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HYPOELLIPTIC DIFFERENTIAL OPERATORS WITH
GENERALIZED CONSTANT COEFFICIENTS

by M. NEDELJKOV and S. PILIPOVIC
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The space Q of Colombeau generalized functions is used as a frame for the study of hypoellipticity of a family
of differential operators whose coefficients depend on a small parameter e.

There are given necessary and sufficient conditions for the hypoellipticity of a family of differential
operators with constant coefficients which depend on e and behave like powers of e as e -* 0. The solutions of
such family of equations should also satisfy the power order estimate with respect to e.

1991 Mathematics subject classification: 35Hxx, 46Fxx.

Introduction

Let

P£D)G = J^ a*,D*G = F,,ee (0, 1)
l«l<m

be a family of equations with constant coefficients and Fe e C°°(fl). If Pe(D) is
hypoelliptic for fixed e e (0,1), then the corresponding solution to the above equation,
Gt, is in C°°(fi). If we suppose that supx£jCcc0 \D"Fc{x)\ satisfies the power growth
condition O(E~NK) for every a (for example, if Fc =f * Sc, where / e V(Ci) and 5, is a
delta net, and the above estimate holds, then / e C°°(fi)), then the question which we
want to answer is whether it is true that the derivatives of Gt satisfy similar estimates
on compact sets.

The question is twofold important. First, the class [Ft] may represent a distribution
or Colombeau's generalized function. Second, we investigate how the hypoellipticity
depends on an appropriate perturbation of coefficients.

We implicitly answer these questions by putting the above family of equations into
the space of Colombeau's generalized functions.

We recall necessary notions in order to present the main problems and results of
the paper.

Let

= {<t> e C?\j<t>(x)dx = 1,diam(suPp0) = 1},

= {$ e A>l Jxt^(x)dx = 0,1 < a < q, a e N}, q e N
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48 M. NEDELJKOV AND S. PILIPOVIC

and

Aq = Aq(R
n) = {(Kx, xn) = tf>,(x,)•...• 0,(xn)|0, e Aq(R))-

Put $, = (l/e)<K/e), where (f> & A^.
Let fi be an open subset of R" and £(Q) be the space of functions

G : Ao x (0,1) x n -+C which are C°° for every 0 e Jt,, and e e (0,1). We will use the
notation Ĝ  e for (0, e, x) i-» G^_,(x), x e fi.

It is said that a family of smooth complex valued functions on Q, G^e, <f> e .4o,
e e (0,1), belongs to SM(Cl) if for every compact set K CC fi and a e NJ there exist
N e N and r = r(K, a) e R such that

sup la-G^OOl = 0(<O, e - * 0 , for every <f> e AN. (1)

If G^s does not depend on x and (1) holds for a = 0, then the space of correspond-
ing families of complex numbers is denoted by CM. For example, regularizing nets
of distributions are elements of £M: If g e V the corresponding element in £M is
given by Ĝ  „ = g * b^c, where we use the notation 8^ = <f>t, <f> e AQ since it is a delta
net.

The space of all elements G B̂ in £M(il) which satisfy (1) independently of a e No is
denoted by £%.

Solutions to

M, «.e e CM, (2)

in £M are constructed in [7], in a simplified version of Colombeau's theory, by adapting
the classical distributional method of solving a constant coefficients partial differential
equation. Problems which are specific for (2) are connected with the growth rate of
solutions with respect to e which implies that the main assertions in [7] and in this
paper are non-trivial generalizations of the corresponding ones in the space of
distributions.

In this paper we investigate the hypoellipticity of the families of equations (2). This
family is hypoelliptic if F^ e e £% implies Ĝ  „ * 8$_, e £%.

We note that the hypoellipticity of each equation of the family of equations (2) does
not imply the hypoellipticity defined above, as it can be seen in the remark after
Theorem 1.

The paper is organized as follows. First we recall the basic notions of Colombeau's
generalized functions spaces (cf. [1, 5 and 7]). Then we give the necessary and
sufficient conditions on P(s) = Ylw<m

 fl«5a» where a, are generalized constants, such
that the corresponding operator P(D) is hypoelliptic in Q in Theorem 1. We reformulate
the necessary and sufficient conditions applying the theorem of Gorin ([3]) in
Theorem 2.
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HYPOELLIPTIC DIFFERENTIAL OPERATORS 49

1. Basic notions

The space £0(&) (resp. Co) is defined to be the subspace of £M(fi) (resp. CM)
consisting of elements G^, such that for every K c c fi, a € N% and r e R there exists
N e N such that (1) holds (resp. (1) holds for a = 0 and G^, does not depend on x) for
every <f> € AN.

The space of Colombeau's generalized functions on an open set Q c R" is defined
by £(Q) = £M(fi)/£0(fi) and C = CM/CQ is the ring of Colombeau's generalized complex
numbers. Note that fi -»• <7(fi), fi c R", is a sheaf.

[G0,] denotes the class in Q (or C) determinated by the representative G^,.
Let G e £(H). The complement of the largest open set of fi in which G is equal to

the zero generalized function is called the support of G, supp, G.
The space of generalized functions with compact supports in the interior of Q is

denoted by Gc(tt).
5°°(n) (cf. [5]) is the space of all generalized functions which have a representative

in 5^. It is a subalgebra of G(Q) and

n V(Q) = C°°(fi) (see [5\).

The space of tempered Colombeau's generalized functions £t(R
B) is defined to be

£l(R")/£Ot(R'') where £t(R") is the set of all G0, e £ such that for every a e NJ there exist
y > 0, N e N and r e R such that

sup |3"G,,(x)|/(l + |x|)' = 0(<Q, e -+ 0 for every <j> e AN, (3)
X€R"

and fot(R") is the space of all G$, 6 £, such that for every a € NJ there exists y e l such
that for every r 6 R there exist N e N such that (3) holds for every <f> e AN.

Note that £t(M") is not a subspace of Q{W), but there is a canonical map

Let G e G(ii). The complement of the largest open set of Q in which G is in 5°°(J2)
is called the singular support of G. It is denoted by singsupp, G.

The equality in Q is often too strong for applications, so we shall use a notion of
equality in generalized distribution (resp. generalized tempered distribution) sense =='
(resp. '=') which is defined by:

G, = G2 (resp. G, '=' G2 for tempered generalized functions) if for every i]/ e V (resp.
zij/ € 5) , (G,, \j/) = (G2, \l>) in C, where (G, i//) means f G(x)il/(x) dx.

Remark. The Dirac delta distribution 5 is embedded in Q as [<5̂ J and for any
GeG, G*[8^,\ is represented by G^, * 8^ = f G^Jx - y)84,_.(y) dy. There holds
G * [8jt,] = G and for every differential operator with constant coefficients P(D),
P(D)G9=P(D)G*[8^,].

By following [7], we define polynomials in n real variables as elements of the ring
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50 M. NEDELJKOV AND S. PILIPOVIC

C[x,, . . . . xn]. A generalized polynomial function is a tempered generalized function of
the form

jX", aa = [flu.̂ J € C, |a| < m.

It is of degree m if aa = 0 for |a| > m and there exists /}, |/?| = m such that â  ^ 0.
If [H$.,(x)] = Z)|ai<m[a«.#.e]xa is such a generalized function, then it can be written only

in one way as a polynomial. In fact, if J^,w<m b^iCx^ = Nic{x) e £ot(R"), then by making
successive derivations and by putting x = 0 it follows fcw>, e Co, |/?| < m ([7]).

2. Hypoelliptic differential operators

Fundamental solution. Let us remember that in the classical distribution theory a
fundamental solution of a differential operator is a distribution E such that
P(D)E = 5.

Let

P(D) = J2 aaD' = [p,,(ii-

where ^2w<maax" is a polynomial in Q. In Colombeau's theory, the fundamental
solution of P is a generalized function £ e £ satisfying P(D)E = [£$,,]. This means that
its representatives E^>8 € f M satisfy

9=

X ) . * . * . ( x ) = <50.8(x) + JV^,,(x), x e H",

for some N0 e 6 f0-
This fundamental solution allows us to solve the equation P(D)U = G for G e G,

because G*[6^t]
g=G.

Proposition 5. Let P(D) be a generalized differential operator of the form (4) with
coefficients in C of degree m such that for some (c,, c2, . . . , cn) e W there exist r > 0 and
N e N such that for every (f> e AN there exist C > 0 and n > 0 such that

77ie/2, P(D) admits a generalized fundamental solution.

In non-standard models of Colombeau's theory this hypothesis can be replaced by
5Ziii=m fl«,«.«c" ̂  0> since C is a field in such models (cf. Li Bang He, [4] and
Oberguggenberger [6]).
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HYPOELLIPTIC DIFFERENTIAL OPERATORS 51

Proof. Case I. Suppose that there exists N € N such that for every <j> e AN there
exists r\ > 0 such that

P^(D) = am^D? + £ Pkj,t{D')D\, for e < r,,

where D' = (D2 Dn) and D, = i—, j = 1 n. There holds

= **>.*.& + £ PM..(^st = <W« fl(s, - s
t=0

where s' = a' e R""1 (CT' = (<x2,.... trn)) is fixed, s, = a, + ixi e C, s{^t{a') is the ;-th root
of P^(«i,ir') = 0 ,6e (0,>;) and </> e AN.

In this case (5) reads as follows: There exist r e R and JVeN such that for every
(f> e AN there exist C, > 0 and 77 > 0 such that

«..l > C,er, e € (0, f/), 0 e .4W. (6)

Let e e (0, tj) and $ e AN be fixed as well as a e M""1. Denote

There exists fc,, = k, 0i, 6 {0,1 m + 1} such that Ifĉ  - T/,0I,(«/)I > 5 for J = 1 m.
This implies that

where C, and r are defined in (6) (and do not depend on e). If a e E""1, then

Choose ^ = 5(m, e) > 0 such that

^ O ^ for 1̂  -

Note that e and <j> are fixed. We cover K""1 by open cubes L^^.a' € R""1. By the
Heine-Borel theorem we can choose a sequence of open cubes A ^ , j e N, such that
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52 M. NEDELJKOV AND S. PILIPOVIC

| P , > , + ikj, (O\ > ^ - , a, G K, fc, € {0,1 m + 1},

Define

o
and 7; . = U~.{(*i + «i. «O: ^i e R, T, = /c, e {0,..., m + 1}, c/ e

Put

By a straightforward calculation one can prove that E$, e £M and P
Case II. Let J$,,(x) be a representative of P(x) such that its principal symbol

Pm.<t>.e(x) = 5Z|»i=m aa.«.«x* satisfies (5) for some c = (c , , . . . , cn) e iR", as it is assumed in
the proposition.

Put Sj = 52 c;ttt, s = Ct such that c, = c,, , . . . , cn = cBl and other members are chosen
so that the determinant of C, det C, is not zero. Then,

P«..(s) = h,Xl) = am.4,A + lower order terms,

where |am,^| = |Po.(c)| > Cx€_, z e (0, 1) (cf. [6]).
Let E+j, be a solution of P^,.(D)E^.(x) = ? ^ ( f ) , where ^(x) = </>('C~'x) is constructed

in the same way as in case I. Taking P^ ,(r) = P̂  ,(s), s = Ct, we obtain that the solution
of P,..(Z>)E,.. = ± *. is £^(x) = ^.,('Cx), x G R".

Hypoelliptic differential operators. Let [P*,e(£>)] be of the form (4) and suppose that
(5) holds for some c = (c , , . . . , cn) e W, C, > 0, r > 0, N G N and r\ > 0. This operator
is called hypoelliptic if for every open Q c K" and every solution G G £(£2) to

P{D)G = 0, (7)

the generalized function G * [8$,] is in 5°°(n). In the introduction we gave this
definition via the corresponding representatives.

As in the frame of distributions, we have the following two propositions.

Proposition 6. (a) P(D) is hypoelliptic if it admits a fundamental solution E with

singsuppg£ = {0}. (8)

(b) Let [P^,(D)] be hypoelliptic. Then, for every open set fi and G e 5(Q), P(D)G e
lies G * [S+,] e
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Proof, (a) Let G 6 G(Qi) be a solution of (7). Let 0 be a neighbourhood of zero,
a e C^(O) and a = 1 in some neighbourhood of zero contained in O. We shall prove
that G * [S^t] is in Q00^), for every O,, CC fi. Let /? e Cg°(fi), j5 = 1 on Qj and W be
an open subset of QQ. We shrink 0 such that H ' - O c QQ- Then, for every x e W, we
have

*,) *

^ e) (x). (9)

This implies G * [<5̂  J e £°°(W0 and thus G * [fy,,] e </°°(fio)-
(b) It follows directly from (9).

Remark. Assertion (b) is usually used as the definition of hypoellipticity.

Let P^j, be a hypoelliptic differential operator on fi, QQ, W, and O are the same as
in the proof of assertion (a) in Proposition 6, G a solution of (7) and W±0 c fto-
Then we have the following

Proposition 7. There exists JVeN such that for every q e N[j there exist C > 0 and

max |D'G^ * <5 (̂x)l < Cmax |G*,(x)|e-w, e < if.

Proof. Since this holds for \q\ = 0, assume |<?| > 0. Then, because of
(1 — «(f))£ ,̂«(0) e Co°(0) for every fixed 0 and e, e small enough, we have

(x - 0 A

which implies

max \afG^ * <V,(x)| < Cmax |G^.,(x)| max

and thus the assertion follows.

Our main result is given in the theorem which is to follow and which is the extension
of the corresponding well-known result in distribution theory. The idea of its proof is
similar to the proof of the corresponding one for distributions given in [2, p. 304]. The
main difficulty comes from the fact that we need power order estimates concerning
V(P^), where V(P^t) = {a + ix\ P^(a + h) = 0} is a set of zeros of P^, for the
fundamental solution £#s. Because of that, the use of [2, Lemma 3, pp. 303-304],
crucial for the distributional proof, is not possible in our case.
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Theorem 1. The operator P(D) is hypoelliptic if and only if there exist JV > 0
and q e N such that for every <f> e A,, and A>0 there exist r\ > 0 and B > 0 such
that

|t | > AQog \o\ + JV log e) - B, a + ix € V{P^t), e € (0, tfi. (10)

Proof of necessity. Let s e C". Define a generalized function G with a representative

<M 1

I 0, otherwise.

Obviously G e S°° and

( P*XD)e~'M = P**W* =°'se
P rD)G (

*' I P#.,(D)0 = 0, otherwise,

which means that G îf is a solution of (7). Since e~H'r) e C00, we have

That means that for every compact set K and p eR there exist JV, e N such that for
every <f> e ANl there exist C, > 0 and rjt > 0 such that

sup |Z^4(*)I < 0,6", e < r\.
xeK

We apply Proposition 7 on G0i, with \q\ = l, W=B(0, r) and Qo = B(0,R). If
s e K(P^,), then we have

max |£>'(e~i<5y> * 56Ay)){x)\ < Cmax\e~iM\e~N, e<t\-
xeW xetlo

This implies
m a x kl I*.-'*5-*' -|- 7 fYll < r"/,RlIlf-" c <- #,

and we have

for some C2 > 0, because Z^ „ e V̂ and for K = B(0, R) one can suppose that JV = JV,
and »/ = >?, without loss of generality. Now
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which gives

log |ff | < log C2 - N log £ + (R - r)|t|

i.e.

|T| > (log \<r\ + AMoge- logC2)/(R - r).

Since R and r can be arbitrarily chosen, the first part of the assertion follows.

Proof of sufficiency. We need to prove that (10) implies (8). The next lemma is
needed for the estimation of integrals by which the fundamental solution is defined. It
is analogous to [2, Lemma 3, pp. 303-304].

Lemma 1. Let N, A, r\ and B be the same as in (10). Assume that (a), (b) and (c) hold
for e <n, where

(a) (a,, a2) e R2 such that

A(log |(ff,, (72)| + JVloge) > B + 1.

(b) T, € R, |T, I < (AQog |(a,, a2)| + Nlogs) - B)/2.

(c) (a, + if,) e K(P ,̂e) anrf |f,| > (A(log \(a}, a2)\ + Nloge) - B).

7Vie«, for every fixed e < n

Iff, - ff,| > £N+1 or |f, - T,| > ew+l. (11)

Proof. Fix e < n. Suppose |a, — <7,| < eN+1. Then

I t , - T , I > | T , | - | T , |

> (AQog |(«r,, <T2)| + Nloge) -
(l^ll + 1̂21 )

Since (a) implies |(CT,, O2)\ > e(B+1) /V, it follows that

\{dua2)\ >

( w i t h
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Thus, |T, - T, I > 1/2 - e2" for e < t\, which gives (11).

Proof of Theorem 1 (continuation). Now we will prove (8). We follow Friedman's
proof [2, Theorem 4, p. 306] and add estimates with respect to e. In fact we will give
the exact estimates for Ejlt,t constructed below for the part which corresponds to j = 2.
Other parts are briefly exposed.

We will assume, without loss of generality (as in the proof of Proposition 5), that
P$ t is of the form

^.«(s) = am.4,.,tf + lower order terms.

We will give the proof in the case n = 2. For n > 2 the proof is the same but technically
more complicated. The fundamental solution of P0 „ is given by

where T^ = U£,{(a, + '*,. «0; *i e R, T, = Aj e {0, . . . ,m4- 1}, a' = a2 e 1^,} and 1}^
are given in Proposition 5.

Let e < r\ be fixed. Divide the (CT,, CT2) plane into nine regions Q{, j = 1 , . . . , 9 by the
lines or, = ±fi, a2 = ±|* and denote them by Q, = {\a{\ < ft, \<r2\ < lA, Q2 = {cr, > \i,
\<*i\ < ^},^3 = {̂ i > H, Oi > n)> ^4 = (kil < H, o2 > ^ } , . . . Choose /* > 0 such that

X(log/i + N l o g e ) - B > l,/l(log|i + Nloge) — B> max|t|.

Let B, = B((x,,x2), r)nR2\{0), where r > 0. We will prove that E^, represents an
element in Q?°(Br). This implies the assertion of the theorem.

We will assume that r is sufficiently small and that B((x,, x2), r) c [0, oo) x [0, oo).
Otherwise we first perform a suitable orthogonal transformation which does not
restrict the proof.

Denote by 7J^, the projection of Qy on 7^,. This means

?/.«.. = {fai + " i , °i)\ ff, 6 R, x, € {0 m + I), a2 € r4 A, n ilj, k € N}.

Put

/ y k ^ s, j = 1 9, x € K2.

We will prove that all above generalized functions are in 5°°(Br). Clearly,
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Consider [£2,$.,]. The integration over the contour <r1+iT,, fi<ai <v, T, G{0, . . . ,m+l}
is changed by integration over the contour

i&o u e.ooe.oo u -
where

Nloge) - B)),

Q,002.(v) = {<x, + IT, | T, = l(AQog |<7, | + Nloge) - B), ff, € foi, v]},

2(v)8i(v) = {v + it\ 0 < t < -(^(log v + Nloge) - B)}.

We have

+ 1
MCiW •'eiWCi(v)

YK ' ds = I 1 + I2

Since

where <r2 is fixed, CT, + ii, e ^(^,,) and s, = a, + it, belongs to any of the quoted
contours, Lemma 1 implies that |P^e(s)| > Cer on these contours for suitable C > 0 and
r > 0 .

One can easily prove that [/,] e </°°(Br).
Since for every k > 0 there exist Ck > 0 and C > 0 such that

h. a2))| <

it follows that /3 -»• 0 as v -*• 0.
So we have to prove that

L«rf( (12)

where

= I s , = < 7 1
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Note, since x, > a for some a > 0, there exists C > 0 such that

Also, we have

Ids, | < (

and for every k > 0 there exists Ct > 0 such that

These inequalities simply imply that (12) holds.
Consider Eu. It is determined by the integration over fi < cr, < oo and fi < a2 < oo.

By Cauchy's formula we change the integration over TiJt>e by integration over

(a, + i(A(\og |CT, | + N loge) - B)/2) x CT2> CT, 6 [̂ , oo), CT2 e [pi, oo),

and then by integration over

(a, + i(^(log |CT, | + AT log e) - B)/2) x (<r2 + i(A(log \o2\ + N log e) - B)/2),

CT, £ [/J, OO), (72 6 [/i, OO).

By (11) and the suitable estimates for $ and i{x, s), one can prove that [Eu] e ff°{Br).
The proof that [EMJ e ^"(B,), fe = 4 9 is the same as for k = 2 or fe = 3.

Remarks. 1. The perturbation of the non-hypoelliptic operator dx leads to a family
of the operators 3, + edj. One can check that this family does not satisfy the
assumption (10) in Theorem 1. So, this family of differential operators is not
hypoelliptic, although dx + ed^ is hypoelliptic for every fixed e.

2. The operator 9̂  is not hypoelliptic while the family d^ + edi^ is hypoelliptic in the
above sense.

A usual relation describing the hypoellipticity of a differential operator is given in
the next theorem.

Theorem 2. An operator [P^D)] is hypoelliptic iff there exist N > 0 and q e N such
that for every <f> e A,, there exist h > 0, t\ > 0 and b e R such that

a + he V(P^,) =» |T| > e^Vl* -b,ee (0, r,). (13)

Proof. Clearly, (13) implies (10). Assume that (10) holds, that e < r\ and <f> e Aq

are fixed. We will use the following theorem of Gorin [3, Theorem 4].
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Let P{p\, o2>
 ai) be a real polynomial of n = n, + n^ + n3 variables a, € W, n, € N0)

i= 1,2,3. If the surface M, given by P(al,a2,ai) = 0, is not empty and lies in the
domain |CT2I > <p(kil)> where <p(t) -> oo as t -*• oo, then there exist h > 0 and fe > 0 such
that M lies in the domain defined by

\o2\>Wt\
h-b.

First, we note that

where K(J^ „) is the set of real zeros of

hJP* T> = PU&< T> + p22*.«(ff. t) and P0t(^ + IT) = P,.*.(ff. T) + iP2.̂ .e(ff, T).

The polynomial

eM^.«(ff + 't) = eMP,.*.e(er, T) + eMiP2 ̂ (<s, T)

has the same set of zeros as P^_, for every e 6 (0, >;), ̂  small enough.
Put P^{a, T) = P^,{eNa, T). Then (10) implies

(a, T) 6 ^ , ) =* (8-Wff, T) 6 K(P^,) => |T| > ^ log |<7| - B.

Thus Gorin's theorem implies that there exist h and b such that |T| > lei* — b for
(a, T) e ^(P^.,). This implies

|T| > eNh\a\h - b if (ff.t) e ^

which is desired assertion.

Acknowledgement.The authors would like to express their gratitude to M.
Oberguggenberger for his valuable remarks concerning the paper.

REFERENCES

1. J. F. COLOMBEAU, Elementary Introduction in New Generalized Functions fNorth Holland,
Amsterdam, 1985).

2. A. FRIEDMAN, Generalized unctions and Partial Differential Equations (Prentice-Hall, INC,
Englewood Cliffs, New York, 1963).

3. E. A. GORIN, Asymptotic properties of polynomials and algebraic functions of several
variables, Russian Math. Surveys (1961), 93-119.

4. Li BANG-HE, Non-standard analysis and multiplication of distributions, Sci. Sinica 21
(1978), 561-585.

https://doi.org/10.1017/S0013091500019428 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019428


60 M. NEDELJKOV AND S. PILIPOVIC

5. M. OBERGUGGENBERGER, Multiplication of Distributions and Applications to Partial
Differential Equations (Pitman Res. Not. Math. 259, Longman Sci. Techn., Essex, 1992).

6. M. OBERGUGGENBERGER, Products of Distributions: Nonstandard Methods, Z. Anal.
Anwendungen 7 (12) (1988), 347-365.

7. S. PILIPOVIC and D. SCARPALEZOS, Differential operators with generalized constant
coefficients, Portugal. Math. S3 (3) (1996), 305-324.

UNIVERSITY OF NOVI SAD
FACULTY OF SCIENCE
INSTITUTE FOR MATHEMATICS
TRG D. OBRADOVICA 4
Novi SAD
YUGOSLAVIA

https://doi.org/10.1017/S0013091500019428 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019428

