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Abstract

The calculation of multivariate normal probabilities is of great importance in many
statistical and economic applications. In this paper we propose a spherical Monte Carlo
method with both theoretical analysis and numerical simulation. We start by writing
the multivariate normal probability via an inner radial integral and an outer spherical
integral using the spherical transformation. For the outer spherical integral, we apply an
integration rule by randomly rotating a predetermined set of well-located points. To find
the desired set, we derive an upper bound for the variance of the Monte Carlo estimator
and propose a set which is related to the kissing number problem in sphere packings. For
the inner radial integral, we employ the idea of antithetic variates and identify certain
conditions so that variance reduction is guaranteed. Extensive Monte Carlo simulations
on some probabilities confirm these claims.
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lattice
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1. Introduction

Efficient and precise calculation for the multivariate normal probability is of critical impor-
tance in many disciplines. To name a few, the multinomial probit model used in econometrics
and biometrics has cell probabilities that are negative orthant probabilities. In the financial
industry implementation of the CreditMetricsTM model, the joint migration probabilities in
credit migration model are rectangle probabilities for bivariate normal distributions (cf. Gupton
et al. (1997)). The estimation of value at risk for risk management considered in Glasserman
et al. (2000) requires calculation of the multivariate probability of an ellipsoid. In multiple
comparisons, multivariate normal probabilities are also considered in Hsu (1996). For more
examples and applications; see Genz and Bretz (2009) for a recent summary of multivariate
normal distribution and multivariate t-distribution.

Motivated by these applications, we investigate efficient calculation for the multivariate
normal probability. That is, for an indicator function 1A(x) with a support set A in R

d ,
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we seek more efficient computation of the following probability:

p = P{X ∈ A} =
∫

Rd

1A(x)
1√

(2π)d det(�)
e−(1/2)(x−μ)��−1(x−μ) dx for A ⊂ R

d , (1)

where � denotes the transpose, X = (X1, . . . , Xd)� is ad-dimensional nonsingular multivariate
normal distribution with mean vector μ and covariance matrix �, denoted by X ∼ Nd(μ, �),
and det(·) denotes the determinant of a matrix.

Standard approaches of calculating (1) include classical analytic approximation, numerical
integration, and the Monte Carlo method. Instead of using analytic approximation and the
numerical method (cf. Miwa et al. (2003) and Craig (2008)), which are more suitable for low-
dimensional cases, in this paper, we study the Monte Carlo method. Although the Monte Carlo
method is easy to implement and can overcome the curse of dimensionality. Its convergence rate
is rather slow, proportional to 1/

√
M , where M is the Monte Carlo sample size (cf. Asmussen

and Glynn (2007, p. 69)). Therefore, additional variance reduction methods are required.
Typical methods for variance reduction include antithetic variates, Latin hypercube sampling,
and primitive Monte Carlo methods (see, for example, Genz (1992), (1993), Hajivassiliou
et al. (1996), Vijverberg (1997), and Genz and Bretz (2002)). A comparison study of alternative
sampling methods can be found in Sándor andAndrás (2004). For a survey on existing methods,
see Genz and Bretz (2009).

Monte Carlo methods using a spherical transformation have been studied in the literature.
For example, Deák (1980), (2000) used this transformation as the basis for calculating mul-
tivariate normal probabilities, and Fang and Wang (1994) proposed a transformation on the
unit hypercube to generate points uniformly distributed on the unit sphere. Monahan and
Genz (1997) proposed a Monte Carlo simulation method for Bayesian computation, to which
the authors used randomized extended simplex design for the spherical integral and Simpson
weights for the radial integral. The method proposed by Somerville (2001) can also be regarded
as a spherical Monte Carlo method, to which a quadrature rule is used for the radial integral.

In this paper we propose a spherical Monte Carlo method with both theoretical analysis
and numerical simulation. There are two aspects in this study. First, because the spherical
integral requires generating unit vectors uniformly on the unit sphere, one way to improve the
Monte Carlo efficiency is to use a randomly rotated predetermined set of unit vectors. For
this purpose, we provide a criterion to select such a set on the unit sphere, which involves the
minimal distance of any two points in the set and the cardinality of the set. Among all sets in
which the minimal distance of any two points is the same, the desired optimal set is the one
with maximal cardinality. Especially when the minimal distance equals 1, finding the desired
optimal set is linked to the kissing number problem in sphere packings.

Next, for the radial integral, we offer a variance reduction technique employing the idea of
antithetic variates. For this purpose, we categorize a set, which could be a set of basis points
on the unit sphere or an event of simulation in R

d by using the idea of central symmetry and
central antisymmetry. To the best of our knowledge, this seems to be the first attempt to provide
sufficient conditions on antithetic variates for a spherical Monte Carlo method. To illustrate the
proposed method, simulation studies are given for orthant, rectangle, and ellipsoid probabilities
for multivariate normal distributions. The simulation results confirm these claims.

The rest of this paper is organized as follows. In Section 2 we propose the spherical Monte
Carlo method with antithetic variates. In Section 3 we link the proposed set of basis points
to a sphere packing problem and spherical t-designs, and discuss the practical implementation
in high-dimensional cases. Simulation results are given in Section 4, in which we compare

https://doi.org/10.1239/aap/1444308883 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308883


Spherical Monte Carlo simulations 819

the efficiency of various spherical Monte Carlo estimators, and demonstrate that neither of
the proposed spherical Monte Carlo estimator nor the Geweke–Hajivassiliou–Keane (GHK)
simulator dominates. Hence, the proposed method is more applicable because it is capable of
calculating multivariate normal probabilities of any type of region. We conclude with Section 5.
All proofs are deferred to Appendices A and B.

2. The proposed spherical Monte Carlo method

In Section 2.1 we formulate the problem, in Section 2.2 we present the spherical integral,
and in Section 2.3 we study the radial integral.

2.1. Problem formulation

Let 1A : R
d → R be an indicator function with a support set A. Denote the probability

density function (PDF) of a d-variate normal random variable Nd(μ, �) by

φ(x; μ, �) = 1√
(2π)d det(�)

e−(1/2)(x−μ)��−1(x−μ),

where μ is the mean vector and � is the variance-covariance matrix. The desired multivariate
normal probability of the region A is an integral of the form in (1).

Let ‘∼’ denote distributed as. Note that a d-variate normal random variable X ∼ Nd(μ, �)

can be expressed by X = μ + �Z, where Z is a d-variate standard normal random variable,
and � is the lower triangle matrix such that � = ���, the so-called Cholesky decomposition
of �. By change of variables, x = μ + �z, we write (1) as

p =
∫

Rd

1Ã(z)φ(z) dz, (2)

where φ(·) is the standard normal density and Ã = �−1(A − μ). With abuse of notation, we
denote Ã by A throughout the rest of the paper. It is straightforward to see that the crude Monte
Carlo estimator is

p̂ = 1A(Z),

and the crude Monte Carlo estimator with antithetic variates is

p̂AT = 1A(Z) + 1A(−Z)

2
.

By using the spherical transformation, a point z ∈ R
d can be written as (r, u), where r is

the radius and u is the unit vector of z. Then, 1A(z) = 1A(r, u) and (2) can be expressed as

p =
∫

Sd−1

∫ ∞

0
1A(r, u)

(
1√

(2π)d
e−r2/2rd−1

)
dr dA = 1

area(Sd−1)

∫
Sd−1

f (u) du,

where dA denotes the differential area on the unit sphere Sd−1. Denote the χ -distribution with
degrees of freedom d by χ(d). Then the inner radial integral is

f (u) = area(Sd−1)

∫ ∞

0
1A(r, u)

(
1√

(2π)d
e−r2/2rd−1

)
dr =

∫ ∞

0
1A(r, u)kd(r) dr.

Here, area(Sd−1) = 2
√

πd/�(d/2) is the surface area of Sd−1, and kd(·) is the PDF of χ(d).
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A random unit vector u in R
d is a vector uniformly distributed on Sd−1, written as u ∼

U(Sd−1). Therefore, generating a sample from a standard normal distribution z is equivalent
to independently generating a radius r ∼ χ(d) and a unit vector u ∼ U(Sd−1), and setting
z = ru.

To write (2) using the spherical transformation, an alternative approach is to consider the
spherical integral as the innermost integral as in Monahan and Genz (1997). Here we take
the radial integral as the innermost integral because the radial integral is of one dimension and
its calculation is simple. In the case of a simple region A, such as rectangles, orthants, and
ellipsoids, when the unit vector u is fixed, the inner radial integral has a closed-form formula
in terms of the cumulative distribution function (CDF) of a χ -distribution; see Deák (2000).
For a general region, the inner radial integral can be calculated via Monte Carlo methods or
numerical methods; see Davis and Rabinowitz (1984). Numerical quadrature methods produce
biased estimators in general and are beyond the scope of this paper. Here we focus only on
Monte Carlo methods.

The outer spherical integral using Monte Carlo methods requires generating a random unit
vector u. A straightforward method to sample u is to generate d-independent standard normal
random variables to have a vector in R

d and then normalize the vector by its length. A more
efficient algorithm to sample u can be found in Fang and Wang (1994) by generating just (d−1)

random numbers.

2.2. Variance reduction on the spherical integral

One way to obtain an efficient spherical Monte Carlo estimator for the spherical integral is
taking the average value of a randomly rotated predetermined finite set of unit vectors, denoted
by V . More precisely, let O(d) be the orthogonal group of R

d consisting of all d×d matrices D

satisfying that DD� equals the identity matrix. There is a unique probability measure on O(d),
which is invariant under left multiplication by all elements of O(d) and a random orthogonal
matrix T , which is uniformly distributed on O(d) with respect to this probability measure,
denoted by T ∼ U(O(d)). Then randomly rotating a set V simply means to apply a random
orthogonal matrix T to every element of V .

The standard algorithm to generate a random orthogonal matrix is described as follows;
see Heiberger (1978). First, generate a random d × d matrix whose entries are independently
standard normal random variables. Then, apply the Gram–Schmidt method to the column
vectors to obtain the desired random orthogonal matrix. More efficient algorithms to generate
a random orthogonal matrix using only (d − 1)(d + 2)/2 standard normal random variables
can be found in Stewart (1980), Diaconis and Shahshahani (1987), and Anderson et al. (1987).

One important feature of the random orthogonal matrix is that if we fix a unit vector and
let a random orthogonal matrix act on it, then the resulting vector is uniformly distributed on
Sd−1. In other words, for a continuous function h(u) on Sd−1 and any unit vector v ∈ Sd−1,
we have

1

area(Sd−1)

∫
Sd−1

h(u) du =
∫

O(d)

h(T v) dT . (3)

Here, dT is the unique left-invariant probability measure on O(d) as mentioned above.
A spherical Monte Carlo estimator using V is

p̂V = 1

|V |
∑
v∈V

1A(rv, T v), (4)
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where the rvs are independent and identically distributed as χ(d) for v ∈ V , T ∼ U(O(d)),
and the rvs and T are independent.

When the innermost radial integral can be calculated explicitly, i.e. f (u) can be expressed
in terms of the CDF of χ(d), an estimator using V is

p̂V∗ = 1

|V |
∑
v∈V

f (T v),

where T ∼ U(O(d)). By using the fact of conditioning, indeed, f (T v) equals
E[1A(rv, T v) | T ], and, thus, enjoys smaller variance compared with p̂V .

To have an efficient simulation, the crucial step involves the selection of V to minimize the
variance of p̂V . For this purpose, we propose a criterion of determining the desired set V and
in Section 3 provide a feasible solution that relates to the maximal kissing number problem in
sphere packings.

To characterize the variance of the estimator for the spherical integral for a finite subset V

of the unit sphere Sd−1, we need to define some notation as follows. First, denote d(·, ·) as the
usual Euclidean distance function on R

d , and let

dmin(V ) = min{d(v, v�) | v, v� ∈ V, v 
= v�}
be the minimal distance of any two points in V . For a region A in Sd−1, define the diameter
of A as

diam(A) = sup{d(x, x�) | x, x� ∈ A}.
It is easy to see that when diam(A) < dmin(V ), the intersection of V and A is either the empty
set or a single point.

Let π be the normalized measure on Sd−1 induced from the Lebesgue measure on R
d so

that π(Sd−1) = 1. Note that π is a probability measure and is invariant under the action of
O(d). For a region A in Sd−1, define an estimator on O(d) as

gV
A(T ) =

∑
v∈V

1

|V | 1A(T v), (5)

where T ∼ U(O(d)). Suppose that diam(A) < dmin(V ). Let T V denote the set consisting
of T v for all v ∈ V . Since orthogonal matrices preserve the Euclidean distance function, we
have dmin(T V ) = dmin(V ) and |A ∩ T V | = 1 or 0. On the other hand, the estimator gV

A(T )

is unbiased. Therefore, we have

gV
A(T ) =

⎧⎨
⎩

1

|V | with probability |V |π(A),

0 otherwise.

Note that diam(A) < dmin(V ) implies π(A) < 1/|V |. Moreover,

var(gV
A(T )) =

(
1

|V |
)2

|V |π(A) − π2(A) = π(A)

|V | − π2(A). (6)

If diam(A) ≥ dmin(V ), we can decompose A and obtain the following result.
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Theorem 1. Let A be a region of Sd−1, which can be written as disjoint union of the subregions
A1, . . . , AN so that diam(Ai ) < dmin(V ) for all i = 1, . . . , N . Then the variance of gV

A(T )

satisfies the following inequality:

var(gV
A(T )) ≤ π(A) − π2(A) +

(
N

|V | − 1

)
π(A).

The proof of Theorem 1 is given in Appendix A.
When N is the minimal number such that the decomposition condition in Theorem 1 holds,

we denote the upper bound in Theorem 1 by C(V, A) for short. Note that C(V, A) reduces to
(6), the exact variance, when N = 1 in Theorem 1. In the general case, if N < |V |, C(V, A)

is less than π(A) − π2(A), the variance of the crude Monte Carlo estimator p̂. Next by using
Theorem 1, we immediately have the following corollary.

Corollary 1. For a given two finite subsets V and V � of Sd−1. If one of the following two
conditions holds:

(i) |V | = |V �| and dmin(V ) > dmin(V
�);

(ii) dmin(V ) = dmin(V
�) and |V | > |V �|,

then C(V, A) ≤ C(V �, A) for any region A in Sd−1.

Fix a given region A, the upper bound C(V, A) depends only on the minimal distance
between any two points in V , and the cardinality of the set V . Corollary 1 suggests two
approaches to minimize the upper bound of the variance of the estimator p̂V defined in (4).

Case 1: Among all sets V with the same cardinality, the set with maximal dmin(V ) minimizes
C(V, A).

Case 2: Among all sets V with the same dmin(V ), the set with maximal cardinality minimizes
C(V, A).

Feasible approaches to construct such a set V in either case are available. Based on case 1,
for |V | ≤ 130 in three to five dimensions, sets, and known maximal dmin(V ) are reported in
Sloane. Other than the method based on case 1, here we provide a solution based on case 2.

Note that in the case of dmin(V ) = 2, V must have exactly two points, since the distance
between any two unit vectors is less than or equal to 2, and the equality holds only when they
form an antipodal pair. This shows that the method of antithetic variates is optimal under the
above criterion for dmin(V ) = 2. In the case of dmin(V ) = 1, constructing a set with maximal
cardinality is related to the kissing number problem in sphere packings. Details of this linkage
will be discussed in Section 3.1.

2.3. Variance reduction on the radial integral

The efficiency of simulators may be improved by using antithetic variates. A straightforward
application of antithetic variates on the unit sphere can be found in Deák (1980). Here we
provide an alternative approach by applying the idea of antithetic variates for a set of points
on the unit sphere. For this purpose, we first introduce the concepts of central symmetry and
central antisymmetry. A set V is called centrally symmetric if for all v in V , −v also lies in V .
In this case, we can decompose V as the disjoint union of V + and −V +. Here, V + consists of
all vectors in V whose first nonzero coordinates are positive. It is easy to see that the property of
centrally symmetric is preserved under the action of O(d). Motivated by the idea of antithetic

https://doi.org/10.1239/aap/1444308883 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308883


Spherical Monte Carlo simulations 823

variates, we propose a spherical Monte Carlo estimator using a centrally symmetric set V on
Sd−1 with antithetic variates:

p̂V
AT = 1

|V |
∑

v∈V +
1A(rv, T v) + 1A(rv, −T v), (7)

where the rvs are independent and identically distributed as χ(d) for v ∈ V , T ∼ U(O(d)),
and the rvs and T are independent. We remark that the proposed set V generated by the shortest
nonzero vectors of a lattice described in Section 3 is centrally symmetric, therefore p̂V

AT in (7)
is well defined.

It is known that certain conditions are required in Cartesian coordinates to ensure antithetic
variates enjoy lower variance; see Ross (2013). Likewise, an additional condition is needed in
the spherical case. A set A is called centrally antisymmetric if A and (−A) are disjoint. It
is easy to see that the property of centrally antisymmetric is also preserved under the action
of O(d). When a set is neither centrally symmetric nor centrally antisymmetric, it is called a
mixed set. As a result, we have the following theorem.

Theorem 2. If the set V on Sd−1 is centrally symmetric and the event A in R
d is centrally

antisymmetric, then var(p̂V
AT) ≤ var(p̂V ).

The proof of Theorem 2 is given in Appendix B.
In Theorem 2 we show that the variance of p̂V

AT can be reduced when V is centrally
symmetric and A is centrally antisymmetric. As will be shown in Section 4.5, for certain central
antisymmetric sets, although var(p̂V

AT) equals var(p̂V ) as a mathematical fact, p̂V
AT is preferred

because it requires fewer independently drawn radii and thus enjoys lower computational cost
compared with p̂V . For demonstration purposes, in Section 4.5 we provide an explicit central
antisymmetric set, for which p̂V

AT enjoys smaller variance than p̂V .

3. Practical implementation

In Section 3.1 we explore the link of an optimal V based on case 2 in Corollary 1 to the
kissing number problem in sphere packings, and then make a connection to spherical t-designs.
In Section 3.2 we discuss some possible approaches in high-dimensional cases.

3.1. The linkage to the kissing number problem in sphere packings

For a sphere packing, a kissing number is defined as the number of nonoverlapping spheres
that can be arranged such that they each touch another given sphere. Here, all spheres must
have the same radius. The kissing number problem seeks the maximal possible kissing number
in a sphere packing. In Figure 1 we illustrate two sphere arrangements in R

2 with a kissing
number of 4 and 6, respectively. Moreover, the latter has the maximal kissing number in two
dimensions.

Now for a finite subset V of Sd−1 with dmin(V ) = 1, we can construct an associated sphere
packing from V as follows. Consider all spheres centred at v ∈ V with radius 1

2 and one sphere
centred at the origin with radius 1

2 . It is easy to see that the number |V | equals the kissing
number of this sphere packing, and, as a result, to find a V with maximal |V | with dmin(V ) = 1
is exactly the same as finding a sphere packing producing the maximal kissing number.

The next question is how to obtain a sphere arrangement with maximal kissing number. This
is a difficult question in geometry with partial solutions, to which we can directly utilize existing
results. Note that most of the known maximal kissing numbers in sphere packings comes from
the study of lattices. Given a basis of R

d , a lattice L is defined as the set of all integral linear
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Figure 1: Lattice Z
2 and the corresponding sphere arrangement with a kissing number of 4 (left). Lattice

A2 and the corresponding sphere arrangement with a kissing number of 6 (right).

combinations of the basis. Let dmin be the shortest distance among all pairs of points in L. Then
we can obtain a sphere arrangement by setting spheres with radius 1

2dmin centred at all points
of L. In this case, every sphere kisses the same number of spheres. Especially for the sphere
centred at the origin, the number of spheres kissing it equals the number of shortest nonzero
vectors in L. In short, we simply call the shortest nonzero vectors by shortest vectors in the
rest of the paper. To obtain V from a lattice L, we simply collect all the shortest vectors and
normalize them to unit vectors, and denote it by VL.

For example, the integer lattice Z
d is generated by the standard basis {e1, . . . , ed} and consists

of all integer points. In this case, the kissing number of Z
d equals 2d, and the set of shortest

vectors is
VZd = {±e1, . . . , ±ed}.

Another example considers the lattice A2, which is generated by the basis v1 = (
√

3/2, 1
2 ) and

v2 = (0, 1). Moreover, we obtain

VA2 =
{(

±
√

3

2
, ±1

2

)
, (0, ±1)

}
.

Note that the kissing number of A2 is 6, which is indeed the maximal kissing number in two
dimensions. In Figure 1 we depict these two lattices and associated sphere arrangements in two
dimensions.

In general, it is difficult to prove if a kissing number is maximal in any arbitrary dimension;
see Conway and Sloane (1999). For d from 2 to 8, lattices that produce the known maximal
kissing number are the lattices A2, A3, D4, D5, E6, E7, and E8. These lattices are called root
lattices, which comes from semisimple Lie algebra and these symbols stand for the name of the
corresponding Lie algebra. Explicit construction of these lattices can be found in Conway and
Sloane (1999). We can thus form the desired V from these lattices by taking the normalized
shortest vectors in these lattices.

It is worth mentioning that the set VL above also forms a spherical t-design for some t > 0.
That is

1

area(Sd−1)

∫
Sd−1

g(u) du = 1

|VL|
∑
v∈VL

g(v)

https://doi.org/10.1239/aap/1444308883 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308883


Spherical Monte Carlo simulations 825

Table 1: The lattice Lmax
d , the cardinality of its normalized shortest vectors V , and the associated t of V

as a spherical t-design in d-dimensions.

d

2 3 4 5 6 7 8 16 24

Lmax
d A2 A3 D4 D5 E6 E7 E8 Barnes–Wall lattice Leech lattice

|V | 6 12 24 40 72 126 240 4320 196 560
t 5 3 5 3 5 5 7 7 11

for all real-valued continuous functions g(u) on the unit sphere, which are restrictions of
polynomial functions of degree less than or equal to t in R

d . This means if the function g(u) is
a polynomial function of degree less than or equal to t , its integral over the unit sphere Sd−1 is
simply an average of function values of these points. To some extent, elements in VL behave as
a quadrature point that allows the integral of polynomials equal to a finite sum of polynomial
values. On the other hand, if the function g(u) can be approximated by a polynomial well,
then its integral can be approximated as an average of these functional values. Therefore,
choosing VL as the sample set provides a good approximation of the desired integral. In other
words, under the multivariate normal probability density, the spherical Monte Carlo estimator
gVL(T ) := ∑

v∈VL
(1/|VL|)g(T v) produces 0 variance for estimating a polynomial function

of degree less than or equal to t in R
d , and, hence, enjoys a small variance if g(·) can be well

approximated by a polynomial of degree less than or equal to t in R
d . In Table 1 we list the

cardinality of each VL from the corresponding lattices in d-dimensions and the associated t for
the proposed VL as a spherical t-design.

3.2. High-dimensional cases

In principle, our proposed method is feasible in higher dimensions once a suitable V is
selected. Theorem 1 suggests the use of V with the maximal cardinality given dmin(V ) = 1.
The construction of such a V relates to the maximal kissing number problem in sphere packings,
and can be accomplished via a lattice in some cases. The lattice with the maximal presently
known kissing number, denoted by Lmax

d , in dimension up to 40 can be found in Nebe and
Sloane. For demonstration purposes, we report results in dimension from 2 to 8 in Section 4.4.

Nevertheless, some difficulties arise in constructing V from the lattice Lmax
d . Not all of the

optimal lattices are well-studied lattices so that their shortest vectors cannot be constructed
generically. Moreover, the size of V may be too large for practical implementation in high-
dimensional cases. For example, the maximal kissing number is 196 560 in 24 dimensions,
which seems to be formidable for practical implementation.

In high-dimensional cases, a simple (but not optimal based on our criterion in Theorem 1)
approach is to use a certain family of lattices. For example, we consider three lattices, including
Zd , Dd , and Ad in this paper, which are defined as follows. Firstly, Zd is generated by the
standard basis e1, . . . , ed of R

d and VZd
= {±e1, . . . , ±ed}. Secondly, Dd is generated by

(e1 −e2), (e2 −e3), . . . , (ed−1 −ed), and (ed−1 +ed). Thirdly, VDd
consists of all permutations

of (1/
√

2)(±1, ±1, 0, . . . , 0) and there are 2d(d − 1) such vectors. Finally, identify R̄
d as the

hyperplane x1+· · ·+xd+1 = 0 in R
d+1. Then Ad is generated by (e1−e2), (e2−e3), . . . , (ed −

ed+1), so that VAd
consists of all permutations of (1/

√
2)(1, −1, 0, . . . , 0) ∈ R̄

d+1 and there
are d(d +1) such vectors. Therefore, spherical packings generating by lattices Zd , Ad , and Dd

have kissing numbers of 2d , d(d + 1), and 2d(d − 1), respectively.
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Table 2: The cardinality of V arising from various lattices, variance ratio (VR), and penalized variance
ratio (PVR) by cardinality of p̂V∗ for calculating P{Z ∈ [−∞, 1]d } in d-dimensions. The Monte Carlo

sample size is 100.

Cardinality VR PVR-cardinality

d Zd Ad Dd Lmax
d Zd Ad Dd Lmax

d Zd Ad Dd Lmax
d

16 32 272 480 4320 116.3 840.9 1248.3 40 650.8 3.6 3.1 2.6 9.4
24 48 600 1104 1.9×105 146.9 1296.7 1972.0 1.5×106 3.1 2.2 1.8 7.8

An additional advantage of using these lattices is that the associated V of these three families
of lattices can be constructed generically, and this fact makes using a specific family of lattices

more desirable in practical implementation. As a remark, the spherical estimator p̂
VDd∗ in our

framework equals the orthonormalized-2 estimator in Deák (2000), albeit this connection was
not revealed in the original paper.

In the following demonstration, we focus just on the spherical estimator p̂V∗ with V arising
from a lattice, because p̂V∗ enjoys lower variances than p̂V and p̂V

AT when the inner radial
integral can be explicitly computed.

To compare the efficiency of p̂V∗ with V arising from various lattices, we report variance ratio
and penalized variance ratios. The variance ratio is defined as the variance of a crude Monte
Carlo estimator divided by the variance of an estimator of interest. Therefore, an estimator
with variance ratio greater than 1 is more efficient than the crude Monte Carlo estimator. To
account for a specific penalized factor, such as the cardinality of an associated V , the number
of independent random variables, or the computational time, we define the penalized variance
of an estimator as the product of its variance and a penalized factor of interest. Similarly, we
define the penalized variance ratio of an estimator as the penalized variance of the crude Monte
Carlo estimator divided by the penalized variance of an estimator of interest.

In Table 2 we list cardinalities of V arising from four lattices, including Zd , Ad , Dd , and
the proposed Lmax

d in 16 and 24 dimensions. We summarize variance ratios and penalized
variance ratios by cardinality to compromise the effect of cardinality. The quantity of interest is
p = P(Z ∈ [−∞, 1]d). The proposed lattices Lmax

d based on Theorem 1 are the Barnes–Wall
lattice in 16 dimensions and the Leech lattice in 24 dimensions, respectively. The explicit
construction of the shortest vectors of these lattices can be found in Conway and Sloane (1999).

It is clear that the cardinality of the proposed VLmax
d

is dramatically greater than the other
three counterparts. The variance reduction by using V max

Ld
is substantial. As for the penalized

variance ratio by cardinality, the spherical Monte Carlo estimator employing VLmax
d

remains the
most competitive one at a factor of about three to four.

4. Simulation studies

In Section 4.1 we describe the simulation settings we use for comparison and in Section 4.2
we discuss the computational cost of each estimator. In Section 4.3 we study the minimum
sample size required to achieve the desired precision level. In Section 4.4 we compare the
efficiency of the proposed estimators in terms of variance ratios and penalized variance ratios.
Moreover, in Section 4.5 we discuss the conditions required on the region A under which p̂V

AT
is more efficient than p̂V . Finally, in Section 4.6 we compare our estimators with the GHK
multivariate normal simulator.
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4.1. Simulation settings

Similar to the simulation settings used in Vijverberg (1997), we consider three types of
covariance model: the identity covariance matrix, the one-factor model, and the AR(1) model.
For the one-factor model with parameter ρ, the covariant matrix is set as � = (ρij ) with ρij = 1
if i = j and ρij = ρ if i 
= j . For the AR(1) model with parameter ρ, the covariant matrix
is set as � = (ρij ) with ρij = ρ|i−j | for all i and j . For the one-factor model and the AR(1)
model, four different values of ρ, −0.1, 0.1, 0.2, and 0.3 are used. All these values ρ produce
positive definite covariance matrices.

For the region A, we consider rectangles, orthants, and ellipsoids. For each region shape
we further propose sets having a feature other than central symmetry. Because orthants are
unlikely to be centrally symmetric, there are a total of eight types of region. Among each type,
three explicit sets are given in an order such that a set having the smallest area is listed first.

For rectangles, we include [−a, a]d for a = 0.5, 1, 2 as three centrally symmetric sets,
[0, a]d for a = 1, 2, 3 as three centrally antisymmetric sets, and [3, 1] × [−1, 1]d−1, [−1, 2]d
and [−1.5, 2.5]d as three mixed sets. For orthants, we include [−∞, a]d for a = −2, −1, 0 as
three centrally symmetric sets, and [−∞, 2] × [−∞, 0.5]d−1, [−∞, a]d for a = 1, 2 as three
mixed sets. For ellipsoids, we include {x ∈ R

d : x2
1 + · · · + x2

d ≤ a} for a = 1, 2, 3 as three
centrally symmetric sets, {x ∈ R

d : (x1 − 2)2 + x2
2 + · · · + x2

d ≤ a} for a = 1, 2, 3 as three
centrally antisymmetric sets, and {x ∈ R

d : (x1 −1)2 +x2
2 +· · ·+x2

d ≤ a} for a = 1.5, 2.5, 3.5
as three mixed sets.

Note that the property of centrally antisymmetric is preserved under changing coordinates via
a linear transformation. Therefore, when the region A is centrally antisymmetric, Ã = �−1(A)

remains centrally antisymmetric. Here we perform simulations in 2 to 8 dimensions.

4.2. Computational cost

Since the quantity of interest in this paper is the multivariate normal probability, and the
integrand consists of an indicator function, we restrict the computational cost to be the smallest
possible number of independent random numbers required to generate one realization for the
estimator. It is clear that the computational cost of p̂ and p̂AT are both equal to d.

Recall that in Section 2.2 the computational cost to generate a d × d orthogonal matrix is
(d + 2)(d − 1)/2. Because a realization of p̂V requires us to generate one random orthogonal
matrix and |V | independent radii, the computational cost of p̂V is (d + 2)(d − 1)/2 + |V |.
Note that the cardinality of the proposed V is even since it is centrally symmetric.

Let V + consist of all vectors in V whose first nonzero coordinate is positive, and V is
decomposed as the disjoint union of V + and −V +. Without loss of generality, we assume that
V + = {v1, . . . , v|V |/2}.

Because generating a realization of p̂V
AT requires a generation of one random orthogonal

matrix and |V |/2 radii, the computational cost of p̂V
AT is (d + 2)(d − 1)/2 + |V |/2. Finally,

because an explicit formula of the innermost radial integral exists and no radius is required, the
computational cost of p̂V∗ is simply (d + 2)(d − 1)/2.

4.3. Minimum sample size

We conduct an experiment in order to provide the minimum Monte Carlo sample size to
achieve a predetermined precision level. For this purpose, it is common to select a Monte Carlo
sample size M so that the length of the associated (1 − α)% confidence interval is less than a
predetermined level k. Then the smallest sample size M needs to satisfy 2zα/2

√
σ 2/M ≤ k,or,
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Table 3: Averaged minimum sample sizes for calculating rectangle and orthant probabilities in
d-dimensions such that the length of the associated 95% confidence interval is less than p/10.

d

2 3 4 5 6 7 8

p̂ 873 1 879 4 031 8 752 19 410 44 226 103 886

p̂V 1 820 1 913 2 128 2 775 3 505 4 734 6 013

p̂V
AT 1 905 2 063 2 354 3 225 4 116 5 413 6 867

p̂V∗ 127 254 380 658 861 1 157 1 319

equivalently, M ≥ 4z2
α/2σ

2/k2, where the quantile zα/2 satisfies P(Z ≤ zα/2) = α/2 with a
standard normal random variable Z, and σ 2 is the variance of the estimator.

Similar to Ross (2013), suppose that we are interested in calculating p and the length of the
95% confidence interval is required to be less than p/10. Furthermore, for ease of comparison,
we simply consider the identity covariance matrix and rectangle and orthant probabilities, so
that the true probability is theoretically known and the smallest sample size for the crude Monte
Carlo can be derived exactly. For spherical Monte Carlo estimators, we estimate the minimum
sample size iteratively with an initial sample size of 50; see Ross (2013).

In Table 3 we summarize the averaged minimum sample size required to achieve the desired
precession over all rectangle and orthant probabilities as described in Section 4.1 for the crude
Monte Carlo estimator and various spherical Monte Carlo estimators. Numerical results in
Table 3 show that the crude Monte Carlo estimator requires quite a large sample size when
the dimension grows. In contrast, three spherical Monte Carlo estimators require a drastically
smaller sample size. It is even more transparent in the case of p̂V∗ , to which the reduction of
the sample size using p̂V∗ is substantial compared with the crude Monte Carlo estimator.

4.4. Efficiency of various estimators

To compare the efficiency of the proposed estimators fairly, in addition to Section 4.3, in
Table 4 we summarize the averaged variance ratios and penalized variance ratios for various
estimators used in calculating multivariate normal probabilities over various regions and covari-
ance structures as outlined in Section 4.1. Overall, in terms of variance ratios, the efficiency of
p̂V∗ is the highest, followed by the other two spherical Monte Carlo estimators p̂V and p̂V

AT, and
finally by the crude Monte Carlo estimator with antithetic variates p̂AT. Spherical Monte Carlo
estimators p̂V , p̂V

AT, and p̂V∗ produce higher averaged variance ratios in higher dimensions,
whereas p̂AT produces variance ratios of about 2 in all dimensions. In addition, variance ratios
of p̂V∗ are dramatically larger in all cases. This numerical evidence suggests that p̂V∗ is preferred,
if the innermost radial integral f (u) can be calculated explicitly.

The estimator p̂V∗ remains and enjoys the highest penalized variance ratios by computational
cost. Penalized variance ratios by computational cost of p̂V

AT and p̂AT increase slightly in
higher dimensions. Penalized variance ratios by computational cost of p̂AT are about 2 in
all dimensions. Although variance ratios of p̂V

AT are slightly smaller than those of p̂V in
most cases, penalized variance ratios by computational cost of p̂V

AT are larger. These numerical
results suggest that p̂V

AT is preferred accounting for the expense of drawing independent random
variables.
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In terms of penalized variance ratios by computational time, in a similar fashion, p̂V∗
outperforms the other three estimators, followed by spherical Monte Carlo estimators p̂V and
p̂V

AT, and then by the crude Monte Carlo estimator with antithetic variates p̂V
AT.

Our simulation studies show that p̂V∗ works particularly well in calculating ellipsoid prob-
abilities. In fact, when the covariance matrix is the identity matrix and the ellipsoid is a circle
centred at the origin, f (u) is identical for all u, and, hence, p̂V∗ is a zero-variance estimator.
Because of this fact, we exclude the identity covariance matrix in averaging variance ratios
and penalized variance ratios for calculating ellipsoid probabilities. When A slightly deviates
from a circle centred at the origin and the covariance matrix is no longer the identity matrix,
f (u) produces quite close values at different u, and this exemplifies a feature that p̂V∗ is a
dramatically efficient estimator for calculating certain ellipsoid probabilities.

4.5. Antithetic variates

To investigate how the property of central antisymmetry affects the results, in Table 5
we summarize the averaged variance ratios and penalized variance ratios over all centrally
antisymmetric sets and covariance matrices as outlined in Section 4.1. In these cases, values
of variance ratios of p̂V

AT and p̂V are quite close. This provides numerical evidence that the
property of central antisymmetry does matter when incorporating the idea of antithetic variates.

Note that due to an interesting feature in these centrally antisymmetric sets, averaged variance
ratios and penalized variance ratios of p̂V and p̂V

AT in Table 5 are indeed the same. To explain
why, let A currently be one of these four sets. Given a v ∈ V , if rv belongs in A, −r�v does not
belong in A for all r�. As a result, a constituent of the spherical estimator p̂V

AT, 1A(rv, Tv) +
1A(rv, −T v) and a constituent of the spherical estimator p̂V , 1A(rv1, Tv) + 1A(rv2, −T v),
both become 0 or 1. This leads to the conclusion that both estimators have the same variance.
Therefore, the inequality in Theorem 2 is indeed an equality for these centrally antisymmetric
regions.

To provide a reasonable region showing that p̂V
AT enjoys a lower variance, consider a

region A = [−1, − 1
2 ] × [−2, 2]d−1 ⋃[0, 1

2 ] × [−2, 2]d−1. Clearly, this region is centrally
antisymmetric, and, in addition, when using the antithetic variate, a constituent of estimator p̂V

AT,
1A(rv, Tv) + 1A(rv, −T v), would take a value of 0 or 1. On the contrary, when no antithetic
variate is used, a constituent of the estimator p̂V , 1A(rv1, Tv) + 1A(rv2, −T v), would take a
value of 0, 1, or 2. Because these two estimators are unbiased, the latter would have a larger
variance. In Table 5 we demonstrate the desired results by showing that the averaged variance
ratios of p̂V

AT are larger than those of p̂V . Although the improvement is of a moderate scale,
accounting for the computational cost, p̂V

AT is preferred in terms of both penalized variance
ratios by computational cost and by computational time.

4.6. Comparison with the GHK simulator

To demonstrate the applicability of the proposed method, we compare our method with
the celebrated GHK method. The GHK simulator exploits the fact that a multivariate normal
distribution function can be expressed as the product of sequentially conditioned univariate
normal distribution functions, which can be easily and accurately evaluated. Moreover, based
on a comprehensive simulation study, Hajivassiliou et al. (1996) concluded that the GHK
simulator is the most reliable and accurate method to simulate multivariate normal orthant and
rectangle probabilities. Here we focus just on p̂V∗ because the inner radial integral can be
calculated explicitly in these cases. Furthermore, because the GHK simulator produces exact
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Table 5: Averaged variance ratios (VR) and penalized variance ratios (PVR) of p̂V and p̂V
AT for calculating

p = P{X ∈ A} in d-dimensions. The Monte Carlo sample size is 1 000.

VR PVR-cost PVR-time

d pV pV
AT pV pV

AT pV pV
AT

Centrally antisymmetric region

2 17.9 17.1 4.5 6.8 1.5 0.8
3 29.0 26.5 5.1 7.2 3.3 2.2
4 53.2 49.2 6.4 9.4 6.2 7.4
5 78.2 72.0 7.2 10.6 17.9 19.2
6 128.6 121.8 8.4 13.1 53.3 62.4
7 205.5 199.9 9.4 15.6 174.3 221.0
8 373.9 365.6 10.9 18.9 1025.8 1229.7

A = [−1, − 1
2 ] × [−2, 2]d−1 ⋃[0, 1

2 ] × [−2, 2]d−1

2 7.9 15.1 2.0 6.0 2.0 4.3
3 20.2 28.3 3.6 7.7 5.0 7.7
4 34.8 56.3 4.2 10.7 8.2 14.4
5 63.8 95.2 5.9 14.0 13.3 22.6
6 111.6 161.2 7.3 17.3 22.6 36.5
7 211.0 281.6 9.7 21.9 36.1 53.4
8 400.3 517.1 11.6 26.7 42.1 66.5

values in the case of independent multivariate normal distributions, we exclude the identity
matrix but perform simulations on the other eight covariance structures.

To easily compare the performance of our proposed method with the GHK simulator, we
report the relative efficiency, which is defined as the variance of the GHK simulator divided by
the variance of our estimator p̂V∗ . Similarly, we report the penalized relative efficiency corrected
by computational cost and computational time. We remark that the GHK simulator has a
computational cost of (d − 1) by its construction. In addition, we use the base 10 logarithmic
scale on the averaged variance ratios and penalized variance ratios to report moderate values of
measurements. In Figure 2 we depict the averaged relative efficiency and averaged penalized
relative efficiency for calculating probabilities of five groups of regions in d-dimensions.

When the relative efficiency or the penalized relative efficiency in base 10 logarithmic scale is
greater than 0, the proposed spherical Monte Carlo estimator is preferred because it produces an
estimator with small variance or penalized variance. Otherwise, the GHK simulator is preferred.
As mentioned in Section 4.1, we run simulations for five types of regions: (A) rectangle and
centrally symmetric, (B) rectangle and centrally antisymmetric, (C) rectangle and mixed, (D)
orthant and centrally antisymmetric, and (E) orthant and mixed. For each type of regions, we
further consider ‘three’ explicit sets, ordered by the their areas from the smallest to the largest.
For example, for the type of region (A), they are rectangle and centrally symmetric. And we
further consider ‘three’ explicit sets [−a, a]d for a = 1

2 , 1, 2, which are ordered by their areas
from the smallest to the largest in d-dimensions. In Figure 2, for each type of regions, numerical
results are averaged across three types of covariance structures (identity, one-factor, andAR(1)).
Numerical results for three sets within each type of regions are delineated in circles (set of the
smallest area), diamonds (set of the second smallest area), and squares (set of the largest area).

Note that the performance of these two estimators varies significantly with various parameter
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Figure 2: Averaged relative efficiency (RE) and penalized relative efficiency (PRE) of p̂V∗ over the
GHK simulator in base 10 logarithmic scale against d-dimensions in calculating multivariate normal
probabilities over various regions: (A) rectangle and centrally symmetric, (B) rectangle and centrally
antisymmetric, (C) rectangle and mixed, (D) orthant and centrally antisymmetric, and (E) orthant and
mixed. Numerical results for three sets within each type of regions are delineated in circles (set of the
smallest area), diamonds (set of the second smallest area), and squares (set of the largest area). The Monte

Carlo sample size is 1 000.

settings. Second, in general, we see that the data points shown as circles have lower values
than those shown as squares against various dimensions. This feature suggests that the GHK
simulator is favoured in calculating probabilities of relatively smaller regions. This is likely
because the GHK simulator draws truncated standard normal random variables, and involves
the idea of importance sampling.

A further investigation finds that, in calculating rectangle probabilities, the GHK simulator
performs particularly well in calculating probabilities of centrally symmetric and centrally
antisymmetric sets, whereas our method performs better in several mixed regions. This is
particularly the case in higher dimensions. Similarly, in calculating orthant probabilities, the
GHK simulator performs better in calculating probabilities of centrally antisymmetric regions;
whereas p̂V∗ performs better in several mixed regions particularly in higher dimensions.
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When incorporating penalized factors such as computational cost and computational time,
similar conclusions hold that p̂V∗ is a competitive method to the GHK simulator. From this
simulation study, we summarize that our method is a competitive method to the GHK simulator
for calculating orthant and rectangle probabilities, because neither dominates the other in terms
of relative efficiencies and penalized relative efficiencies. Under what conditions an estimator
outperforms the other depends heavily on the property of the region, the dimension, and the size
of the probability of interest. Nevertheless, our method is applicable to calculate multivariate
normal probabilities of any type of regions.

5. Conclusion

Clearly, the proposed spherical Monte Carlo method is quite promising for calculating mul-
tivariate normal probabilities. To explain the superior performance of the proposed integration
method, we examine the differences in integrating the radial and spherical parts. To reduce
the variance for the spherical integral, we randomly rotate a set of points on the unit sphere,
which is constructed from a sphere packing with the maximal kissing number. Moreover, we
employ the idea of antithetic variates and show that it can have further variance reduction under
certain conditions. Simulation studies confirm our theoretical results that the proposed method
provides substantial variance reduction in some cases.

The success of the proposed spherical Monte Carlo estimator for calculating multivariate
normal probabilities suggests that the method could be extended to accommodate more general
cases, such as the calculation of probabilities based on elliptical distributions, Dirichlet dis-
tributions, and even high-dimensional integrals. For financial applications, it is expected that
our method can be extended to option pricing and correlated default probabilities evaluation
among others. A further challenge involves, for example, financial industry implementation
of the CreditMetrics model and the computation of incremental risk charge under the Basel
III regulatory framework, under which time dependence is considered. To accomplish these
goals, we need to utilize the proposed spherical method with certain features of the distribution
of interest, or, choose basis points for the spherical integration based on case 1. The above
discussions pave a way to a fruitful area for further research.

Appendix A. Proof of Theorem 1

The proof of Theorem 1 depends on the calculation of the variance in (5). To this end, we
first consider the covariance of any two random variables appearing in (5). Let A and A� be
two disjoint regions of Sd−1 satisfying that diam(A) and diam(A�) are both less than dmin(V ).
Because the covariances of gV

A(T ) and gV
A�(T ) are difficult to calculate, we would like to find

an upper bound of the covariance instead. Since gV
A(T ) and gV

A�(T ) are simple step functions,
we have

E[gV
A(T )gV

A�(T )] = E

[∑
v∈V

1

|V | 1A(T v)
∑

v�∈V

1

|V | 1A�(T v�)

]

= 1

|V |2
∑
v∈V

∑
v�∈V

E[1A(T v) 1A�(T v�)]

= 1

|V |2
∑

v,v�∈V

P{T v ∈ A, T v� ∈ A�}.
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Since all points v in V are predetermined and T v is simply a rotation on the unit sphere.
Therefore,∑

v,v�∈V

P{T v ∈ A, T v� ∈ A�} ≤
∑

v,v�∈V

min(P{T v ∈ A}, P{T v� ∈ A�}).

Recall that when v is fixed, T v is uniformly distributed on Sd−1, which implies that P{T v ∈
A} = π(A), P{T v� ∈ A�} = π(A�), and

E[gV
A(T )gV

A�(T )] ≤ 1

|V |2 min(|V |π(A), |V |π(A�)) ≤ 1

2|V | (π(A) + π(A�)).

Hence, cov(gV
A(T ), gV

A�(T )) ≤ (1/2|V |)(π(A) + π(A�)) − π(A)π(A�). Then, we have

var(gV
A(T )) = var

( N∑
j=1

gV
Aj

)

=
N∑

j=1

var(gV
Aj

) +
∑
i 
=j

cov(gV
Ai

, gV
Aj

)

≤
N∑

j=1

π(Aj )

|V | − π2(Ai ) +
∑
i 
=j

(
1

2|V | (π(Ai ) + π(Aj )) − π(Ai )π(Aj )

)

= 1

|V |π(A) − π2(A) + 1

2|V |
∑
i 
=j

(π(Ai ) + π(Aj ))

= 1

|V |π(A) − π2(A) + 1

2|V |
N∑

j=1

2(N − 1)π(Ai )

= 1

|V |π(A) − π2(A) + N − 1

|V | π(A)

= π(A) − π2(A) +
(

N

|V | − 1

)
π(A).

Appendix B. Proof of Theorem 2

In order to prove Theorem 2, we first note that

|V |(var(p̂V
AT) − var(p̂V ))

=
∑

v∈V +
cov(1A(rv, T v), 1A(rv, −T v)) − cov(1A(rv, T v), 1A(r−v, −T v)). (8)

If A is centrally antisymmetric then for any χ(d)-distributed independent random variables
r1, r2, and χ(d)-distributed random variable r , we have

cov(1A(r1, u), 1A(r2, −u)) − cov(1A(r, u), 1A(r, u))

= E[1A(r1, u) 1A(r2, −u)] − E[1A(r, u) 1A(r, −u)]
= E[1A(r1, u) 1A(r2, −u)]
≥ 0,
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which implies that

cov(1A(r, u), 1A(r, u)) ≤ cov(1A(r1, u), 1A(r2, −u)). (9)

Followed by (3), we can write (8) as

∑
v∈V +

cov(1A(rv, u), 1A(rv, −u)) − cov(1A(rv, u), 1A(r−v, −u))

= |V |
2

(cov(1A(r, u), 1A(r, −u)) − cov(1A(r1, u), 1A(r2, u))),

which is less than or equal to 0 by (9).
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