V. Jarnik and E. Landau, Untersuchungen über einen van der Corputschen Satz, Math. Z., 39 (1935), 745-767.
- [6] A. Ya. Khinchin, Continued fractions, The University of Chicago Press, 1964.
- [7] J. F. Koksma, Diophantische Approximationen, Springer Verlag, 1936.
- [8] T. Kubota, On a classical theta-function, Nagoya Math. J., 37 (1970), 183-189.
- [9] L. J. Mordell, The approximate functional formula for the theta function, J. London Math. Soc., 1 (1926), 68-72.
- [10] E. C. Titchmarsh, The theory of the Riemann Zeta-function, Oxford, 1951.
- [11] J. R. Wilton, The approximate functional formula for the theta function, J. London Math. Soc., 2 (1927), 177-180.

Nagoya University