
JFP 16 (1): 13–20, 2006. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005678 Printed in the United Kingdom

13

FUNCTIONAL PEARL

Finding celebrities:
A lesson in functional programming

RICHARD BIRD

Oxford University Computing Laboratory,

Wolfson Building, Parks Road, Oxford OX1 3QD, UK

(e-mail: Richard.Bird@comlab.ox.ac.uk)

SHARON CURTIS

Department of Computing, Oxford Brookes University,

Wheatley Campus, Oxford OX33 1HX, UK

The setting is a class on functional programming. There are four students, Anne, Jack,

Mary and Theo.

Teacher: Good morning class. Today I would like you to solve the following problem.

Given is a nonempty list xs of people at a party. By definition, a nonempty sublist

ys of xs forms a celebrity clique if everybody at the party knows every member of

ys , but members of ys know only each other. Assuming there is such a clique at

the party, the problem is to write a functional program to find it. As data for the

problem you can assume that the predicate knows is given, so knows x y is true just

when x knows y .

Jack: Just to be clear, does every member of a celebrity clique actually know

everyone else in the clique? And does everyone know themselves?

Teacher: As to the first question, yes, it follows from the definition: everyone in

the clique is known by everyone at the party. As to the second question, ask a

philosopher.

Theo: This is going to be a hard problem, isn’t it? I mean, the problem of determining

whether there is a clique of size k in a party of n people will take Ω(nk) steps, so

we are looking at an exponential time algorithm.

Anne: That doesn’t follow since being a celebrity clique is a much stronger property

than being a clique. In a directed graph, a clique is a set of nodes in which each

pair of nodes has an arc in both directions between them, but a celebrity clique also

requires an arc from every node in the graph to every node in the clique, and no

arcs from the clique to nodes outside the clique.

https://doi.org/10.1017/S0956796805005678 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005678

14 R. Bird and S. Curtis

Mary: Yes, while there can be many cliques in a graph, there is at most one celebrity

clique. Suppose that ys and zs are two celebrity cliques. Pick any y in ys . We have

that z knows y for every z in zs by the fact that everybody in the clique ys is known

by everybody at the party. Since zs is a celebrity clique, and clique members know

only other members of the clique, we have that y has to be an element of zs . But y

was arbitray, so ys is a subset of zs and hence, by symmetry, equal to zs .

Theo: Agreed, they are different problems. Anyway, here is a straightforward

exponential-time algorithm. Let subseqs xs return the subsequences of a list xs

and test xs ys return true just when ys is a clique of xs . Then we can define

find xs = head (filter (test xs) (subseqs xs))

test xs ys = and [knows x y | x ← xs , y ← ys , x �= y]∧
and [knows y x ⇒ elem x ys | x ← xs , y ← ys , x �= y]

The definition of test is a direct translation of the clique conditions into Haskell.

I have included the guard x �= y in both list comprehensions simply to avoid the

issue of whether everyone knows themselves or not.

Mary: Well, your definition of test allows the empty sequence to be a celebrity

clique of any party, so you have to be careful to ensure either that subseqs returns

only the nonempty subsequences of a list, or that the empty sequence comes last in

the enumeration. With the first choice, find xs will return ⊥ if xs does not contain

a celebrity clique; with the second choice find xs will return [].

Theo: I prefer total functions to partial ones, so let me take the second option and

define

subseqs [] = [[]]

subseqs (x : xs) = map (x :) (subseqs xs) ++ subseqs xs

Jack: Theo’s generate-and-test program seems a reasonable place to start I would

say. Clearly, the way to achieve greater efficiency is to fuse the filtering with the

generation of subsequences. Let me abbreviate filter (test xs) to ft xs . We have

ft [] (subseqs []) = [[]]

For the inductive case we can reason:

ft (x : xs) (subseqs (x : xs))

= {definition of subseqs}
ft (x : xs) (map (x :) (subseqs xs) ++ subseqs xs)

= {since filter distributes over ++}
ft (x : xs) (map (x :) (subseqs xs)) ++ ft (x : xs) (subseqs xs)

What next?

Anne: We have to simplify test (x : xs) (x : ys) and test (x : xs) ys when ys is a

subsequence of xs . We can assume that x is not in xs since the list of people at

https://doi.org/10.1017/S0956796805005678 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005678

Functional pearl 15

the party is presumably given without duplicates. So, x is not in ys either. Clearly,

test (x : xs) ys holds just in the case that ys is a clique of xs , nobody in ys knows

x , and x knows everyone in the clique ys . In symbols,

test (x : xs) ys = nonceleb x ys ∧ test xs ys

where

nonceleb x ys = and [knows x y ∧ not (knows y x) | y ← ys]

Now we can reason:

ft (x : xs) (subseqs xs)

= {expanding abbreviation ft}
filter (test (x : xs)) (subseqs xs)

= {since filter (p ∧ q) = filter p · filter q}
filter (nonceleb x) (filter (test xs) (subseqs xs))

= {re-introducing abbreviation ft}
filter (nonceleb x) (ft (subseqs xs))

Secondly, test (x : xs) (x : ys) holds just in the case that ys is a clique of xs and x is

a new celebrity, meaning that everyone knows x and x knows all and only members

of ys . In symbols,

test (x : xs) (x : ys) = celeb x xs ys ∧ test xs ys

where

celeb x xs ys = and [knows x ′ x ∧ (knows x x ′ ≡ elem x ′ ys) | x ′ ← xs]

A similar calculation to the one above now gives

ft (x : xs) (map (x :) (subseqs xs)

= map (x :) (filter (celeb x xs) (ft (subseqs xs)))

Summarising, find = head · solns , where

solns [] = [[]]

solns (x : xs) = map (x :) (filter (celeb x xs)) yss) ++ filter (nonceleb x) yss)

where yss = solns xs

The predicates celeb and nonceleb can be evaluated in linear time and, as solns

returns at most two lists, a proper clique and an empty one, we have reduced an

exponential algorithm to a quadratic one.

Theo: Well, you can’t do better than a quadratic algorithm. Suppose there was

a sub-quadratic one, so at least one entry in the knows matrix is not inspected.

Suppose furthermore that all entries are true, so everyone knows everyone else and

the clique is the whole party. Now change the non-inspected entry, knows x y say,

to false. Then y is no longer a celebrity, that is, a member of the celebrity clique.

But everyone apart from x still knows y so they can’t be celebrities. That leaves x

https://doi.org/10.1017/S0956796805005678 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005678

16 R. Bird and S. Curtis

as the only possible celebrity, but unless x and y are the only people at the party,

there is some non-celebrity that x knows, so x isn’t a celebrity either. That means

there is no celebrity clique at the modified party, and the sub-quadratic algorithm

returns the wrong answer. So, in the worst case, every element of the matrix has to

be inspected to arrive at the correct answer.

Teacher: True, but the problem was not to determine whether or not there was a

celebrity clique. In your scenario, Theo, the answer xs will suffice for both cases: in

the first case it is the correct answer, and in the second case there is no celebrity

clique, so any answer will do.

There is a pause while the class digests this information.

Mary: I have an idea. Anne’s reasoning shows in effect that

test (x : xs) ys ⇒ test xs (after x ys) (1)

where after is defined by

after x [] = []

after x (y : ys) = if x = y then ys else y : ys

Doesn’t this give us another way of solving the problem? I mean, suppose ys =

find xs and consider the value of find (x : xs). Firstly, if ys = [], so xs does not

contain a clique, then by (1) the only possible nonempty clique of x : xs is [x]. So

find xs = [] ∧ find (x : xs) �= [] ⇒ find (x : xs) = [x]

Secondly, suppose ys = find xs and ys is not empty. Let y be some element of ys ,

say the first. If x and y know each other and x : xs contains a nonempty clique,

then (1) shows that it can only be x : ys . So we conclude

find xs = y : ys ∧ knows x y ∧ knows y x ∧ find (x : xs) �= []

⇒ find (x : xs) = x : y : ys

Jack: Sorry, that was a bit fast for me. By (1) if find xs = y : ys and x : xs has a

nonempty clique zs , then after x zs = y : ys . We know that because xs has only one

nonempty clique, namely y : ys . If zs = [x], then after x zs = [], a contradiction.

The only remaining possibility is zs = x : y : ys . Yes, Mary’s reasoning is correct.

Mary: The other cases are handled similarly. Again, if find xs = y : ys and if x

knows y but y does not know x , then the only possible nonempty clique of x : xs

is y : ys . Hence

find xs = y : ys ∧ knows x y ∧ not (knows y x) ∧ find (x : xs) �= []

⇒ find (x : xs) = y : ys

If x does not know y , then no element of ys can be in a clique of x : xs because

every such element knows y and y isn’t a celebrity. So if x : xs has a nonempty

https://doi.org/10.1017/S0956796805005678 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005678

Functional pearl 17

clique, it can only be [x]. In symbols,

find xs = y : ys ∧ not (knows x y) ∧ find (x : xs) �= []

⇒ find (x : xs) = [x]

These four cases are exhaustive.

Theo: While I agree that your reasoning is correct, Mary, I don’t see how it leads to

a solution. All you have shown is that if we know the value of find xs and if x : xs

has a nonempty clique, then we can quickly determine it. But how do we know the

value of find xs in the first place? You seem to be suggesting that if we define soln

by

soln = foldr op []

op x [] = [x]

op x (y : ys) = if knows x y then

if knows y x then x : y : ys else y : ys

else [x]

then

find xs �= [] ⇒ find xs = soln xs (2)

But I don’t see how your reasoning proves (2).

Mary: Let me try again then, proving (2) by induction on xs . I think I want three

cases.

Case []: We have find [] = [] = soln [], establishing the case.

Case [x]: Here we have

find [x] �= [] ⇒ find [x] = [x] = soln [x]

establishing the case.

Case x : xs where xs �= []: Let soln xs = y : ys . By induction, if find xs �= [], then

find xs = y : ys . Assuming find (x : xs) �= [] we have

find (x : xs)

= {my reasoning above, and induction}
op x (y : ys)

= {definition of soln}
soln (x : xs)

The remaining case is when soln xs = y : ys and find xs = []. Once again assuming

find (x : xs) �= [] we have

find (x : xs)

= {my reasoning above}
[x]

= {since knows y x and not (knows x y)}
op x (y : ys)

https://doi.org/10.1017/S0956796805005678 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005678

18 R. Bird and S. Curtis

= {definition of soln}
soln (x : xs)

This establishes the case and the induction.

Anne: That’s amazing, a simple linear-time algorithm! But we have only arrived at

the solution because of Mary’s cleverness. I still want a formal derivation of soln

from some suitable fusion law.

Teacher: Thank you, Anne, its good to have you in the class.

Jack: It occurs to me that if Theo had taken the other option, and allowed

find xs =⊥ if xs does not contain a nonempty clique, the relationship between

find and soln would have been find xs 	 soln xs , where 	 is the approximation

ordering x 	 y ≡ (x =⊥ ∨ x = y).

Anne: We can write subseqs using foldr:

subseqs = foldr add [[]]

add x xss = map (x :) xss ++ xss

So it appears that we are appealing to some fusion law of foldr . The textbook

statement of the fusion law for foldr –see, for example, (Bird, 1998)– says that

f · foldr g a = foldr h b provided that f is strict, f a = b, and f (g x y) = h x (f y)

for all x and y . The strictness condition is not needed if we want only to assert that

f (foldr g a xs) = foldr h b xs for all finite lists xs . This fusion rule does not apply

directly to the clique problem, namely filter (clique xs) (subseqs xs) firstly because

filter (clique xs) has xs as a parameter, and secondly because we want something

more general than the equality of both sides.

Theo: The first restriction is not really a problem. We can define a version of subseqs

that returns both the subsequences of a list and the list itself. Suppose we define

subseqs2 = foldr step ([[]], [])

step x (xss , xs) = (map (x :) xss ++ xss , x : xs)

Then find = f · subseqs2, where f (xss , xs) = head [ys | ys ← xss , test xs ys]. In this

way we can avoid the additional parameter.

Anne: The second restriction isn’t too serious either: interpreting 	 as the approx-

imation ordering, we have a more general statement of the fusion law, namely

f · foldr g a 	 foldr h b if f is strict, f a 	 b and f (g x y) 	 h x (f y) for all x and y .

Jack: Yes, but you also need y 	 z ⇒ h x y 	 h x z , which is trivial when 	 is

the approximation ordering. When 	 is the ordering xs 	 ys ≡ xs = [] ∨ xs = ys ,

we need h x [] = [] or h x [] = h x zs for any zs . Neither condition holds when

h = op, as can be seen directly from the definition of op. We definitely want the

approximation ordering here, so I think Theo chose the wrong option.

https://doi.org/10.1017/S0956796805005678 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005678

Functional pearl 19

Mary: Your more general statement of the fusion law won’t work, Anne. Applied

to the clique problem it requires us to prove

find (x : xs) 	 op x (find xs)

Suppose find (x : xs) = [x], so xs does not have a clique and find xs =⊥. We require

[x] = op x ⊥, which implies op x ys = [x] for all ys . This isn’t the case, as can be

seen from the definition of op.

Theo: That is because the textbook statement of the fusion rule, or the generalisation

proposed by Anne is still not general enough. Let � be some relation on values, I

don’t care what. Then it is easy to show by induction that

f (foldr g a xs) � foldr h b xs

for all finite lists xs provided f a � b and f y � z ⇒ f (g x y) � h x z for all x , y

and z . It works both when � is intepreted as the approximation ordering and when

� is interpreted as the relation xs � ys ≡ xs = [] ∨ xs = ys that Jack defined. The

last condition above is the one we need for fusion to be established. In the celebrity

clique problem, and choosing Jack’s ordering, the condition we want is

f (xss , xs) �= [] ∧ f (step x (xss , xs)) �= []

⇒ f (step x (xss , xs)) = op x (f (xss , xs))

Mary’s reasoning establishes this property.

Teacher: Yes. The more general statement of fusion is the one provided by para-

metricity in Wadler’s Theorems For Free! paper (Wadler, 1989) It is nice to see

an example where the more general statement is needed. What is interesting about

the problem is that it is the first example I have seen in which it is asymptotically

more efficient to find a solution assuming one exists than to check that it actually

is a solution. A similar problem is the majority voting problem –see, for example,

(Morgan, 1994), Chapter 18– in which one is given a list xs and it is required to

determine whether there is a value in xs that occurs strictly greater than �length xs/2�
times. It is easier to first compute a putative majority, assuming one exists, and then

check whether it is actually a majority afterwards. But checking for a majority takes

linear time rather than quadratic time, so there is no asymptotic gap.

Afterword: The true story of the celebrity clique problem was as follows. Richard

Bird was giving a course of lectures on Formal Program Design (in a procedural

rather than functional framework) and thought of the problem as a generalisation

of the one in Kaldewaij’s book (Kaldewaij, 1990). But despite a day of effort of

reasoning about loop invariants he couldn’t produce a sufficiently simple solution, so

he set it as a challenge to the class. He also talked about it at a research meeting the

following Friday. Over the weekend, Sharon Curtis produced a simple linear-time

algorithm, though the reasoning was still somwehat complicated. Meanwhile, Julian

Tibble, a second-year undergraduate, developed essentially the same solution.

https://doi.org/10.1017/S0956796805005678 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005678

20 R. Bird and S. Curtis

In the belief that whatever can be reasoned about with loops and invariants

can be reasoned about at least as easily using the laws of functional program

derivation, the problem was translated into a functional setting and the dialogue

above was composed. Afterwards, the problem was tried out at a WG2.1 meeting

in Nottingham in September, 2004. Gratifyingly, the actual discussion followed the

early part of the dialogue quite closely. On repeatedly being urged to try harder,

Andres Löh and Johan Jeuring came up a day later with the linear-time solution.

References

Bird, R. (1998) Introduction to Functional Programming using Haskell. International Series

in Computer Science, Prentice Hall.

Kaldewaij, A. (1990) Programming: The Derivation of Algorithms. International Series in

Computer Science, Prentice Hall.

Morgan, C. (1994) Programming from Specifiactions (2nd edition). International Series in

Computer Science, Prentice Hall.

Wadler, P. (1989) Theorems For Free! Fourth International Symposium on Functional

Programming Languages and Computer Architecture, pp. 347–359. ACM Press.

https://doi.org/10.1017/S0956796805005678 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005678

