
RESEARCH ARTICLE

Anytime Monte Carlo

Lawrence M. Murray1, Sumeetpal S. Singh2* and Anthony Lee3

1Uber AI, San Francisco, CA, USA
2The Alan Turing Institute, University of Cambridge, Cambridge, United Kingdom
3The Alan Turing Institute, University of Bristol, Bristol, United Kingdom
*Corresponding author. E-mail: sss40@cam.ac.uk

Received: 16 February 2021; Revised: 02 April 2021; Accepted: 05 May 2021

Keywords: Real-time computing; Sequential Monte Carlo; Markov Chain Monte Carlo; Parallel computing

Abstract

Monte Carlo algorithms simulates some prescribed number of samples, taking some random real time to complete the
computations necessary. This work considers the converse: to impose a real-time budget on the computation, which
results in the number of samples simulated being random. To complicate matters, the real time taken for each
simulation may depend on the sample produced, so that the samples themselves are not independent of their number,
and a length bias with respect to compute time is apparent. This is especially problematic when aMarkov chainMonte
Carlo (MCMC) algorithm is used and the final state of the Markov chain—rather than an average over all states—is
required, which is the case in parallel tempering implementations of MCMC. The length bias does not diminish with
the compute budget in this case. It also occurs in sequential Monte Carlo (SMC) algorithms, which is the focus of this
paper. We propose an anytime framework to address the concern, using a continuous-time Markov jump process to
study the progress of the computation in real time.We first show that for anyMCMC algorithm, the length bias of the
final state’s distribution due to the imposed real-time computing budget can be eliminated by using a multiple chain
construction. The utility of this construction is then demonstrated on a large-scale SMC2 implementation, using four
billion particles distributed across a cluster of 128 graphics processing units on theAmazon EC2 service. The anytime
framework imposes a real-time budget on the MCMC move steps within the SMC2 algorithm, ensuring that all
processors are simultaneously ready for the resampling step, demonstrably reducing idleness to duewaiting times and
providing substantial control over the total compute budget.

Impact Statement

Real-time budgets arise in numerous settings, our focus is on the deployment of Monte Carlo methods on large-
scale distributed computing systems, using real-time budgets to ensure the simultaneous readiness of multiple
processors for collective communication, minimizing wasteful idle times that precedes it. A conceptual solution
is found in the anytime algorithm.Our first major contribution is a framework for converting any existingMonte
Carlo algorithm into an anytime Monte Carlo algorithm, by running multiple Markov chains in a particular
manner. The second major contribution is a demonstration on a large-scale Monte Carlo implementation
executing billions of samples distributed across a cluster of 128 graphics processing units. Our anytime algorithm
demonstrably reduces idleness and provides control over the total compute budget.

1. Introduction

Real-time budgets arise in embedded systems, fault-tolerant computing, energy-constrained computing,
distributed computing and, potentially, management of cloud computing expenses and the fair

©TheAuthor(s), 2021. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Data-Centric Engineering (2021), 2: e7
doi:10.1017/dce.2021.6

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://orcid.org/0000-0002-5430-1496
mailto:sss40@cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/dce.2021.6
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/dce.2021.6&domain=pdf
https://doi.org/10.1017/dce.2021.6


computational comparison of methods. Here, we are particularly interested in the development of Monte
Carlo algorithms to observe such budgets, as well as the statistical properties—and limitations—of these
algorithms. While the approach has broader applications, the pressing motivation in this work is the
deployment of Monte Carlo methods on large-scale distributed computing systems, using real-time
budgets to ensure the simultaneous readiness of multiple processors for collective communication,
minimizing the idle wait time that typically precedes it.

A conceptual solution is found in the anytime algorithm.An anytime algorithm maintains a numerical
result at all times, and will improve upon this result if afforded extra time.When interrupted, it can always
return the current result. Consider, for example, a greedy optimization algorithm: its initial result is little
more than a guess, but at each step it improves upon that result according to some objective function. If
interrupted, it may not return the optimal result, but it should have improved on the initial guess. A
conventionalMarkov chainMonte Carlo (MCMC) algorithm, however, is not anytime if we are interested
in the final state of the Markov chain at some interruption time: as will be shown, the distribution of this
state is length-biased by compute time, and this bias does not reduce when the algorithm is afforded
additional time.

MCMC algorithms are typically run for some long time and, after removing an initial burn-in period,
the expectations of some functionals of interest are estimated from the remainder of the chain. The
prescription of a real-time budget, t, introduces an additional bias in these estimates, as the number of
simulations that will have been completed is a random variable, N tð Þ: This bias diminishes in t, and for
long-run Markov chains may be rendered negligible. In motivating this work, however, we have in mind
situations where the final state of the chain is most important, rather than averages over all states. The bias
in the final state does not diminish in t. Examples where this may be important include (a) sequential
Monte Carlo (SMC), where, after resampling, a small number of local MCMC moves are performed on
each particle before the next resampling step and (b) parallel tempering, where, after swapping between
chains, a number of local MCMC moves are performed on each chain before the next swap. In a
distributed computing setting, the resampling step of SMC, and the swap step of parallel tempering,
require the synchronization of multiple processes, such that all processors must idle until the slowest
completes. By fixing a real-time budget for local MCMC moves, we can reduce this idle time and
eliminate the bottleneck, but must ensure that the length bias imposed by the real-time budget is
negligible, if not eliminated entirely. In a companion paper (d’Avigneau et al., 2020), we also develop
this idea for parallel tempering-based MCMC.

The compute time of a Markov chain depends on exogenous factors such as processor hardware,
memory bandwidth, I/O load, network traffic, and other jobs contesting the same processor. But,
importantly, it may also depend on the states of the Markov chain. Consider (a) inference for a mixture
model where one parameter gives the number of components, and where the time taken to evaluate the
likelihood of a dataset is proportional to the number of components; (b) a differential model that is
numerically integrated forward in time with an adaptive time step, where the number of steps required
across any given interval is influenced by parameters; (c) a complex posterior distribution simulated using
a pseudomarginal method (Andrieu and Roberts, 2009), where the number of samples required to
marginalize latent variables depends on the parameters; (d) a model requiring approximate Bayesian
computation with a rejection sampling mechanism, where the acceptance rate is higher for parameters
with higher likelihood, and so the compute time lower, and vice versa. Even in simple cases, there may be
a hidden dependency. Consider, for example, a Metropolis–Hastings sampler where there is some
seemingly innocuous book-keeping code, such as for output, to be run when a proposal is accepted,
but not when a proposal is rejected. States from which the proposal is more likely to accept then have
longer expected hold time due to this book-keeping code. In general, we should assume that there is
indeed a dependency, and assess whether the resulting bias is appreciable.

The first major contribution of the present work is a framework for converting any existing Monte
Carlo algorithm into an anytime Monte Carlo algorithm, by running multiple Markov chains in a
particular manner. The framework can be applied in numerous contexts where real-time considerations
might be beneficial. The second major contribution is an application in one such context: an SMC2

e7-2 Lawrence M. Murray et al.

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


algorithm deployed on a large-scale distributed computing system. An anytime treatment is applied to the
MCMC moves steps that precede resampling, which requires synchronization between processors, and
can be a bottleneck in distributed deployment of the algorithm. The real-time budget reduces wait time at
synchronization, relieves the resampling bottleneck, provides direct control over the compute budget for
the most expensive part of the computation, and in doing so provides indirect control over the total
compute budget.

Anytime Monte Carlo algorithms have recently garnered some interest. Paige et al. (2014) propose an
anytime SMC algorithm called the particle cascade. This transforms the structure of conventional SMC
by running particles to completion one by one with the sufficient statistics of preceding particles used to
make birth–death decisions in place of the usual resampling step. To circumvent the sort of real-time
pitfalls discussed in this work, a random schedule of work units is used. This requires a central scheduler,
so it is not immediately obvious how the particle cascade might be distributed. In contrast, we propose, in
this work, an SMC algorithm with the conventional structure, but including parameter estimation as in
SMC2 (Chopin et al., 2013), and an anytime treatment of the move step. This facilitates distributed
implementation, but provides only indirect control over the total compute budget.

The construction of Monte Carlo estimators under real-time budgets has been considered before.
Heidelberger (1988), Glynn and Heidelberger (1990), and Glynn and Heidelberger (1991) suggest a
number of estimators for the mean of a random variable after performing independent and identically
distributed (iid) simulation for some prescribed length of real time. Bias and variance results are
established for each. The validity of their results relies on the exchangeability of simulations conditioned
on their number, and does not extend to MCMC algorithms except for the special cases of regenerative
Markov chains and perfect simulation. The present work establishes results for MCMC algorithms (for
which, of course, iid sampling is a special case) albeit for a different problem definition.

A number of other recent works are relevant. Recent papers have considered the distributed imple-
mentation of Gibbs sampling and the implications of asynchronous updates in this context, which
involves real time considerations (Terenin et al., 2015; De Sa et al., 2016). As mentioned above,
optimization algorithms already exhibit anytime behavior and it is natural to consider whether they might
be leveraged to develop anytime Monte Carlo algorithms, perhaps in a manner similar to the weighted
likelihood bootstrap (Newton and Raftery, 1994). Meeds and Welling (2015) suggest an approach along
this vein for approximate Bayesian computation. Beyond Monte Carlo, other methods for probabilistic
inference might be considered in an anytime setting. Embedded systems, with organic real-time con-
straints, yield natural examples (e.g., Ramos and Cozman, 2005).

The remainder of the paper is structured as follows. Section 2 formalizes the problem and the
framework of a proposed solution; proofs are deferred to Appendix 7 in Supplementary Material.
Section 3 uses the framework to establish SMCalgorithmswith anytimemoves, among them an algorithm
suitable for large-scale distributed computing. Section 4 validates the framework on a simple toy problem,
and demonstrates the SMC algorithms on a large-scale distributed computing case study. Section 5
discusses some of the finer points of the results, before Section 6 concludes.

2. Framework

Let Xnð Þ∞n¼0 be a Markov chain with initial state X0, evolving on a space X, with transition kernel
Xn ∣xn�1 � κ dx jxn�1ð Þ and target (invariant) distribution π dxð Þ. We do not assume that κ has a density, for
example, it may be a Metropolis—Hastings kernel. (In contrast the notation for a probability density
would be κ x jxn�1ð Þ:) A computer processor takes some random and positive real time Hn�1 to complete
the computations necessary to transition from Xn�1 to Xn via κ. Let Hn�1 ∣xn�1 � τ dh jxn�1ð Þ for some
probability distribution τ. The cumulative distribution function (cdf) corresponding to τ is denoted
Fτ h jxn�1ð Þ, and its survival function Fτ h jxn�1ð Þ¼ 1�Fτ h jxn�1ð Þ. We assume (a) that H> ϵ> 0 for
some minimal time ϵ, (b) that supx∈XEτ H jx½ �<∞, and (c) that τ is homogeneous in time.

The distribution τ captures the dependency of hold time on the current state of the Markov chain, as
well as on exogenous factors such as contesting jobs that run on the same processor, memory

Data-Centric Engineering e7-3

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


management, I/O, network latency, and so on. The first two assumptions seem reasonable: on a computer
processor, a computation must take at least one clock cycle, justifying a lower bound on H, and be
expected to complete, justifying finite expectation. The third assumption, of homogeneity, is more
restrictive. Exogenous factors may produce transient effects, such as a contesting process that begins
part way through the computation of interest. We discuss the relaxation of this assumption—as future
work—in Section 5.

Besides these assumptions, no particular form is imposed on τ. Importantly, we do not assume that τ is
memoryless. In general, nothing is known about τ except how to simulate it, precisely by recording the
length of time Hn�1 taken to simulate Xn ∣xn�1 � κ dx jxn�1ð Þ. In this sense, there exists a joint kernel
κ dxn,dhn�1 jxn�1ð Þ¼ κ dxnjhn�1,xn�1ð Þτ dhn�1jxn�1ð Þ for which the original kernel κ is the marginal over
all possible hold times Hn�1 in transit from Xn�1 to Xn:

κ dx jxn�1ð Þ¼
Z ∞

0
κ dx jxn�1,hn�1ð Þτ dhn�1jxn�1ð Þ:

We now construct a real-time semi-Markov jump process to describe the progress of the computation in
real time. The states of the process are given by the sequence Xnð Þ∞n¼0, with associated hold times Hnð Þ∞n¼0.
Define the arrival time of the nth state Xn as

An≔
Xn�1

i¼0

Hi,

for all n≥1, and a0 ¼ 0, and a process counting the number of arrivals by time t as

N tð Þ≔max n :An≤ tf g:
Figure 1 illustrates a realization of the process.

Now, construct a continuous-time Markov jump process to chart the progress of the simulation in real
time. Let X tð Þ≔XN tð Þ (the interpolated process in Figure 1) and define the lag time elapsed since the last
jump as L tð Þ≔ t�AN tð Þ. Then X, Lð Þ tð Þ is a Markov jump process.

The process X, Lð Þ tð Þ is readily manipulated to establish the following properties. Proofs are given in
Appendix A in Supplementary Material.

Proposition 1. The stationary distribution of the Markov jump process X, Lð Þ tð Þ is

α dx,dlð Þ¼Fτ l jxð Þ
Eτ H½ � π dxð Þdl:

Figure 1. A realization of a Markov chain Xnð Þ∞n¼0 in real time, with hold times Hnð Þ∞n¼0 and arrival times
Anð Þ∞n¼0.

e7-4 Lawrence M. Murray et al.

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


Corollary 2. With respect to π dxð Þ, α dxð Þ is length-biased by expected hold time:

α dxð Þ¼Eτ H jx½ �
Eτ H½ � π dxð Þ:

The interpretation of these results are as follows: if the chain X, Lð Þ tð Þ is initialized at some time
t¼ b< 0 such that it is in stationary at time t¼ 0, then X 0ð Þ’s distribution is precisely given in Corollary
2. By Corollary 2, in stationarity, the likelihood of a particular x appearing is proportional to the likelihood
π with which it arises under the original Markov chain, and the expected length of real time for which it
holds when it does.

Corollary 3. Let X, Lð Þ� α, then the conditional probability distribution of X given L< ϵ is π.

Corollary 3 simply recovers the original Markov chain from the Markov jump process. This result
follows since Fτ l jxð Þ¼ 1 (of Proposition 1) for all x and l ≤ ϵ.

We refer to α as the anytime distribution. It is precisely the stationary distribution of the Markov jump
process. The new name is introduced to distinguish it from the stationary distribution π of the original
Markov chain, which we continue to refer to as the target distribution.

Finally, we state an ergodic theorem from Alsmeyer (1997); see also Alsmeyer (1994). Rather than
study the process X,Lð Þ tð Þ, we can equivalently study Xn,Anð Þ∞n¼1, with the initial state being X0,0ð Þ. This
is a Markov renewal process. Conditioned on Xnð Þ∞n¼0, the hold times Hnð Þ∞n¼0 are independent. This
conditional independence can be exploited to derive ergodic properties of Xn,Anð Þ∞n¼1, based on assumed
regularity of the driving chain Xnð Þ∞n¼0.

Proposition 4 (Alsmeyer, 1997, Corollary1).Assume that theMarkov chain Xnð Þ∞n¼1 is Harris recurrent.
For a function g :X!ℝ with

R
g xð Þj jα dxð Þ<∞,

lim
t!∞

E g X tð Þð Þ jx 0ð Þ, l 0ð Þ½ � ¼
Z

g xð Þα dxð Þ

for π-almost all x 0ð Þ and all l 0ð Þ.
A further interpretation of this result confirms that, regardless of howwe initialize the chain X,Lð Þ tð Þ at

time t¼ 0, at a future time t¼ T the distribution of X Tð Þ is close to α and approaches α as T !∞.

2.1. Establishing anytime behavior

The above results establish that, when interrupted at real time t, the state of a Monte Carlo computation is
distributed according to the anytime distribution, α. We wish to establish situations in which it is instead
distributed according to the target distribution, π. This will allow us to draw samples of π simply by
interrupting the running process at any time t, and will form the basis of anytimeMonte Carlo algorithms.

Recalling Corollary 2, a sufficient condition to establish α dxð Þ¼ π dxð Þ is that Eτ Hjx½ � ¼Eτ H½ �, that is
for the expected hold time to be independent of X. For iid sampling, this is trivially the case: we have
κ dx jxn�1ð Þ¼ π dxð Þ, the hold time Hn�1 for Xn�1 is the time taken to draw Xn � π dxð Þ and so is
independent of Xn�1, and Eτ H jx½ � ¼Eτ H½ �.

For non-iid sampling, first consider the following change to the Markov kernel:

Xn ∣xn�2 � κ dx jxn�2ð Þ:
That is, each new stateXn depends not on the previous state, xn�1, but on one state back again, xn�2, so that
odd- and even-numbered states are independent. The hold times of the even-numbered states are the

Data-Centric Engineering e7-5

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


compute times of the odd-numbered states and vice versa, so that hold times are independent of states,
and the desired property Eτ H jx½ � ¼Eτ H½ �, and so α dxð Þ¼ π dxð Þ, is achieved. This sampling strategy
is illustrated in Figure 2 where the odd chain is Chain 1 (Superscript 1) and the even chain is Chain
2. When querying the sampler at any time t, the sampler returns the chain that is holding and not being
worked, which is Chain 2 in the figure. It follows then that the returned sample is distributed according
to π as desired. In an attempt to increase the efficiency of this procedure for SMCmethods in Section 3,
we extend the idea to Kþ1 chains as follows. The processor works/samples each of the Kþ1 chains in
sequential order. At any time t, when queried, all but one chain is being worked and the processor
returns the states of the K chains that are not being worked on. Each state will then be an independent
sample with distribution π.

Formally, suppose that we are simulating K number of Markov chains, with K a positive integer, plus
one extra chain. Denote these Kþ1 chains as X1:Kþ1

n

� �∞
n¼0. For simplicity, assume that all have the same

target distribution π, kernel κ, and hold time distribution τ. The joint target is

Π dx1:Kþ1
� �¼YKþ1

k¼1

π dxk
� �

:

The Kþ1 chains are simulated on the same processor, one at a time, in a serial schedule. To avoid
introducing an index for the currently simulating chain, it is equivalent that chain Kþ1 is always the one
simulating, but that states are rotated between chains after each jump. Specifically, the state of chainKþ1
at step n�1 becomes the state of Chain 1 at step n, and the state of each other chain k∈ 1,…,Kf g becomes
the state of chain kþ1. The transition can then be written as

X1:Kþ1
n ∣x1:Kþ1

n�1 � κ dx1n jxKþ1
n�1

� �YK
k¼1

δxkn�1
dxkþ1

n

� �
:

As before, this joint Markov chain has an associated joint Markov jump process X1:Kþ1, L
� �

tð Þ, where
L tð Þ is the lag time elapsed since the last jump. This joint Markov jump process is readily manipulated to
yield the following properties, analogous to the single chain case. Proofs are given in Appendix A in
Supplementary Material.

Figure 2. Illustration of the multiple chain concept with two Markov chains. At any time, one chain is
being simulated (indicated with a dotted line) while one chain is waiting (indicated with a solid line).
When querying the process at some time t, it is the state of the waiting chain that is reported, so that the
hold times of each chain are the compute times of the other chain. ForKþ1≥2 chains, there is always one
chain simulating while K chains wait, and when querying the process at some time t, the states of all K

waiting chains are reported.

e7-6 Lawrence M. Murray et al.

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


Proposition 5. The stationary distribution of the Markov jump process X1:Kþ1,L
� �

tð Þ is

A dx1:Kþ1,dl
� �¼ α dxKþ1,dl

� �YK
k¼1

π dxk
� �

: (1)

This result for the joint process extrapolates Proposition 1. To see this, note that the key ingredients of
Proposition 1, Fτ l jxð Þ and π dxð Þ, are now replaced with Fτ l jxKþ1ð Þ and Π dx1:Kþ1ð Þ. The hold-time
survival function for the product chain isFτ l jxKþ1ð Þ, since it related to the time taken to execute the kernel
κ dx1n jxKþ1

n�1

� �
, which depends on the state of chain Kþ1 only.

Corollary 6. With respect toΠ dx1:Kþ1ð Þ, A dx1:Kþ1ð Þ is length-biased by expected hold time on the extra
state XKþ1 only:

A dx1:Kþ1
� �¼ α dxKþ1

� �YK
k¼1

π dxk
� �

:

Corollary 7. Let X1:Kþ1,L
� ��A, then the conditional probability distribution of X1:Kþ1 given L< ϵ is

Π dx1:Kþ1ð Þ.
We state without proof that the product chain construction also satisfies the ergodic theorem under the

same assumptions as Proposition 4. Numerical validation is given in Section 4.1.
The practical implication of these properties is that anyMCMC algorithm runningK≥1 chains can be

converted into an anytime MCMC algorithm by interleaving one extra chain. When the computation is
interrupted at some time t, the state of the extra chain is distributed according to α, while the states of the
remaining K chains are independently distributed according to π. The state of the extra chain is simply
discarded to eliminate the length bias.

3. Methods

It is straightforward to apply the above framework to design anytimeMCMCalgorithms. One simply runs
Kþ1 chains of the desired MCMC algorithm on a single processor, using a serial schedule, and
eliminating the state of the extra chain whenever the computation is interrupted at some real time t.
The anytime framework is particularly useful within a broader SMC method (Del Moral et al., 2006),
where there already existmultiple chains (particles) withwhich to establish anytime behavior.We propose
appropriate SMC methods in this section.

3.1. Sequential Monte Carlo

We are interested in the context of sequential Bayesian inference targeting a posterior distribution π dxð Þ¼
p dx jy1:Vð Þ for a given dataset y1:V . For the purposes of SMC, we assume that the target distribution π dxð )
admits a density π xð Þ in order to compute importance weights.

Define a sequence of target distributions π0 dxð Þ¼ p dxð Þ and πv dxð Þ∝p dx jy1:vð Þ for v¼ 1,…,V. The
first target equals the prior distribution, while the final target equals the posterior distribution,
πV dxð Þ¼ p dx jy1:Vð Þ¼ π dxð Þ. Each target πv has an associated Markov kernel κv, invariant to that target,
which could be defined using an MCMC algorithm.

An SMC algorithm propagates a set of weighted samples (particles) through the sequence of target
distributions. At step v, the target πv dxð Þ is represented by an empirical approximation bπv dxð Þ, constructed
with K number of samples x1:Kv and their associated weights w1:K

v :

bπv dxð Þ¼
PK

k¼1w
k
vδxkv dxð ÞPK

k¼1w
k
v

: (2)

Data-Centric Engineering e7-7

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


A basic SMC algorithm proceeds as in Algorithm 1.

Algorithm 1. A basic SMC algorithm. Where k appears, the operation is performed for all
k∈ 1,…,Kf g.

1. Initialize xk0 � π0 dx0ð Þ.
2. For v¼ 1,…,V

(a) Set xkv ¼ xkv�1 and weight wk
v ¼ πv xkv

� �
=πv�1 xkv

� �
∝p yv jxkvy1:v�1

� �
, to form the empirical approxi-

mation bπv dxvð Þ≈πv dxvð Þ.
(b) Resample xkv �bπv dxvð Þ.
(c) Move xkv � κv dxvjxkv

� �
for nv steps.

An extension of the algorithm concerns the case where the sequence of target distributions requires
marginalizing over some additional latent variables. In these cases, a pseudomarginal approach (Andrieu
and Roberts, 2009) can be adopted, replacing the exact weight computations with unbiased estimates
(Fearnhead et al., 2008, 2010). For example, for a state-space model at step v, there are v hidden states
z1:v∈ℤv to marginalize over:

πv dxð Þ¼
Z
ℤv
πv dx,dz1:vð Þ:

Unbiased estimates of this integral can be obtained by a nested SMC procedure targeting πv dz1:vjxð Þ,
leading to the algorithm known as SMC2 (Chopin et al., 2013), where the kernels κv are particle MCMC
moves (Andrieu et al., 2010). This is used for the example of Section 4.2.

3.2. SMC with anytime moves

In the conventional SMC algorithm, it is necessary to choose nv, the number of kernel moves to make per
particle in Step 2(c). For anytimemoves, this is replacedwith a real-time budget tv. Move steps are typically
the most expensive steps—certainly so for SMC2—with the potential for significant variability in the time
taken tomove each particle. An anytime treatment provides control over the budget of themove stepwhich,
if it is indeed the most expensive step, provides substantial control over the total budget also.

The anytime framework is used as follows. Associated with each target distribution πv, and its kernel
κv, is a hold time distribution τv, and implied anytime distribution αv. At step v, after resampling, an extra
particle and lag xKþ1

v , lv
� �

are drawn (approximately) from the anytime distribution αv. The real-time
Markov jump process X1:Kþ1

v , Lv
� �

tð Þ is then initialized with these particles and lag, and simulated
forward until time tv is reached. The extra chain and lag are then eliminated, and the states of the remaining
chains are restored as the K particles x1:Kv .

The complete algorithm is given in Algorithm 2.

Algorithm 2. SMC with anytime moves. Where k appears, the operation is performed for all
k∈ 1,…,Kf g.

1. Initialize xk0 � π0 dx0ð Þ.
2. For v¼ 1,…,V

(a) Set xkv ¼ xkv�1 and weight wk
v ¼ πv xkv

� �
=πv�1 xkv

� �
∝ p yv jxkvy1:v�1

� �
, to form the empirical approxi-

mation bπv dxvð Þ≈πv dxvð Þ.
(b) Resample xkv �bπv dxvð Þ.

e7-8 Lawrence M. Murray et al.

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


(c) Draw (approximately) an extra particle and lag xKþ1
v , lv

� �� αv dxv, dlvð Þ. Construct the real-time
Markov jump process X1:Kþ1

v , Lv
� �

0ð Þ¼ x1:Kþ1
v , lv

� �
and simulate it forward for some real time tv.

Set x1:Kv ¼X1:K
v tvð Þ, discarding the extra particle and lag.

By the end of the move Step 2(c), as tv !∞, the particles x1:Kþ1
v become distributed according to Av,

regardless of their distribution after the resampling Step 2(b). This is assured by Proposition 4. After
eliminating the extra particle, the remaining x1:Kv are distributed according to Πv.

In practice, of course, it is necessary to choose some finite tv for which the x1:Kv are distributed only
approximately according toΠv. For any given tv, their divergence in distribution fromΠv is minimized by
an initialization as close as possible toAv. We have, already, the firstK chains initialized from an empirical
approximation of the target, bπv, which is unlikely to be improved upon. We need only consider the extra
particle and lag.

An easily-implemented choice is to draw xKþ1
v , lv

� ��bπv dxvð Þδ0 dlvð Þ. In practice, this merely involves
resampling Kþ1 rather than K particles in Step 2(b), setting lv ¼ 0 and proceeding with the first move.

An alternative is xKþ1
v , lv

� �� δxKþ1
v�1

dxvð Þδlv�1 dlvð Þ. This resumes the computation of the extra particle
that was discarded at step v�1. As tv�1 !∞, it amounts to approximating αv by αv�1, which is sensible if
the sequence of anytime distributions changes only slowly.

3.3. Distributed SMC with anytime moves

While the potential to parallelize SMC is widely recognized (see e.g., Lee et al., 2010; Murray, 2015), the
resampling Step 2(b) in Algorithm 1 is acknowledged as a potential bottleneck when in a distributed
computing environment ofP number of processors. This is due to collective communication: all processors
must synchronize after completing the preceding steps in order for resampling to proceed. Resampling
cannot proceed until the slowest among them completes. As this is a maximum among P processors, the
expected wait time increases with P. Recent work has considered either global pairwise interaction
(Murray, 2011; Murray et al., 2016) or limited interaction (Vergé et al., 2015; Lee and Whiteley, 2016;
Whiteley et al., 2016) to address this issue. Instead, we propose to preserve collective communication, but
to use an anytime move step to ensure the simultaneous readiness of all processors for resampling.

SMC with anytime moves is readily distributed across multiple processors. The K particles are
partitioned so that processor p∈ 1,…,Pf g has some number of particles, denoted Kp, and so thatPP

p¼1K
p ¼K. Each processor can proceed with initialization, move and weight steps independently of

the other processors. After the resampling step, each processor has Kp number of particles. During the
move step, each processor draws its own extra particle and lag from the anytime distribution, giving it
Kpþ1 particles, and discards them at the end of the step leaving it with Kp again. Collective commu-
nication is required for the resampling step, and an appropriate distributed resampling scheme should be
used (see e.g., Bolić et al., 2005; Vergé et al., 2015; Lee and Whiteley, 2016).

In the simplest case, all workers have homogeneous hardware and the obvious partition of particles is
Kp ¼K=P. For heterogeneous hardware another partition may be set a priori (see e.g., Rosenthal, 2000).
Note also that with heterogenous hardware, each processor may have a different compute capability and
therefore different distribution τv. For processor p, we denote this τpv and the associated anytime
distribution αpv . This difference between processors is easily accommodated, as the anytime treatment
is local to each processor.

A distributed SMC algorithm with anytime moves proceeds as in Algorithm 3.

Algorithm 3. SMC with anytime moves. Where k appears, the operation is performed for all
k∈ 1,…,Kpf g.

1. On each processor p, initialize xk0 � π0 dxð Þ.

Data-Centric Engineering e7-9

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


2. For v¼ 1,…,V
(a) On each processor p, set xkv ¼ xkv�1 and weight wk

v ¼ πv xkv
� �

=πv�1 xkv
� �

∝ p yv jxkv ,y1:v�1

� �
. Collec-

tively, all K particles form the empirical approximation bπv dxvð Þ≈πv dxvð Þ.
(b) Collectively resample xkv �bπv dxvð Þ and redistribute the particles among processors so that proces-

sor p has exactly Kp particles again.
(c) On each processor p, draw (approximately) an extra particle and lag xK

pþ1
v , lv

� �� αpv dx,dlð Þ.
Construct the real-time process X1:Kpþ1

v ,Lv
� �

0ð Þ¼ x1:K
pþ1

v , lv
� �

and simulate it forward for some
real time tv. Set x1:K

p

v ¼X1:Kp

v tvð Þ, discarding the extra particle and lag.

The preceding discussion around the approximate anytime distribution still holds for each processor in
isolation: for any given budget tv, to minimize the divergence between the distribution of particles and the
target distribution, bAp

v should be chosen as close as possible to Ap
v .

3.4. Setting the compute budget

We set an overall compute budget for move steps, which we denote t, and apportion this into a quota for
each move step v, which we denote tv as above. This requires some a priori knowledge of the compute
profile for the problem at hand.

Given bπv�1, if the compute time necessary to obtain bπv is constant with respect to v, then a suitable
quota for the vth move step is the obvious tv ¼ t=V . If, instead, the compute time grows linearly in v, as is
the case for SMC2, then we expect the time taken to complete the vth step to be proportional to vþ c
(where the constant c is used to capture overheads). A sensible quota for the vth move step is then

tv ¼ vþ cPV
u¼1 uþ cð Þ

 !
t¼ 2 vþcð Þ

V Vþ2cþ1ð Þ
� �

t: (3)

For the constant, a default choice might be c¼ 0; higher values shift more time to earlier time steps.
This approximation does neglect some complexities. The use of memory-efficient path storage (Jacob

et al., 2015), for example, introduces a time-dependent contribution of O Kð Þ at v¼ 1, increasing to
O K logKð Þ with v as the ancestry tree grows. Nonetheless, for the example of Section 4.2 we observe,
anecdotally, that this partitioning of the time budget produces surprisingly consistent results with respect
to the random number of moves completed at each move step v.

3.5. Resampling considerations

To reduce the variance in resampling outcomes (Douc and Cappé, 2005), implementations of SMC often
use schemes such as systematic, stratified (Kitagawa, 1996) or residual (Liu and Chen, 1998) resampling,
rather than the multinomial scheme (Gordon et al., 1993) with which the above algorithms have been
introduced. The implementation of these alternative schemes does not necessarily leave the random
variables X1

v ,…,XK
v exchangeable; for example, the offspring of a particle are typically neighbors in the

output of systematic or stratified resampling (see e.g., Murray et al., 2016).
Likewise, distributed resampling schemes do not necessarily redistribute particles identically between

processors. For example, the implementation in LibBi (Murray, 2015) attempts to minimize the transport
of particles between processors, such that the offspring of a parent particle aremore likely to remain on the
same processor as that particle. This means that the distribution of theKp particles on each processor may
have greater divergence from πv than the distribution of the K particles overall.

In both cases, the effect is that particles are initialized further from the idealAv. Proposition 4 nonetheless
ensures consistency as tv!∞. A random permutation of particles may result in a better initialization, but
this can be costly, especially in a distributed implementation where particles must be transported between
processors. For a fixed total budget, the time spent permuting may be better spent by increasing tv. The
optimal choice is difficult to identify in general; we return to this point in the discussion.

e7-10 Lawrence M. Murray et al.

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


4. Experiments

This section presents two case studies to empirically investigate the anytime framework and the
proposed SMC methods. The first uses a simple model where real-time behavior is simulated in order
to validate the results of Section 2. The second considers a Lorenz ’96 state-space model with nontrivial
likelihood and compute profile, testing the SMC methods of Section 3 in two real-world computing
environments.

4.1. Simulation study

Consider the model

X�Gamma k,θð Þ
H ∣x�Gamma xp=θ,θð Þ,

with shape parameter k, scale parameter θ, and polynomial degree p. The two Gamma distributions
correspond to π and τ, respectively. The anytime distribution is:

α dxð Þ¼Eτ H jx½ �
Eτ H½ � π dxð Þ∝xkþp�1 exp � x

θ

� �
dx,

which is Gamma kþp,θð Þ.
Of course, in real situations, τ is not known explicitly, and is merely implied by the algorithm used to

simulate X. For this first study, however, we assume the explicit form above and simulate virtual hold
times. This permits exploration of the real-time effects of polynomial computational complexity in a
controlled environment, including constant (p¼ 0), linear (p¼ 1), quadratic (p¼ 2) and cubic (p¼ 3)
complexity.

To construct a Markov chain Xnð Þ∞n¼0 with target distribution Gamma k,θð Þ, first consider a Markov
chain Znð Þ∞n¼0 with target distribution N 0,1ð Þ and kernel

Zn ∣ zn�1 �N ρzn�1,1�ρ2
� �

,

where ρ is an autocorrelation parameter. Now define Xnð Þ∞n¼0 as

xn ¼F�1
γ Fϕ znð Þ;k,θ� �

,

where F�1
γ is the inverse cdf of the Gamma distribution with parameters k and θ, and Fϕ is the cdf of the

standard normal distribution. By construction, ρ parameterizes a Gaussian copula inducing correlation
between adjacent elements of Xnð Þ∞n¼0.

For the experiments in this section, we set k¼ 2, θ¼ 1=2, ρ¼ 1=2, and use p ∈ 0,1,2,3f g. In all cases
Markov chains are initialized from π and simulated for 200 units of virtual time.

We employ the one-Wasserstein distance to compare distributions. For two univariate distributions μ
and ν with associated cdfs Fμ xð Þ and Fν xð Þ, the one-Wasserstein distance d1 Fμ,Fν

� �
can be evaluated as

(Shorack and Wellner, 1986, p. 64)

d1 Fμ,Fν

� �¼ Z ∞

�∞
Fμ xð Þ�Fν xð Þ�� ��dx,

which, for the purposes of this example, is sufficiently approximated by numerical integration. The first
distribution will always be the empirical distribution of a set of n samples, its cdf denoted Fn xð Þ. If those
samples are distributed according to the second distribution, the distance will go to zero as n increases. See
Figure 3.

4.1.1. Validation of the anytime distribution
We first validate, empirically, that the anytime distribution is indeed Gamma kþp,θð Þ as expected. We
simulate n¼ 218 Markov chains. At each integer time we take the state of all n chains to construct an

Data-Centric Engineering e7-11

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


empirical distribution. We then compute the one-Wasserstein distance between this and the anytime
distribution, using the empirical cdf Fn xð Þ and anytime cdf Fα xð Þ.

Figure 2 plots the results over time. In all cases the distance goes to zero in t, slower for larger p. This
affirms the theoretical results obtained in Section 2.

4.1.2. Validation of the multiple chain strategy
We next check the efficacy of the multiple chain strategy in eliminating length bias. For
Kþ1∈ 2,4,8,16,32f g, we initialize Kþ1 chains and simulate them forward in a serial schedule. For
n¼ 218, this is repeated n= Kþ1ð Þ times. We then consider ignoring the length bias versus correcting for
it. In the first case, we take the states of all Kþ1 chains at each time, giving n samples from which to
construct an empirical cdf Fn xð Þ. In the second case, we eliminate the extra chain but keep the remaining
K, giving nK= Kþ1ð Þ samples from which to construct an empirical cdf FnK= Kþ1ð Þ xð Þ. In both cases, we
compute the one-Wasserstein distance between the empirical and target distributions, using the appro-
priate empirical cdf, and the target cdf Fπ xð Þ.

Figure 4 plots the results over time for both the uncorrected (top) and corrected (bottom) cases. For
the uncorrected case, the one-Wasserstein distance between the empirical distribution and target
distribution does not converge to zero. Neither does it become arbitrarily bad: the distance is due to
one of theKþ1 chains being distributed according to α and not π, the influence of which decreases asK
increases.

For the corrected case, where the extra chain is eliminated, the distance converges to zero in time. This
confirms the efficacy of the multiple chain strategy in yielding an anytime distribution equal to the target
distribution.

4.2. Distributed computing study

Consider a stochastic extension of the deterministic Lorenz ’96 (Lorenz, 2006) model described by the
stochastic differential equation (SDE)

dXd ¼ Xd�1 Xdþ1�Xd�2ð Þ�XdþFð ÞdtþσdWd, (4)

with parameterF, constant σ, state vectorX tð Þ∈ℝD, andWiener process vectorW tð Þ∈ℝD, with elements
of those vectors indexed cyclically by subscripts (i.e., Xd�D �Xd �XdþD). The SDEmay be equivalently
interpreted in the Ito or Stratonovich sense, as the noise term is additive (Kloeden and Platen, 1992,
p. 157). The observation model is given by

0 100 200

t

0

0.2

0.4

0.6

0.8

d
1
(F

n
, F

,)

p = 0

0 100 200

t

p = 1

0 100 200

t

p = 2

0 100 200

t

p = 3

Figure 3. Convergence of Markov chains to the anytime distribution for the simulation study, with
constant (p¼ 0), linear (p¼ 1), quadratic (p¼ 2), and cubic (p¼ 3) expected hold time. Each plot shows

the evolution of the one-Wasserstein distance between the anytime distribution and the empirical
distribution of 218 independent Markov chains initialized from the target distribution.

e7-12 Lawrence M. Murray et al.

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


Yd tð Þ�N xd tð Þ,ς2� �
:

We fix D¼ 8, σ2 ¼ 10�4, ς2 ¼ 10�6 and set a prior on the parameter F and initial conditions X 0ð Þ of:
F�U 0,7½ �ð Þ

Xd 0ð Þ�N 0,σ2
� �

:

The SDE can be approximately decomposed into a deterministic drift component given by the ordinary
differential equation (ODE)

dxd
dt

¼ xd�1 xdþ1� xd�2ð Þ� xdþF,

and a diffusion component given by the Wiener process. On a fixed time step Δt¼ 5�10�2, the drift
component is first simulated using an appropriate numerical scheme for ODEs. Then, a Wiener process
increment ΔWd �N 0,Δtð Þ is simulated and added to the result. This numerical scheme yields a result
similar to that of Euler–Maruyama for the original SDE but, for drift, substitutes the usual first-order Euler
method with a higher-order Runge–Kutta method. This is advantageous in low-noise regimes where σ is
close to zero, as here. In such cases, the dynamics are drift-dominated and can benefit from the higher-
order scheme (see e.g., Milstein and Tretyakov, 2004, chapter 3).

0 100 200

t

0

0.2

0.4

0.6

0.8

d
1
(F

n
, F
�)

p = 0

0 100 200

t

p = 1

0 100 200

t

p = 2

0 100 200

t

p = 3

0 100 200

t

0

0.2

0.4

0.6

0.8

d
1
(F

nK
/(

K
+

1)
, F
�)

p = 0

0 100 200

t

p = 1

0 100 200

t

p = 2

0 100 200

t

p = 3

Figure 4.Correction of length bias for the simulation study, usingKþ1∈ 2,4,8,16,32f g chains (light to
dark), with constant (p¼ 0), linear (p¼ 1), quadratic (p¼ 2), and cubic (p¼ 3) expected hold time. Each
plot shows the evolution of the one-Wasserstein distance between the empirical and target distributions.
On the top row, the states of all chains contribute to the empirical distribution, which does not converge to
the target. On the bottom row, the state of the extra chain is eliminated, contributing only the remaining

states to the empirical distribution, which does converge to the target.

Data-Centric Engineering e7-13

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


The RK4(3)5[2R+]C algorithm of Kennedy et al. (2000) is used to simulate the drift. This provides a
fourth order solution to the ODE with an embedded third-order solution for error estimates. Adaptive
step-size adjustment is then used as in Hairer et al. (1993). The complete method is implemented
(Murray, 2012) on a graphics processing unit (GPU) as in the LibBi software (www.libbi.org; Murray,
2015).

The Lorenz ’96 model exhibits intricate qualitative behaviors that depend on the parameter F. These
range from decay, to periodicity, to chaos and back again (Figure 5, top row). With an adaptive step-size
adjustment, the number of steps required to simulate trajectories within given error bounds generally
increases with F, so that compute time does also.

We produce a dataset by setting F¼ 4:8801, simulating a single trajectory for 10 time units and taking
partial observations Y1:4 tð Þ every 0.4 time units. This gives 100 observations in total. We then use SMC2

to attempt to recover the correct posterior distribution over F given this dataset. This is nontrivial: this
particular value of F is in a region where the qualitative behavior of the Lorenz ’96 model appears to
switch frequently, in F, between periodic and chaotic regimes (Figure 5, top right), suggesting that the
marginal likelihood may not be smooth in the region of the posterior, and inference may be difficult.

The marginal likelihood p y jFð Þ cannot be computed exactly, but it can be unbiasedly estimated with
SMC. For each value of F on a regular grid, we run SMC with 220 particles to estimate the marginal
likelihood. These estimates are shown in themiddle left of Figure 5. The likelihood is clearlymulti-modal,
and the estimator heteroskedastic. Nevertheless, the variance in the estimator is tolerable in the region of
the posterior distribution (middle right of Figure 5), suggesting that F can be recovered. The real time
taken to compute these estimates is shown in the lower plots of Figure 5. The computations were
performed in a random order through the grid points on F so as to decorrelate F with any transient
exogenous effects on compute time. There appears, in fact, to have been some such effect: note the dotted
line of points above the bulk on each plot, suggesting that a subset of runs have been slowed. This is most
likely due to a contesting process on the shared server on which these computations were run. As
expected, compute time tends to increase in F (after an initial plateau where other factors dominate).
Furthermore, variance appears to increase with F in the higher regions.

We now run SMC2 using the LibBi software on two platforms:

1. A shared-memory machine with 8 GPUs, each with 1,536 cores, for approximately 12,000-way
parallelism, using 210 particles for F, each with 220 particles for X tð Þ, for approximately 1 billion
particles overall. This is a shared machine where contestation from other jobs is expected.

2. A distributed-memory cluster on the Amazon EC2 service, with 128 GPUs, each with 1,536 cores,
for approximately 200,000-way parallelism, using 212 particles for F, each with 220 particles for
X(t), for approximately 4 billion particles overall. This is a dedicated cluster where contestation
from other jobs is not expected.

In order to obtain a more repeatable comparison between conventional SMC2 and SMC2 with anytime
moves, we choose to use the same number of samples ofX tð Þ for all time steps, rather than adapting this in
time as recommended inChopin et al. (2011). For the same reason,we resample at all steps rather than use an
adaptive trigger. With anytime moves, the extra particle and lag are drawn as xKþ1

v , lv
� ��bπv dxvð Þδ0 dlvð Þ.

We first run conventional SMC2, making nv ¼ 10moves per particle at each step v. We then run SMC2

with anytimemoves, prescribing a total budget for move steps of 60min for the 8 GPU configuration, and
5 min for the 128 GPU configuration, apportioned as in equation (3).

The results of the 128 GPU runs are given in Figure 6. Recalling that F¼ 4:8801 for the simulated
dataset, these suggest that the posterior has indeed been recovered successfully, and there is no indication
that the posterior obtained with anytime move steps is much different from that obtained using the
conventional method.

Compute profiles for the runs are given in Figure 7, showing the busy and wait times of all processors
involved in the computations.We see obvious wait timewith conventional SMC2, far more pronounced in
the eight GPU cases, where a contesting process on one processor has encumbered the entire computation.

e7-14 Lawrence M. Murray et al.

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

http://www.libbi.org
https://doi.org/10.1017/dce.2021.6


The anytime move step grants a robustness to this contesting process, and wait times are significantly
reduced. For the 128 GPU case, even in the absence of such exogenous problems, wait times are
noticeably reduced.

0 1 2 3 4 5 6 7

F

-4

-2

0

2

4

6

8
X

4.75 4.8 4.85 4.9 4.95 5

F

-4

-2

0

2

4

6

8

X

0 1 2 3 4 5 6 7

F

-3000

-2500

-2000

-1500

-1000

-500

0

lo
g 

lik
el

ih
oo

d

4.75 4.8 4.85 4.9 4.95 5

F

-90

-89

-88

-87

-86

-85

-84

lo
g 

lik
el

ih
oo

d

0 1 2 3 4 5 6 7

F

0

1

2

3

4

5

6

co
m

pu
te

 ti
m

e 
(s

)

4.75 4.8 4.85 4.9 4.95 5

F

0

0.5

1

1.5

2

2.5

3

3.5

co
m

pu
te

 ti
m

e 
(s

)

Figure 5. Elucidating the Lorenz ’96 model. The left column shows the range F ∈ 0,7½ � as in the uniform
prior distribution, while the right column shows a narrower range of F in the vicinity of the posterior
distribution. The solid vertical lines indicate the value F¼ 4:8801, with which data are simulated. The
first row is a bifurcation diagram depicting the stationary distribution of any element ofX tð Þ for various
values of F. Each column is a density plot for a particular value of F; darker for higher density values,
scaled so that the mode is black. Note the intricate behaviors of decay, periodicity, and chaos induced by
F. The second row depicts estimates of the marginal log-likelihood of the simulated dataset for the same
values of F, using SMC with 220 particles. Multiple modes and heteroskedasticity are apparent. The third
row depicts the compute time taken to obtain these estimates, showing increasing compute time in F after

an initial plateau.

Data-Centric Engineering e7-15

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


5. Discussion

The framework presented is a generic means by which anyMCMC algorithm—including iid sampling as
a special case—can be made an anytime Monte Carlo algorithm. This facilitates the configuration of
Monte Carlo computation in real-time terms, rather than in the number of simulations. The benefits of this
have been demonstrated in a distributed computing context where, by setting real-time compute budgets,
wait times are significantly reduced for an SMC algorithm that requires collective communication. The
framework has potential applications elsewhere, for example as a foundation for real-time, fault-tolerant
and energy-constrained Monte Carlo algorithms, for the management of cloud computing budgets, or for
the fair computational comparison of methods.

We have assumed throughout that an algorithm is given to simulate the target distribution π, and that
the anytime distribution α is merely a consequence of this. The aim has then been to correct the length bias
in α. This is a pragmatic approach, as it leverages existing Monte Carlo algorithms. A tantalizing
alternative is to develop algorithms that, from the outset, yield π as the anytime distribution. This might
be done with an underlyingMarkov chain that targets something other than π but that, by design, yields π
once length biased. We expect, however, that to do this even approximately will require at least some
knowledge of τ, which will restrict its applicability to specific cases only.

The proposed SMC method uses anytime move steps, but is not a complete anytime algorithm, as it
does not provide control over the total compute budget. Its objective is to minimize the wait time that
precedes resampling steps in a distributed implementation of SMC. On this account, it succeeds. A
complete anytime SMC algorithm (of a conventional structure) will require, in addition, anytime
weighting and anytime resampling steps, as well as the apportioning of the total compute budget between
these. Because approximations may appear in each of these steps, the apportioning is not straightforward,
and will involve tradeoffs. As already identified, for example, the redistribution of particles after
resampling in a distributed environment is an expensive operation, and all or part of that time may be
better invested in the budget allocation for anytime moves. Such investigations have been left to future
work. An alternative means to an anytime SMC algorithm is to use a different structure to the
conventional, as in the particle cascade (Paige et al., 2014). Whatever the structure, these anytime
algorithms are somewhat more elaborate than the standard SMC algorithms for which theoretical results
have been established, and may warrant further study.

Finally, we return to the strongest of the assumptions of the whole framework: that of the homogeneity
of τ in time. This may be unrealistic in the presence of transient exogenous factors, such as intermittent
network issues, or contesting processes running on the same hardware only temporarily. If the assumption
is relaxed, so that τ varies in time, the anytime distribution will vary as well, and ergodicity will not hold.
Figure 4 suggests that, for example, an exogenous switching factor in τ would induce transient effects in

4.75 4.8 4.85 4.9 4.95 5

F

0

2

4

6

8

10

12

14

4.75 4.8 4.85 4.9 4.95 5

F

0

2

4

6

8

10

12

14

Figure 6. Posterior distributions over F for the Lorenz ’96 case study. On the left, from conventional
SMC2, on the right, from SMC2 with anytime moves, both running on the 128 GPU configuration.

e7-16 Lawrence M. Murray et al.

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


the anytime distribution that are not necessarily eliminated by the multiple chain strategy. There may be
weaker assumptions under which comparable results and appropriate methods can be established, but this
investigation is left to future work.

6. Conclusion

This work has presented an approach to allow any MCMC algorithm to be made an anytime Monte
Carlo algorithm, eliminating the length bias associated with real-time budgets. This is particularly
important in situations where the final state of a Markov chain is more important than computing
averages over all states. It has applications in embedded, distributed, cloud, real-time, and fault-
tolerant computing. To demonstrate the usefulness of the approach, a new SMC2 method has been

20 40 60 80 100 120 140

real time (min)

2
4
6
8

p

10 20 30 40 50 60 70

real time (min)

2
4
6
8

p

1 2 3 4 5 6

real time (min)

20

40

60

80

100

120

p

1 2 3 4 5

real time (min)

20

40

60

80

100

120

p

Figure 7. Compute profiles for the Lorenz ’96 case study. On the left is a conventional distributed SMC2

method with a fixed number of moves per particle after resampling. On the right is distributed SMC2 with
anytime move steps. Each row represents the activity of a single processor over time: light gray while
active and dark gray while waiting. The top profiles are for an eight GPU shared system where contesting
processes are expected. The conventional method on the left exhibits significant idle time on processors 2–
8 due to a contesting job on Processor 1. The two bottom profiles are for the 128 GPU configuration with
no contesting processes. Wait time in the conventional methods on the left is significantly reduced in the

anytime methods on the right.

Data-Centric Engineering e7-17

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.6


presented, which exhibits significantly reduced wait time when run on a large-scale distributed
computing system.

Acknowledgments. The authors would like to thank the IsaacNewton Institute forMathematical Sciences, Cambridge, for support
and hospitality during the programMonte Carlo Methods for Complex Inference Problems (MCMW01), where some of this work
was undertaken. This work was also financially supported by an EPSRC-Cambridge Big Data Travel Grant and EPSRC
(EP/K020153/1), The Alan Turing Institute under the EPSRC grant EP/N510129/1, and the Swedish Foundation for Strategic
Research (SSF) via the project ASSEMBLE. The authors would like to thank Pierre Jacob for helpful conversations.

Competing Interests. The authors declare no competing interests exist.

Data Availability Statement. The methods introduced in this paper are implemented in LibBi version 1.3.0, and the empirical
results may be reproduced with the LibBi Anytime package. Both are available from www.libbi.org.

Author Contributions. Conceptualization, All; Methodology, All; Formal analysis, All; Data curation, L.M.M.; Writing-original
draft, L.M.M. and S.S.S.; Writing–review & editing, All; Funding acquisition, All.

Supplementary Materials. To view supplementary material for this article, please visit http://dx.doi.org/10.1017/dce.2021.6.

References
Alsmeyer G (1994) On the Markov renewal theorem. Stochastic Processes and their Applications 50, 37–56.
Alsmeyer G (1997) The Markov renewal theorem and related results. Markov Processes and Related Fields 3, 103–127.
Andrieu C, Doucet A and Holenstein R (2010) Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical

Society B 72, 269–302. http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x.
AndrieuC andRobertsGO (2009) The pseudo-marginal approach for efficientMonte Carlo computations.Annals of Statistics, 37

(2), 697–725. https://doi.org/10.1214/07-AOS574.
BolićM,DjurićPMandHong S (2005) Resampling algorithms and architectures for distributed particle filters. IEEE Transactions

on Signal Processing 53, 2442–2450. http://dx.doi.org/10.1109/TSP.2005.849185.
ChopinN, JacobP andPapaspiliopoulosO (2011) SMC2: A sequentialMonte Carlo algorithmwith particleMarkov chainMonte

Carlo updates. https://hal.archives-ouvertes.fr/hal-00634215
Chopin N, Jacob P and Papaspiliopoulos O (2013) SMC2: An efficient algorithm for sequential analysis of state space models.

Journal of the Royal Statistical Society B 75, 397–426. http://dx.doi.org/10.1111/j.1467-9868.2012.01046.x.
d’Avigneau A, Singh S and Murray L (2020) Anytime parallel tempering. arXiv.org e-Print archive.
De Sa C, Olukotun K and Ré C (2016) Ensuring rapid mixing and low bias for asynchronous Gibbs sampling.
Del Moral P, Doucet A and Jasra A (2006) Sequential Monte Carlo samplers. Journal of the Royal Statistical Society B 68, 441–

436. http://dx.doi.org/10.1111/j.1467-9868.2006.00553.x.
Douc R and Cappé O (2005) Comparison of resampling schemes for particle filtering. Image and Signal Processing and Analysis,

2005. ISPA 2005. Proceedings of the 4th International Symposium on, pp. 64–69.
Fearnhead P, Papaspiliopoulos O and Roberts GO (2008) Particle filters for partially observed diffusions. Journal of the Royal

Statistical Society B 70, 755–777. http://dx.doi.org/10.1111/j.1467-9868.2008.00661.x.
Fearnhead P, Papaspiliopoulos O, Roberts GO and Stuart A (2010) Random-weight particle filtering of continuous time

processes. Journal of the Royal Statistical Society B 72(4), 497–512. http://dx.doi.org/10.1111/j.1467-9868.2010.00744.x.
Glynn PW and Heidelberger P (1990) Bias properties of budget constraint simulations. Operations Research 38(5), 801–814.
Glynn PW and Heidelberger P (1991) Analysis of parallel replicated simulations under a completion time constraint. ACM

Transactions on Modeling and Computer Simulations 1(1), 3–23.
Gordon N, Salmond D and Smith A (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE

Proceedings-F, 140, 107–113. https://doi.org/10.1049/ip-f-2.1993.0015.
Hairer E, Nørsett S and Wanner G (1993) Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd Edn. Berlin:

Springer-Verlag.
Heidelberger P (1988) Discrete event simulations and parallel processing: Statistical properties. SIAM Journal on Scientific and

Statistical Computing 9(6), 1114–1132. http://dx.doi.org/10.1137/0909077.
Jacob PE, Murray LM and Rubenthaler S (2015) Path storage in the particle filter. Statistics and Computing 25(2), 487–496.

https://doi.org/10.1007/s11222-013-9445-x.
Kennedy CA, Carpenter MH and Lewis RM (2000) Low-storage, explicit Runge–Kutta schemes for the compressible Navier-

Stokes equations. Applied Numerical Mathematics 35, 177–219.
KitagawaG (1996)Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and

Graphical Statistics 5, 1–25. http://dx.doi.org/10.2307/1390750.
Kloeden PE and Platen E (1992) Numerical Solution of Stochastic Differential Equations. Berlin: Springer–Verlag.
Lee A andWhiteley N (2016) Forest resampling for distributed sequential Monte Carlo. Statistical Analysis and Data Mining: The

ASA Data Science Journal 9(4), 230–248. https://doi.org/10.1002/sam.11280.

e7-18 Lawrence M. Murray et al.

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

http://www.libbi.org
http://dx.doi.org/10.1017/dce.2021.6
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1214/07-AOS574
http://dx.doi.org/10.1109/TSP.2005.849185
https://hal.archives-ouvertes.fr/hal-00634215
http://dx.doi.org/10.1111/j.1467-9868.2012.01046.x
http://dx.doi.org/10.1111/j.1467-9868.2006.00553.x
http://dx.doi.org/10.1111/j.1467-9868.2008.00661.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00744.x
https://doi.org/10.1049/ip-f-2.1993.0015
http://dx.doi.org/10.1137/0909077
https://doi.org/10.1007/s11222-013-9445-x
http://dx.doi.org/10.2307/1390750
https://doi.org/10.1002/sam.11280
https://doi.org/10.1017/dce.2021.6


Lee A, Yau C, Giles MB, Doucet A and Holmes CC (2010) On the utility of graphics cards to perform massively parallel
simulation of advancedMonteCarlomethods. Journal of Computational andGraphical Statistics 19, 769–789. http://dx.doi.org/
10.1198/jcgs.2010.10039.

Liu JS and Chen R (1998) Sequential Monte-Carlo methods for dynamic systems. Journal of the American Statistical Association
93, 1032–1044.

Lorenz EN (2006) Predictability of Weather and Climate, Chapter 3: Predictability—A Problem Partly Solved. Cambridge:
Cambridge University Press, pages 40–58. https://doi.org/10.1017/CBO9780511617652.004.

Meeds T and Welling M (2015) Optimization Monte Carlo: Efficient and embarrassingly parallel likelihood-free inference. In
Cortes C, LawrenceND, LeeDD, SugiyamaMandGarnett R (eds),Advances inNeural Information Processing Systems, vol. 28.
Red Hook, NY: Curran Associates, Inc., pp. 2080–2088.

Milstein GN and TretyakovMV (2004) Stochastic Numerics for Mathematical Physics. Scientific Computation.Berlin: Springer-
Verlag. http://dx.doi.org/10.1007/978-3-662-10063-9.

Murray LM (2011) GPU acceleration of the particle filter: The metropolis resampler. In DMMD: Distributed Machine Learning
and Sparse Representation with Massive Data Sets. http://arxiv.org/abs/1202.6163.

Murray LM (2012) GPU acceleration of Runge–Kutta integrators. IEEE Transactions on Parallel and Distributed Systems 23,
94–101. http://dx.doi.org/10.1109/TPDS.2011.61.

Murray LM (2015) Bayesian state-space modelling on high-performance hardware using LibBi. Journal of Statistical Software 67
(10), 1–36. https://doi.org/10.18637/jss.v067.i10.

Murray LM, Lee A and Jacob PE (2016) Parallel resampling in the particle filter. Journal of Computational and Graphical
Statistics 25(3), 789–805. http://dx.doi.org/10.1080/10618600.2015.1062015.

NewtonMAandRafteryAE (1994) Approximate Bayesian inference with the weighted likelihood bootstrap. Journal of the Royal
Statistical Society B 56(1), 3–48.

Paige B,Wood F,Doucet A and Teh YW (2014) Asynchronous anytime sequential Monte Carlo. Advances in Neural Information
Processing Systems 27, 3410–3418.

Ramos FTand Cozman FG (2005) Anytime anyspace probabilistic inference. International Journal of Approximate Reasoning,
38(1), 53–80. https://doi.org/10.1016/j.ijar.2004.04.001.

Rosenthal JS (2000) Parallel computing and Monte Carlo algorithms. Far East Journal of Theoretical Statistics 4, 207–236.
Shorack GR and Wellner JA (1986) Empirical Processes with Applications to Statistics. New York: Wiley.
Terenin A, Simpson D and Draper D (2015) Asynchronous Gibbs sampling. https://arxiv.org/abs/1509.08999.
Vergé C, Dubarry C, Del Moral P and Moulines E (2015) On parallel implementation of sequential Monte Carlo methods: The

island particle model. Statistics and Computing 25(2), 243–260. https://doi.org/10.1007/s11222-013-9429-x.
Whiteley N,Lee A andHeine K (2016) On the role of interaction in sequential Monte Carlo algorithms. Bernoulli 22(1), 494–529.

http://dx.doi.org/10.3150/14-BEJ666.

Cite this article: Murray LM, Singh SS and Lee A (2021). AnytimeMonte Carlo.Data-Centric Engineering, 2: e7. doi:10.1017/
dce.2021.6

Data-Centric Engineering e7-19

https://doi.org/10.1017/dce.2021.6 Published online by Cambridge University Press

http://dx.doi.org/10.1198/jcgs.2010.10039
http://dx.doi.org/10.1198/jcgs.2010.10039
https://doi.org/10.1017/CBO9780511617652.004
http://dx.doi.org/10.1007/978-3-662-10063-9
http://arxiv.org/abs/1202.6163
https://doi.org/10.18637/jss.v067.i10
http://dx.doi.org/10.1080/10618600.2015.1062015
https://doi.org/10.1016/j.ijar.2004.04.001
https://arxiv.org/abs/1509.08999
https://doi.org/10.1007/s11222-013-9429-x
http://dx.doi.org/10.3150/14-BEJ666
https://doi.org/10.1017/dce.2021.6
https://doi.org/10.1017/dce.2021.6
https://doi.org/10.1017/dce.2021.6

	Anytime Monte Carlo
	Introduction
	Framework
	Establishing anytime behavior

	Methods
	Sequential Monte Carlo
	SMC with anytime moves
	Distributed SMC with anytime moves
	Setting the compute budget
	Resampling considerations

	Experiments
	Simulation study
	Validation of the anytime distribution
	Validation of the multiple chain strategy

	Distributed computing study

	Discussion
	Conclusion
	Acknowledgments
	Competing Interests
	Data Availability Statement
	Author Contributions
	Supplementary Materials
	References


